H. Abdi, L. J. Williams, and D. Valentin, Multiple factor analysis: principal component analysis for multitable and multiblock data sets, Wiley Interdisciplinary Reviews: Computational Statistics, vol.5, pp.149-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01259094

C. Alonso-blanco, A. Peeters, M. Koornneef, C. Lister, C. Dean et al., Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population, The Plant Journal, vol.14, pp.259-271, 1998.

L. J. Atkinson, C. D. Campbell, J. Zaragoza-castells, V. Hurry, and O. K. Atkin, Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits, Functional Ecology, vol.24, pp.1181-1191, 2010.

S. Balasubramanian, S. Sureshkumar, J. Lempe, and D. Weigel, Potent induction of Arabidopsis thaliana flowering by elevated growth temperature, PLoS Genetics, vol.2, pp.980-989, 2006.

B. Barnabas, K. Jäger, and A. Fehér, The effects of drought and heat stress on reproductive processes in cereals, Plant, Cell and Environment, vol.31, pp.11-38, 2008.

A. Blum, Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress, Field Crops Research, vol.112, pp.119-123, 2009.

J. Boyer, Plant productivity and environment, Science, vol.218, pp.443-448, 1982.

J. Bresson, F. Varoquaux, T. Bontpart, B. Touraine, and D. Vile, The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis, New Phytologist, vol.200, pp.558-569, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649962

F. S. Chapin, Integrated responses of plants to stress, Bioscience, vol.41, pp.29-36, 1991.

P. Ciais, M. Reichstein, and N. Viovy, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, vol.437, pp.529-533, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00373792

A. J. Crawford, D. H. Mclachlan, A. M. Hetherington, and K. A. Franklin, High temperature exposure increases plant cooling capacity, Current Biology, vol.22, pp.396-397, 2012.

D. Marais, D. L. Auchincloss, L. C. Sukamtoh, E. Mckay, J. K. Logan et al., Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response, Proceedings of the National Academy of Sciences, vol.111, pp.2836-2841, 2014.

M. R. Doyle, C. M. Bizzell, M. R. Keller, S. D. Michaels, J. D. Song et al., HUA2 is required for the expression of floral repressors in Arabidopsis thaliana, The Plant Journal, vol.41, pp.376-385, 2005.

C. E. Edwards, B. E. Ewers, C. R. Mcclung, P. Lou, and C. Weinig, Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits, Molecular Plant, vol.5, pp.653-668, 2012.

M. El-soda, M. Malosetti, B. J. Zwaan, M. Koornneef, and M. G. Aarts, Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis, Trends in Plant Science, vol.19, pp.390-398, 2014.

J. Fabre, M. Dauzat, and V. Negre, PHENOPSIS DB: an information system for Arabidopsis thaliana phenotypic data in an environmental context, BMC Plant Biology, vol.11, p.77, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01018993

R. A. Fisher, The genetical theory of natural selection, 1930.

J. Flexas, M. M. Barbour, and O. Brendel, Mesophyll diffusion conductance to CO 2 : an unappreciated central player in photosynthesis, pp.70-84, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268007

A. Fournier-level, A. M. Wilczek, M. D. Cooper, J. L. Roe, J. Anderson et al., Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana, Molecular Ecology, vol.22, pp.3552-3566, 2013.

J. Fu, J. J. Keurentjes, and H. Bouwmeester, System-wide molecular evidence for phenotypic buffering in Arabidopsis, Nature Genetics, vol.41, pp.166-167, 2009.

C. Granier, L. Aguirrezabal, and K. Chenu, PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit, New Phytologist, vol.169, pp.623-635, 2006.

M. Haselhorst, C. E. Edwards, M. J. Rubin, and C. Weinig, Genetic architecture of life history traits and environment-specific trade-offs, Molecular Ecology, vol.20, pp.4042-4058, 2011.

N. J. Hausmann, T. E. Juenger, S. Sen, K. A. Stowe, T. E. Dawson et al., Quantitative trait loci affecting delta 13 C and response to differential water availibility in Arabidopsis thaliana, Evolution, vol.59, pp.81-96, 2005.

T. E. Juenger, Natural variation and genetic constraints on drought tolerance, Current Opinion in Plant Biology, vol.16, pp.274-281, 2013.

T. E. Juenger, J. K. Mckay, N. Hausmann, J. Keurentjes, S. Sen et al., Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta C-13, stomatal conductance and transpiration efficiency, Plant, Cell and Environment, vol.28, pp.697-708, 2005.

J. J. Keurentjes, L. Bentsink, C. Alonso-blanco, C. J. Hanhart, . Blankestijn-de et al., Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population, Genetics, vol.175, pp.891-905, 2007.

J. Keurentjes, J. Y. Fu, C. De-vos, A. Lommen, R. D. Hall et al., The genetics of plant metabolism, Nature Genetics, vol.38, pp.842-849, 2006.

K. Kikuzawa, The basis for variation in leaf longevity of plants, vol.121, pp.89-100, 1995.

J. Ludwig-muller, K. P. Forreiter, and C. , A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress, Plant Physiology, vol.123, pp.949-958, 2000.

G. Martin and T. Lenormand, A general multivariate extension of Fisher's geometrical model and the distribution of mutation fitness effects across species, Evolution, vol.60, pp.893-907, 2006.

J. K. Mckay, J. H. Richards, and T. Mitchell-olds, Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits, Molecular Ecology, vol.12, pp.1137-1151, 2003.

, INRA Institut National de la Recherche Agronomique on September, vol.23, 2014.

G. S. Mcmaster, J. W. White, A. Weiss, P. S. Baenziger, W. Wilhelm et al., Modeling the response of crops to limited water: recent advances in understanding and modeling water stress effects on plant growth processes, pp.277-300, 2009.

R. Mittler, Abiotic stress, the field environment and stress combination, Trends in Plant Science, vol.11, pp.15-19, 2006.

F. Pantin, T. Simonneau, and B. Muller, Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny, New Phytologist, vol.196, pp.349-366, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650359

B. Parent, O. Turc, Y. Gibon, M. Stitt, and F. Tardieu, Modelling temperature-compensated physiological rates, based on the co-ordination of responses to temperature of developmental processes, Journal of Experimental Botany, vol.61, pp.2057-2069, 2010.

M. Pavlicev and G. P. Wagner, A model of developmental evolution: selection, pleiotropy and compensation, Trends in Ecology and Evolution, vol.27, pp.316-322, 2012.

R. Development-core and . Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2009.

D. Schluter, Adaptive radiation along genetic lines of least resistance, Evolution, vol.50, pp.1766-1774, 1996.

B. Shipley, M. J. Lechowicz, I. Wright, and P. B. Reich, Fundamental trade-offs generating the worldwide leaf economics spectrum, Ecology, vol.87, pp.535-541, 2006.

S. Tisné, I. Schmalenbach, M. Reymond, M. Dauzat, M. Pervent et al., Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population, Plant, Cell and Environment, vol.33, pp.1875-1887, 2010.

F. Vasseur, F. Pantin, and D. Vile, Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature, Plant, Cell and Environment, vol.34, pp.1563-1579, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651405

F. Vasseur, C. Violle, B. J. Enquist, C. Granier, and D. Vile, A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry, Ecology Letters, vol.15, pp.1149-1157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651649

D. Vile, M. Pervent, M. Belluau, F. Vasseur, J. Bresson et al., Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?, Plant, Cell and Environment, vol.35, pp.702-718, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651771

G. P. Wagner and J. Z. Zhang, The pleiotropic structure of the genotypephenotype map: the evolvability of complex organisms, Nature Reviews Genetics, vol.12, pp.204-213, 2011.

Z. Wang, B. Y. Liao, and J. Zhang, Genomic patterns of pleiotropy and the evolution of complexity, Procedings of the National Academy of Sciences, USA, vol.107, pp.18034-18039, 2010.

I. J. Wright, P. B. Reich, and M. Westoby, The worldwide leaf economics spectrum, Nature, vol.428, pp.821-827, 2004.