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Ambiguity is pervasive in many environments and is increasingly being introduced into economic and financial
models. This paper characterises ambiguity in the form of newly defined Choquet random walks: discrete-time
binomial trees with capacities instead of exact probabilities on their branches. We describe the axiomatic basis
of Choquet randomwalks, including dynamic consistency. We also discuss the convergence of Choquet random
walks to Choquet–Brownian motion in continuous time. In contrast to previous literature, we derive tractable
stochastic processes that allow for a wide range of ambiguity preferences to be represented in continuous time
(including ambiguity-seeking preferences). Finally, we apply Choquet–Brownian ambiguity to a model of sta-
tionary inter-temporal portfolio choice.Wefind that both themean and the variance of the underlying stochastic
process are modified. This result opens the way for qualitative and quantitative results that differ from those of
standard expected utility models and other models that feature ambiguity.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1 Incorporating ambiguous rather than just risky uncertainty parameters into models
1. Introduction

Models that involve uncertainty typically assume that uncertainty
parameters should take the familiar form of risk (i.e., a probability mea-
sure). Consequently, in continuous-time applications, the dynamics of a
risky variable (such as the cash flows of a project) are often described by
some known stochastic processes such as Brownian motion. However,
uncertainty is a rich and complex concept that may not be limited to
risk.

Indeed, alternative ways of characterising uncertainty are some-
times required in model construction, especially when the nature of
the uncertainty prevalent in a given environment is not fully captured
by standard risk parameters. This need has led to the development of
models that incorporate ambiguity parametrically. Ambiguity may, for
instance, result from different perceptions among individuals of the
sources of uncertainty or from incomplete information/transparency.
In the economic and financial modelling literature, the significance of
oubaud).
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ambiguity is increasingly recognised, with ambiguity parameters
being introduced into a growing body of fruitful models.1

Nevertheless, how best to model ambiguity remains controver-
sial at the axiomatic and theoretical level, as well as in practice. Let
us recall that in the presence of risk, it is possible to use the objective
expected utility maximisation model or, in the absence of a comput-
able or observable probability distribution, its subjective version. Ex-
pected utility models are extremely tractable and allow for the
construction of flexible yet sound models. However, in contexts
that feature ambiguity, these standards models cannot be used with-
out ignoring a whole range of behaviours and preferences. This limit
has been repeatedly identified experimentally and in many empiri-
cal studies (since Ellsberg, 1961).

To address this challenge, ambiguity has, since the 1980s, been repre-
sented by mathematical concepts in decision theory. Several axiomatic
was shown to substantially impact individual choices and the resulting macro-economic
equilibrium conditions (Dow and Verlang, 1992; Epstein and Wang, 1994). This has al-
ready led to reinterpretations of well-known financial puzzles, such as the “equity premi-
um” puzzle or the “home bias” puzzle (on the reinterpretations of financial puzzles, see
the review on ambiguity and asset pricing in Guidolin and Rinaldi, 2011).
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bases have been proposed and applied. In particular, the multiple-priors
model of Gilboa and Schmeidler (1989) was a significant breakthrough,
especially as it was successfully expanded to a continuous time setting
(Chen and Epstein, 2002). The multiple-priors model is based on the
maxmin criterion, implying optimisation in a worst case scenario.

However, it is remarkable that pioneer models of ambiguity, such as
the multiple-priors model, focus exclusively on ambiguity-adverse
agents. This is indeed a reasonable assumption in many situations
where agents focus on worst-case scenarios to determine their optimal
decisions. However, even if ambiguity aversion may usually prevail
among agents, it does not fully account for the variety of observed indi-
vidual behaviours and choices that occur in situations that feature
ambiguity.

Although several models expand the domain of acceptable prefer-
ences to account for a wider range of attitudes towards ambiguity,2

most of these alternative models, such as those in Schroder (2008) or
Kim et al. (2009), are not dynamically consistent.3 Even the very prom-
ising model of smooth ambiguity suffers from constraints that may sig-
nificantly undermine its usefulness in modelling.4 This impairs, to a
certain extent, its potential application to model construction and it
may be complemented by other representations of ambiguity such as
ours.

The methodology of our paper derives from two preliminary obser-
vations: a) while far from perfect, Brownian motion is still widely used
in economic and financial models (for instance, to describe the dynam-
ics of cash flows in the real investment literature), and b) existing ambi-
guity models almost always focus exclusively on worst-case scenarios
by adopting the multiple-priors model. In many contexts, this repre-
sents an excessive limitation on the domain of admissible individual
preferences in the presence of ambiguity.

In light of these two observations, the goal of this paper is twofold.
First, we preserve the representation of ambiguity in the Brownianmo-
tion model5 to derive a tool that should be tractable enough to be ap-
plied in many settings (as initiated by Epstein's multiple-priors
models). Adopting Brownianmotion also helps us compare ourfindings
with those of multiple-priors models. To construct ambiguous geomet-
ric Brownianmotion,we startwith a simple binomial processmeasured
by a capacity6 (rather than a probability). We then show that this pro-
cess converges to a type of Brownian motion. This approach differs
from the multiple-priors approach, which directly considers a family
of Brownian motion processes.

Second, we allow for a wider range of individual ambiguity prefer-
ences to be explicitly included (i.e. ambiguity seeking as well as aver-
sion). To do so, we use capacities, rather than standard probabilities,
to weight the perceived likelihood of ambiguous outcomes. The use of
capacities allows us to expand the domain of acceptable preferences re-
garding ambiguity to awider range than is permitted by suchmodels as
the multiple-priors model.

Let us clarify what we mean by uncertainty, as subjectively mea-
sured by the decision maker: we mean that there is not necessarily an
objective level of ambiguity that is observed independently of one's
2 See the α-MEU (Ghirardato et al., 2004) or the neo-additive capacities (Chateauneuf
et al., 2007).

3 Dynamic consistency implies that the decision maker, once he commits to a contin-
gent plan, does not later change his plans. To meet this condition, it is sufficient to allow
the use of a dynamic programming principle (Riedel, 2009). On the normative side, such
a condition also intuitively appears to be a key requirement for rational behaviour over
time.

4 The smooth ambiguity model (Klibanoff et al., 2005, 2009) assumes separation be-
tween beliefs and tastes through a second-order functional. But its extension to continu-
ous time has not yet been clearly established. Skiadas (2014) shows that in continuous
time, the smooth ambiguity adjustment may vanish and fail to preserve the ambiguity
preferences.

5 Another alternative approach where vagueness is incorporated in Geometric
Brownian motions in financial models (through fuzzy sets) was proposed in Agliardi
and Agliardi (2009).

6 The key characteristic of a capacity is that it is non-additive (Choquet, 1954).
preferences with respect to objective ambiguity, as in the smooth ambi-
guity models. We rely on discounted Choquet expected utility7 to value
alternatives and decide between ambiguous outcomes.

This paper thus offers a tractable alternative to the existing powerful
ambiguity aversion models by relying on some properties of Choquet
integrals and capacities, as adapted to stochastic processes. Our paper
defines ambiguous randomwalks and Brownian processes in a Choquet
expected utility framework. An earlier unpublished version of this work
(Kast and Lapied, 2010a) has been applied to real investment decisions
(Roubaud et al., 2010) and to assessments of environmental policy op-
tions (Agliardi and Sereno, 2011).

In this paper, we also show that the binomial processes constructed
are dynamically consistent, which is an interesting (and often neces-
sary!) property of economic and financial models. Without this proper-
ty, themodel would be seriously limited. However, evenwith it, if one is
not careful, the model may still collapse into an additive model (Sarin
andWakker, 1998) and hence lose its relevance to the issue of ambigu-
ity. One way out of this difficulty is to consider only binomial recursive
models (one period ahead) instead of the full dynamicmodel. This is the
method adopted in this paper, in accordancewith themaxmin recursive
expected utility approach, as it enables us to addressmost of themodel-
ling problems that arise.

The remainder of the paper is organised as follows. In Section 2, we
build the axiomatic basis for Choquet randomwalks. Specifically, uncer-
tainty is described by a binomial treemeasured by the same capacity on
the up and down branches. We show how individual preferences over
payoff processes may be represented by a discounted Choquet expecta-
tion that satisfiesmodel consistency and aweakened version of dynam-
ic consistency. This opens the way for discrete-time applications of
Choquet ambiguity. In Section 3, we investigate the limit behaviour of
the joint capacity when time intervals converge to zero to allow for
continuous-time modelling. We obtain a type of Brownian motion as
the limit of the Choquet binomial random walk. In Section 4, we apply
Choquet–Brownian ambiguity to a model of stationary inter-temporal
portfolio choice. In Section 5, we relate our results to similar results in
the literature and conclude.

2. Dynamically consistent binomial Choquet randomwalks

2.1. Method

As a starting point, we consider a particular belief represented by a
non-additive measure, the Choquet capacity. Because it is non-
additive, this measure may be interpreted as revealing the attitude of
a decision maker towards the evolution over time of the value of a par-
ticular process that is perceived as ambiguous. As noted above, our ap-
proach is axiomatic and subjective (the measure derives exclusively
from the decision maker's preferences), without reference to an objec-
tive probability distribution that would be subjectively distorted.
There is no need for an “objective” source of ambiguity, in response to
which the decision maker would take a particular stance. We directly
introduce the ambiguity preference into the dynamics of the ambiguity
parameter.

We first consider a familiar discrete time dynamicmodel that we as-
sume to be ambiguous, an ambiguous random walk (or Choquet ran-
dom walk). In Section 3, we show that it converges to a continuous
time model, an ambiguous type of Wiener process that we call a
Choquet–Brownian motion. First, however, how we define a Choquet
random walk.

Consider a standard random walk that may be represented in a
typical binomial decision tree. Suppose also that ‘up’ and ‘down’move-
ments across the decision tree have the samemagnitude and likelihood
7 See Schmeidler (1986, 1989), Gilboa (1987), and Sarin andWakker (1992). Let us re-
call that when beliefs are represented by capacities, a specific notion of integration, the
Choquet integral, is required, which takes into account the rank of outcomes.
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of occurrence (denoted as c). This is the basic description of a symmetric
Choquet random walk.8

To characterise a Choquet randomwalk, we rely on the use of capac-
ities rather than probabilities.9 A capacity summarises preferences re-
garding ambiguity by measuring the likelihood of up and down
movements (rather than by assigning standard probability measures).
In a Choquet random walk, if the capacity is convex10 (ambiguity aver-
sion11), then the value attributed to a fair game (the same likelihood for
up and downmovements, where the movements are of the samemag-
nitude in absolute terms) is negative, due to the use of Choquet integrals
to compute the value, which is sufficient to account for ambiguity pref-
erences (in contrast with the probabilistic case, where the value of a fair
game is zero). The opposite holds if the capacity is concave (ambiguity
seeking).

Graphically, a symmetric Choquet randomwalkmay be represented
as follows:
A binomial Choquet random walk based on capacity c.
Ambiguity is introduced at each node of the binomial tree, determin-
ing the likelihood of movement up or down. Without loss of generality,
we take the increments to be unity (−1,+1) and the departure point to
be zero. The uncertain states, s1,…, sn in S are trajectories or sequences
of nodes in the tree.

For any node st at date t (0 ≤ t b T), if sut + 1 and sdt + 1 are the two
possible successors of st at date t + 1 (for, respectively, an ‘up’ or a
‘down’ movement in the binomial tree), the conditional capacity is a
constant: ν(st + 1

u /st) = ν(st + 1
d /st) = c, with 0 b c b 1.

The value of the parameter c is fundamental, as it summarises the
decision maker's attitude towards ambiguity. It represents an index of
the individual's preferences regarding ambiguity. If c ¼ 1

2, then we are
back to the probabilistic case.

In summary, we consider a modified version of a standard binomial
tree, where uncertain states are represented through sequences of
nodes describing the trajectories of the random variable, and where ca-
pacities rather than probabilities represent preferences. Thus, the dy-
namics of such an uncertain random variable may be described by a
discrete time Brownian motion process, in which probability 1/2 is
8 Symmetric random walks are binomial processes where ‘up’ and ‘down’ movements
correspond to the sameweight. In the probabilisticmodel, i.e., the casewhere c=1/2, this
process is a discrete time Brownian motion.

9 We are not trying here to model distortions of probabilities stricto sensu, which is an-
other vision of the potential impact of ambiguity. Such distortions, such as the tendency to
overweight small probabilities, have been widely documented in the literature.
10 A convex capacity on afinite set of states of nature S is a real-valued set function on the
subsets of S such that:∀ A, B∈ 2S, ν(A∪ B)+ ν(A∩ B)≥ ν(A)+ ν(B). Choquet defined the
concept in 1953, with some additional continuity requirements, that are actually satisfied
when S is finite.
11 A behavioural interpretation of capacities (Schmeidler, 1989) leads to representing a
wide range of attitudes towards ambiguity (as concavitywith≤ instead of≥ in the expres-
sion above may represent ambiguity loving).
replaced by a constant12 c (the ambiguous weight that the decision
maker places both on the event ‘up’ and the event ‘down’ instead of
the unambiguous 1/2).

2.2. Insuring dynamic consistency

The construction of the axiomatic basis for Choquet randomwalks is
described in detail in Appendices. Itfirst includes the dynamic consisten-
cy axioms and the conditions expressing consistencybetween condition-
al and unconditional expectations, as characterised in Proposition 1 and
relation (1) in Appendix 1.

Proposition 1. Under the representation of preferences satisfying our six
axioms, for any X ∈ RS × T, ∀τ ∈ {0,…, Τ}, ∀i ∈ I, ∀[Yτ = i] ⊂ Fτ, ∀t,τ ≤ t
≤ T, Eν Xtð Þ ¼ Eν E Yτ¼i½ �

ν Xtð Þ
h i

.

Proof. See Appendix 1.

From Proposition 1, dynamic consistency implies (see Appendix 1):

∀τ ¼ 1;…; T−1;∀t
¼ τ;…; T;

X
sτ∈Sτ

½
X
st∈St

Xt stð ÞΔν st=sτð Þ�Δν sτð Þ ¼
X
st∈St

Xt stð ÞΔν stð Þ: ð1Þ

The axiomatic basis allows for the characterisation of subjective ca-
pacity as follows:

Proposition 2. A dynamically consistent Choquet random walk that sat-
isfies relation (1) is completely defined by a unique capacity ν satisfying:

ν sutþ1=st
� � ¼ ν sdtþ1=st

� �
¼ c: ð2Þ

Proof. See Appendix 2.

The idea is that, in our binomial lattice, the filtration is fixed and
then, we can only consider comonotonic payoffs (on a comonotonic
cone). Therefore, on the binomial tree, the capacity is equivalent to a
unique probability. This identification is correct because we define
non-conditional capacities from given conditional capacities and not
the reverse.

Proposition 3. In a dynamically consistent Choquet randomwalk, the ca-
pacity ν is sub-linear if and only if c≤ 1/2. Moreover, it does not reduce to a
probability if and only if c ≠ 1/2.

Proof. See Appendix 3.

Sublinear is implied by convexity but not equivalent.

∀A∈2S
; v Sð Þ ¼ 1≥v Að Þ þ v AC

� �
:

The decision maker consider a fair game when c = 1/2.
If c b 1/2, the sumof one $ ifA is drawn and one $ if AC is drawn is less

than one $ with certainty (Schmeidler's uncertainty aversion).

2.3. Choquet expectation of symmetric Choquet random walks

To compute the Choquet expectation of such a process (which is re-
quired to provide a decision criterion), we must characterise the
12 Themodel is robust to a non-constant c if the conditional capacities have given values.
The non-conditional capacities can be deduced from these values. But, if c is non constant,
the symmetry required from a fair game disappear and then the formalization of the ran-
dom walk. Moreover the calculus is no more tractable!
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decumulativedistribution function of capacity ν. The decumulative func-
tion of capacity ν is obtained by iteration:

∀t ¼ 2;…; T;∀n ¼ 1;…; t;ν s1t ;…; snt
� �

¼ cν s1t−1;…; snt−1

� �
þ 1−cð Þν s1t−1;…; sn−1

t−1

� �
ð3:1Þ

and ν(s11) = c.
The closed form of the decumulative function is:

∀t ¼ 1;…; T;∀n ¼ 1;…; t–1; ν s1t ;…snt
� �

¼ ct−nþ1Xn−1

j¼0

j
t−nþ j

� �
1−cð Þ j: ð3:2Þ

Proof. See Appendix 4.

Remark. The binomial tree should be “path independent” (for exam-
ple, “up then down” nodes correspond to “down then up” nodes). Con-
sequently n = t (i.e., the number of nodes equals the date at each
period). Indeedwith a path dependent lattice, it is not possible to deter-
mine a unique capacity as in Proposition 2, because, in this case, the dy-
namic consistency formula leads to different values at time t from the
following up and down nodes.

Proposition 4. The Choquet expectation of the payoffs at date t of a sym-
metric Choquet random walk is:

∀t ¼ 0;…; T; E Xtð Þ ¼ t 2c–1ð Þ : ð4Þ

Proof. See Appendix 5.

Remarks. c b 1/2 ⇒ E(Xt) b 0. This is consistent with ambiguity aver-
sion as it results in the attribution of a negative expected value to a
fair game. Furthermore, other symmetric randomwalks can be obtained
from this oneby a positive affine transformation. The Choquet integral is
linear with respect to such a transformation.

For∀ t=0,…,T, Yt= a Xt+ b, a N 0,we have: E(Yt)= a t (2c− 1)+ b.
As a result, if required by modelling considerations, we can ad-

dress cases where the mean is nonzero and allow volatility to
vary.

It may be useful to clarify the link between dynamically con-
sistent Choquet random walks and the recursive multiple-priors
model of Epstein and Schneider (2003). For a convex or concave
capacity, as shown above, it is easy to exhibit the possible condi-
tional one-step-ahead priors, making our model recursive. More-
over, we have shown that if c ≤ 1/2, the convex core of capacity
ν is the convex and rectangular set of priors in the multiple-
priors model.

The literature on dynamic risk measures is also very close to this
method. Risk is measured, at time t, by the maximum of the expecta-
tionsminus the sumof discounted cash-flows, with respect to the prob-
abilities in a closed and convex set, conditional on information at time t.
This result is obtained, given certain properties: coherence, dynamic
consistency and relevancy (see Riedel, 2004, Theorem 1). The crucial
one, consistency, is equivalent to rectangularity in Epstein and
Schneider's model (2003).

3. Convergence to Choquet–Brownian motion

Choquet random walks can be used in discrete-time modelling in
the presence of ambiguity, but we consider their expansion to continu-
ous time. In this section,we show thatwhen the time interval converges
to zero, the Choquet binomialmodel converges to a deformed Brownian
motion, where both the drift and the volatility are modified, in contrast
with the Chen and Epstein (2002) recursive multiple-priors model,
where only the volatility is modified.

Let us first characterise the variations of the decumulative function of
the previously defined dynamically consistent Choquet random walk.

Proposition 5.

∀t ¼ 1;…; T ;∀n ¼ 1;…; t þ 1;

Δνn
tþ1 ¼ cΔνn

t þ 1−cð ÞΔνn−1
t

Δνn
t ≡ ν s1t ;…snt

� �
−ν s1t ;…sn−1

t

� �
¼ n−1

t

� �
ct−nþ1 1−cð Þn−1 ð5Þ

where we set: ν(st0) = 0.

Proof. See Appendix 6.

Proposition 6. When the time interval converges to 0, the symmetric
random walk, defined by Eq. (5), converges to a general Wiener process,
with mean m = 2c − 1 and variance s2 = 4c(1 − c).

Proof. See Appendix 7.

3.1. Discussion of properties and sensitivity analysis

The resulting Brownian motion exhibits some interesting properties.
Note that if c b 1/2, thenm b 0 and s2 b 1: both themean and the variance
are smaller than in the probabilistic model. Indeed, ambiguity aversion
yields smaller weights on the up and down movements (c b 1/2), for
given value increments (+1, −1); hence, the variance is smaller.

The sensitivity of the Choquet–Brownianmotion with respect to the
main value driversmay be further illustrated through a numerical appli-
cation. Let us recall first that an increase in aversion (or “love”) towards
perceived ambiguity in our setting means that the value of parameter c
is going further away from its central key anchor 1/2 (corresponding to
the limit probabilistic case, that of an absence of ambiguity). Possible
deviations are consequently confined in a range and c represents the
index of the intensity and nature of the attitude towards perceived
ambiguity.

Suppose B is a standard Brownianmotion and μ′ andσ′ are some real
numbers, with μ′= μ+m σ, σ′= s σ,m=2 c− 1, s2= 4 c (1− c), μ N

0 and σ N 0. In the graph below, we see how a change in the value of pa-
rameter c impacts both the drift μ′ and volatility σ′ of the Choquet–
Brownian motion (where μ and σ correspond to the initial values for
the drift and volatility before the introduction of ambiguity). The con-
trast between the nature of the impact on the drift and on the volatility
appears clearly.
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Remark. The absence of ambiguity (or the neutrality towards ambigu-
ity) is the case where: c = 0.5 (obviously in that case in the numerical
illustration above μ′ = μ = 2 and σ′ = σ = 5).

Before applying this model (in Section 4) and comparing it with
the multiple-priors model (in Section 5), we conclude this section
with a remark on the convergence of Choquet–Brownian motions.
The notion of “stochastic convergence” formalises the idea that a se-
quence of essentially random or unpredictable events can some-
times be expected to settle into a pattern. However, the notion of
convergence of a distribution is very frequently used in practice;
most often, it arises from application of the central limit theorem.
See Billingsley (1999) and Jacod and Shiryaev (2002) for detailed
discussions of convergence concepts.

Let us emphasise that, in our representation, in a cone with
comonotonic variables, we obtain a probabilistic representation and
thus can use the traditional results on statistical convergence. Further-
more, observe that, in the multiple-priors model, Chen and Epstein
avoid addressing convergence directly by employing, in continuous-
time, an analogywith discrete-time. This has not preventedwidespread
use of the multiple-priors approach in economic and financial model-
ling. Finally, our representation is close to that of the multiple-priors
model, with the symmetrical case of concavity of capacities added to
the usual case of convexity.

4. Applications

Following earlier versions of this paper, a few applications of
Choquet–Brownian motion have been proposed, showing significant
and contrasting effects of ambiguity. They have addressed real in-
vestment decisions (the optimal timing and valuation of real op-
tions, as in Roubaud et al. (2010)) and the optimal timing of
environmental policies (Agliardi and Sereno, 2011). The former ex-
tends the real options theory and method (Dixit and Pindyck,
1994; Trigeorgis, 1996) by modelling ambiguous cash flows expect-
ed from an investment project.

Agliardi and Sereno use Choquet–Brownian ambiguity to explore
the optimal timing of environmental policies, such as taxes and non-
tradable quotas, in the presence of ambiguity about the future costs
and benefits of such policies.

In this paper, we now suggest the application of our model to the op-
timal portfolio choice of traded assets.We consider a stationary version of
the inter-temporal Capital Asset Pricing Model (Merton, 1969, 1971,
1973).

Let (w(t))0 ≤ t ≤ T, thewealth of the investor, which has to be allocated
between a riskless assetwith constant instantaneous rate of return r, r N 0,
and a risky asset the price of whom follows a Choquet–Brownianmotion:

dP tð Þ ¼ m′P tð Þdt þ σ ′P tð ÞdB tð Þ ð6Þ

with P(0) N 0, where B is a standard Brownian motion and μ′ and σ′ are
some real numbers, with μ′= μ +m σ, σ′ = s σ,m= 2 c− 1, s2 = 4 c
(1− c), μ N 0 and σ N 0.

(x(t)) is the part of the capital invested in the risky asset at date t and
then the following Stochastic differential equation characterises the
agent's wealth:

dw tð Þ
w tð Þ ¼ x tð ÞdP tð Þ

P tð Þ þ 1−x tð Þ½ �rdt: ð7Þ

The programme of the agent for a time horizon T is to maximise the
expected utility of his final wealth:

Max
x tð Þð Þ0≤ t ≤ T

Et u w Tð Þð Þ½ �;w 0ð ÞN0 ð8Þ
where u(.) is an increasing and concave utility function, with respect to
the following SDE straightforwardly obtained with Eqs. (6) and (7):

dw tð Þ ¼ r þ x tð Þ μ 0−r
� �� 	

w tð Þdt þ σ 0x tð Þw tð ÞdB tð Þ: ð9Þ
In the well-known iso-elastic case:u wð Þ ¼ w1−α

1−α , α N 0, α ≠ 1, where
the constant α is the relative risk aversion coefficient, the optimal solu-
tion is a constant:

x∗ t;wð Þ ¼ x′ ¼ 1
α

μ ′−r
σ 02

 !
: ð10Þ

If 0 b c b 1/2, we have μ− σ b μ′ b μ and 0 b σ′ b σ, and if 1/2 b c b 1,
we have μ b μ′ b μ + σ and 0 b σ′ b σ.

If x characterises the optimal solution without ambiguity (c = 1/2),
it is easy to check that:

x′bx⇔λ≡ μ−r
σ

b− m
1−s2

¼ 1
1−2c

:

The value of themarket price of risk λ relatively to the ambiguity pa-
rameter c gives the hierarchy between investment in the risky asset
with or without ambiguity.

Similarly:

∂x′

∂c N0⇔λ≡ μ−r
σ

b
1−2cþ 2c2

1−2c
:

Let us first underline that the impact of risk aversion itself on the op-
timal choice is straightforward: the quantity of risky asset is inversely
proportional to the relative risk aversion coefficient α in relation (10).

Next, and in contrast with this linear impact of risk aversion, the im-
pact of the attitude towards ambiguity is not so direct. Indeed, for an
ambiguity averse decision maker, the fact that investment in the risky
asset is increasingwith the reduction of ambiguity (when c increases to-
wards 1/2, the ambiguity decreases) depends on the value of λ, themar-
ket price of risk.

Indeed, in the case of ambiguity aversion, if themarket price of riskλ
is relatively small, the quantity of risky (and ambiguous) asset is also de-
creasing with the ambiguity aversion. But if the market price of risk is
relatively important, the quantity of risky asset is greater than in the ab-
sence of ambiguity and, furthermore, increasing with the ambiguity
aversion. In this case, there is some trade-off between risk and
ambiguity.

Finally, models where ambiguity has only one type of effect may be
somewhat restrictive. The results of the various applications of
Choquet–Brownian ambiguity differ from those of the recursive
multiple-priors model of ambiguity to real options (Nishimura and
Osaki, 2007) and to the continuous-time capital asset pricing model
(Chen and Epstein, 2002). The effect of ambiguity is not straightforward,
as reflected in the deformations of both the mean and the variance in
our Choquet expectations model.

5. Conclusion

In summary, we have shown that with a less-restrictive model than
themultiple-priorsmodel, and even in the case of ambiguity aversion (c
b 1/2), the effects of ambiguity on optimal decisions may vary. We
thereby contribute to a growing body of literature focusing on the am-
biguity that characterises uncertain prospects.

Expanding economic and financial models to incorporate the many
substantial sources of uncertainty that characterise them remains chal-
lenging, in spite of significant breakthroughs in the decision sciences
over the last two decades. Even if a typical investor may often be de-
scribed as conservative and cautious, ambiguity-seeking is also a reality.
AdoptingChoquet–Brownian ambiguity avoids an early reduction of the
range of possible preferences regarding ambiguity. This may be an



13 The Hierarchy axiom between time and uncertainty may be expressed as such: pref-
erences of the decision maker over payoffs contingent on Ω = S × T, are represented by
V= DE. The subjective product measure υ × π on S × T captures the decision maker's be-
haviour both on uncertainty and on time.
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interesting feature in contexts where aversion may not be the only ac-
ceptable attitude toward ambiguity.

In addition to the applications presented in Section 4 to portfolio
choice, real options theory and environmental policy, our approach
has possible applications to any model in which ambiguity is present,
for example, to macroeconomic “uncertainty models,” where central
banks do not know the “true” economic model. Expansion of prefer-
ences to a wider range of preferences also opens the way for applica-
tions to entrepreneurial models or to the study of contractual
arrangements under ambiguity. To conclude, Choquet–Brownian ambi-
guity can be applied to a rich range of issues where beliefs cannot be
represented by standard probability measures. Choquet–Brownian am-
biguity may thus usefully complement other models of utility in sto-
chastic continuous-time settings.
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Appendix 1. Axiomatic basis for Choquet randomwalks

In this appendix, we establish the key axioms and properties of
Choquet random walks (for a more extensive presentation please
refer to Kast and Lapied, 2010a). Suppose a decision maker is aware of
its preferences over payoffs contingent on uncertain states, i.e., measur-
able functions from S to R. These preferences may satisfy Dieccidue and
Wakker (2002) axioms and be represented by a value function on the
set of uncertain payoffs:

Axiom 1. Preferences define a complete pre-order on the set of measur-
able functions.

Axiom 2. For any measurable function X, there exists a constant num-
ber (constant equivalent), for which the decision maker is indifferent
to the function, i.e.,

X≈E Xð Þ where≈represents indifferenceð Þ:

Axiom 3. Preferences allow no comonotonic Dutch Books.

A comonotonic Dutch Book is a finite sequence of random variable
pairs fi, gi with the fi′s and the gi′s in a comonotonic set and such that: ∀
i; f i ≻≈ gi and ∀s∈S;∑

i
f i sð Þb∑

i
gi sð Þ.

1.1. Interpretation

At each “step”, X ≽ X′ but at the end of all steps the result is actually
the following: X′ ≻ X. Mimicking the case of standard Dutch books, after
a series of “successive” bets, the DM is losing in all possible situations.

Then, according to Dieccidue and Wakker (2002):For a preference
relation on RS satisfyingAxioms1 and 2, for allX in RS, there exists a con-
stant equivalent E(X) ∈ R, such that the following three statements are
equivalent:

(i) E(.): RS → R are strictly monotonic, additive on comonotonic
vectors (but not necessarily additive on non-comonotonic
vectors).

(ii) There exists a unique capacity such that E(X) is the Choquet inte-
gral of X with respect to this measure.

(iii) E(.) is such that Axiom 3 is satisfied.
Otherwise stated: ∃v, a unique capacity on (S, 2S), Xt≈E
Xtð Þ ¼ ∫

S

Xtdν:
Let us note that, in this representation theorem, the (subjective) ca-
pacity aggregates all the decision maker's behaviour: there is no need
for utility on payoffs, and the certainty equivalent is merely an expected
(subjective) value. Similarly, a decision maker has preferences for pres-
ent over future consumption (payoffs, here), i.e., preferences over pay-
offs are contingent on dates. We assume that the decision maker's
preferences over certain future payoffs satisfy Koopman's (1972) ax-
ioms and are represented by a linear function.

Axiom 4. Preferences define a complete continuous pre-order on the
set of measurable functions. Preferences are also strictly monotonic
and satisfy separability over dates.

Then, according to Koopman's theorem (1972):
For a preference relation on RT satisfying Axioms 4 for all X in RT, there

exists a present equivalent D(X)∈ R such that:∃π, a unique bounded addi-
tive measure on (T, 2T), Xs≈D Xsð Þ ¼ ∫

T

Xsdπ.
Or in terms of preferences:

Axiom 5. Dynamic consistency axiom

∀t = 1,…, T − 1, ∀X, X′ such that:

Xτ sð Þ ¼ X′
τ sð Þ;∀τ ¼ 0;…; t;∀s∈S; ∀ it∈It ;X≻≈it

X′

 �

⇒X ≻
≈
X′
:

Let us clarify the relation between our approach and papers where a
weakened axiom of dynamic consistency and of model consistency is
considered (e.g Karni and Schmeidler, 1991; Sarin and Waker, 1998).

On the one hand, Sarin andWakker express dynamic consistency to-
getherwith the compound lotteries axiom: The valuation of a two-stage
lottery and the valuation of the equivalent one-stage lottery is the same.
They also add model consistency (named sequential consistency).

On the other hand, for Karni–Schmeidler dynamic consistency is the
preservation of preferences between the first period and second period,
when the counterfactual payoffs are the same for the two lotteries.

In contrast, our expression of dynamic consistency is the same as in
Nishimura and Ozaki (2003): when a lottery is preferred to another at
the first stage, for any possible information set, then, it is preferred at
the second stage.

Consequently our hypothesis is not weaker nor stronger than Karni
and Schmeidler's hypothesis: it is notweaker because the set of lotteries
considered by Karni and Schmeidler (with identical counterfactual pay-
offs) is included in the set of lotteries we consider. It is not stronger be-
cause there is not equivalence between the preferences at period one
and period two, but an implication from period one to period two.

Axiom 6. Model consistency axiom

Preferences conditional on information satisfy Axioms 1–3 and the
hierarchy axiom between time and uncertainty.

If the criterions for time and/or uncertainty are not linear, the
discounted expectation (DE) and the expected discounting (ED) are
not equivalent. Here, discounting is linear and not expectation (Choquet
expectation). In this case, the appropriate method is DE (Cf. Kast and
Lapied, 2010b).13

We can now state the following condition expressing consistency
between conditional and unconditional expectations.
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Proposition 1. Under the representation of preferences satisfying our six
axioms, for any X ∈ RS × T, ∀τ ∈ {0,…, Τ}, ∀i ∈ I, ∀[Yτ = i] ⊂ Fτ, ∀t,τ ≤ t

≤ T, Eν Xtð Þ ¼ Eν E Yτ¼i½ �
ν Xtð Þ

h i
.

1.2. Proof of Proposition 1

Under our axioms, preferences are represented by the value func-
tions V = DE and V[Y = i] = D[Y = i]E[Y = i], such that for any X ∈ RS × T,
we can write:

V Xð Þ ¼ DE Xð Þ ¼
XT
t¼0

π tð ÞEν Xtð Þ and

∀τ∈ 0;…; Tf g;∀i∈I;∀½Yτ ¼ i�⊂Fτ ;V
Yτ¼i½ � Xð Þ ¼

XT
t¼0

π Yτ¼i½ � tð ÞE Yτ¼i½ �
ν Xtð Þ

with: ∀t∈ 0;…; τ−1f g;π Yτ¼i½ � tð Þ ¼ 0;π Yτ¼i½ � τð Þ ¼ 1;∀t∈ τ;…; Tf g;π tð Þ ¼
π τð Þπ Yτ¼i½ � tð Þ.

Let the certainty equivalent payoffs process be: EC(X) = (Εν(X0),…,

Εν(XT)) and EC
Yτ¼i½ �

Xð Þ ¼ X0;…;Xτ−1; E
Yτ¼i½ �
ν Xτð Þ;…; E

Yτ¼i½ �
ν XTð Þ

� �
. We

have, by definition:V(X) = V(EC(X)) and ∀i∈I;V Yτ¼i½ � Xð Þ ¼ V Yτ¼i½ �

EC Yτ¼i½ � Xð Þ
� �

.

Under the dynamic consistency axiom, the last equality implies:

∀i∈I;V Xð Þ ¼ V EC Yτ¼i½ � Xð Þ
� �

Owing to the definition of π Yτ¼i½ �, this equality simplifies to:

∀τ∈ 0;…; Tf g;∀i∈I;∀ Yτ ¼ i½ �⊂Fτ;∀t; τ≤t≤T; Eν Xtð Þ
¼ Eν E Yτ¼i½ �

ν Xtð Þ
h i

: QED

We must also normalise the conditional capacities as follows:

ν ∅=stð Þ ¼ 0;ν sutþ1; s
d
tþ1

n o
=st

� �
¼ 1;∀B∈Atþ1;ν B=stð Þ

¼ ν B∩ sutþ1; s
d
tþ1

n o
=st

� �
:

Hence, from Proposition 1, dynamic consistency implies:

∀τ ¼ 1;…; T–1;∀t
¼ τ;…; T;

X
sτ∈Sτ

½
X
st∈St

Xt stð ÞΔν st=sτð Þ�Δν sτð Þ ¼
X
st∈St

Xt stð ÞΔν stð Þ: ð1Þ

1.3. Interpretation

The bracketed expression on the left-hand side of expression (1)
represents the conditional expectation of the possible payments of
X in the states in t that are possible successors in the tree of events
of a state sτ in τ. They correspond to the values (given by the
Choquet criterion) of Xt, seen from τ. Next, we integrate these
values according to the possible values of sτ in τ. We then have a
value of 0 for all possible evaluations of Xt, seen from τ. If the de-
cision maker is dynamically coherent, then this value is equal to
that of the right-hand side of the expression (that is, the evalua-
tion in 0 of the values of Xt).

Appendix 2. Proof of Proposition 2

We can concentrate without loss of generality on the characteristic
functions Xτ + n of the sets in Aτ + n because any random variable has
a unique decomposition into a non-negative linear combination of the
characteristic functions in a cone containing Xτ + n, and the Choquet ex-
pectation is linear on this cone.
Three cases are considered.

(i) If t = τ, relation 2 is trivially satisfied.
(ii) If t = τ + 1, relation 2 becomes:

∀t ¼ 1;…; T−1
X
st∈St

½
X

stþ1∈Stþ1

Xtþ1 stþ1
� �

Δν stþ1=st
� ��Δν stð Þ

¼
X

stþ1∈Stþ1

Xtþ1 stþ1
� �

Δν stþ1
� �

:

ð2:1Þ

For any t=1,…,T− 1, and any B∈ At + 1, the conditional capacity
ν(B/st) can only take three different values: (sut + 1 ∉ B and sdt + 1

∉ B)⇒ ν(B/st) = 0,

sut þ1∉B and sdt þ1∈B
� �

or sut þ1∈B and sdt þ1∉B
� �h i

⇒ν B=stð Þ ¼ c;

sut þ1∈B and sdt þ1∈B
� �

⇒ν B=stð Þ ¼ 1:

For Xt + 1 = 1B, relation (2.1) can be written as:

ν Bð Þ ¼ cν st : sutþ1∈B
� 	

∨ sdtþ1∈B
h in o� �

þ 1−cð Þν st : sutþ1∈B
� 	

∧ sdtþ1∈B
h in o� �

: ð2:2Þ

All the capacities at date t+1are then uniquely determined by ca-
pacities at date t.
With ν(s11) = ν(s12) = c, the set function ν is completely defined
and hence unique.
Moreover: B⊂D⇒ {st : [st+ 1

u ∈ B]∨ [st+ 1
d ∈ B]}⊂ {st : [st+ 1

u ∈D]
∨ [st + 1

d ∈ D]}.
Then, from Eq. (2.2): B⊂D⇒ ν(B)≤ ν(D), ν is an increasingmea-
sure and then a capacity.

(iii) Finally, if t = τ + n, n N 1, relation (3.1) partially characterises
the conditional capacities ν(B/sτ), where B ∈ Aτ + n. We have
then 2τ + n + 1 equations for the (τ+ 1) × 2τ + n + 1 conditional
capacities. Thus, these relations cannot constrain the capacity ν.
QED

Appendix 3. Proof of Proposition 3

We need only prove that: [∀ t = 1,…,T, ∀ B ∈ At, ν(B) + ν(BC) ≤ 1]
⇔ c ≤ 1/2.

First, if the capacity is sub-linear at date 1 for B= s1
1, and BC= s1

2, then
ν(B) + ν(BC) = 2c ≤ 1 implies c ≤ 1/2.

The reciprocal is obtained by induction. Let us assume that c ≤ 1/2 in
the sequel:Then, at the first stage, B∈ A1. B=∅ or B= S1 implies ν(B)+
ν(BC)=1, and B= s1

1 or B= s1
2 yields: ν(B)+ ν(BC)=2c. The property is

then established at date 1.
Suppose now that it is also true at date t and consider some B∈ At + 1.
From relation (2.2), we have:

v Bð Þ þ ν BC
� �

¼ cν st : ½sutþ1∈B�∨½sdtþ1∈B�
n o� �

þ 1−cð Þν st : ½sutþ1∈B�∧½sdtþ1∈B�
n o� �

þcν st : sutþ1∈BC
h i

∨½sdtþ1∈BC �
n o� �

þ 1−cð Þν st : ½sutþ1∈BC �∧½sdtþ1∈BC �
n o� �

:

With the notations: D ¼ st : sutþ1∈D
� 	

∨ sdtþ1∈D
� 	� 


and D ¼
st : sutþ1∈D

� 	
∧ sdtþ1∈D
� 	� 


, it follows that: ν Bð Þ þ ν BC
� �

¼ c

ν B
� �þ ν BC

� �h i
þ 1−cð Þ ν Bð Þ þ ν BC

� �h i
.



14 A comonotonic cone is the set of the randomvariables obtained from the positive linear
combinations of the set of characteristic functions that are comonotonic two by two.
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We have: BC ¼ BC and BC ¼ B
C

therefore: ν Bð Þ þ ν BC
� �

¼ c

ν B
� �

−ν Bð Þ þ ν BC
� �

−ν B
C

� �h i
þ ν Bð Þ þ ν B

C
� �

.

WithB⊂B⇒ν B
� �

−ν Bð Þ≥0, andB
C ¼ BC⊂BC ¼ BC⇒ν BC

� �
−ν B

C
� �

≥0 , and because c ≤ 1/2, it follows that: ν Bð Þ þ ν BC
� �

≤ 1
2

ν B
� �þ ν B

C
� �

þ ν Bð Þ þ ν BC
� �h i

.

AsD∈Atþ1⇒ D∈At∧D∈At
� 	

, by hypothesis:ν B
� �þ ν B

C
� �

≤1,ν Bð Þ þ
ν BC
� �

≤1, and then: ν(B) + ν(BC) ≤ 1.QED.

Appendix 4. Proof of relation 3.1

We have:

∀i ¼ 1;…;n−1;ν s1t ;…; snt =s
i
t−1

� �
¼ 1;ν s1t ;…; snt =s

n
t−1

� �
¼ c;∀ j

¼ nþ 1;…; t;ν s1t ;…; snt =s
i
t−1

� �
¼ 0:

Now consider the following relation: ∀t ¼ 1;…; T–1; ∑
st∈St

½ ∑
stþ1∈Stþ1

Xtþ1 stþ1ð ÞΔν stþ1=stð Þ�Δν stð Þ ¼ ∑
stþ1∈Stþ1

Xtþ1 stþ1ð ÞΔν stþ1ð Þ:

If we apply this relation to X ¼ 1s1t ∪…∪snt , it follows that:

ν s1t ;…; snt
� �

¼ cν s1t−1;…; snt−1

� �
þ 1−cð Þν s1t−1;…; sn−1

t−1

� �
: ð3:1Þ

The closed form of the decumulative function is:

∀t ¼ 1;…; T ;∀n ¼ 1;…; t–1; ν s1t ;…snt
� �

¼ ct−nþ1Xn−1

j¼0

j
t−nþ j

� �
1−cð Þ j:

ð3:2Þ

If we place the expression for the decumulative function given by
Eq. (3.2) on the right-hand side of Eq. (3.1), we have:

cv s1t−1;…; snt−1

� �
þ 1−cð Þv s1t−1;…; sn−1

t−1

� �

¼ c
�
ct−nXn−1

j¼0

j
t−nþ j−1

� �
1−cð Þ j� þ 1−cð Þ½ct−nþ1Xn−2

j¼0

j
t−nþ j

� �
1−cð Þ j�

¼ ct−nþ1�Xn−1

j¼0

j
t−nþ j−1

� �
1−cð Þ j þ

Xn−2

j¼0

j
t−nþ j

� �
1−cð Þ jþ1�

¼ ct−nþ1�1þ
Xn−1

j¼1

j
t−nþ j−1

� �
1−cð Þ j þ

Xn−1

j¼1

j−1
t−nþ j−1

� �
1−cð Þ j�

¼ ct−nþ1�1þ
Xn−1

j¼1

t−nþ j−1ð Þ!
j! t−n−1ð Þ! þ t−nþ j−1ð Þ!

j−1ð Þ! t−nð Þ!

 �

1−cð Þ jg

¼ ct−nþ1½ 0
t−n

� �
1−cð Þ0 þ

Xn−1

j¼1

t−nþ jð Þ!
j! t−nð Þ! 1−cð Þ j�

¼ ct−nþ1Xn−1

j¼0

j
t−nþ j

� �
1−cð Þ j

¼ ν s1t ;…; snt
� �

:

Therefore, relation (3.2) satisfies relation (3.1).

Appendix 5. Proof of Proposition 4

The payoffs of X at date t are: X(st1) = t, X(st2) = t− 2,…,X(stt) =− t
+ 2, X(stt + 1) = − t.
Their Choquet expectation is then:

E Xtð Þ ¼ −t½1−ν s1t ;…; stt
� �

�− t−2ð Þ ν s1t ;…; stt
� �

−ν s1t ;…; st−1
t

� �h i
þ…þ t−2ð Þ½ν s1t ; s

2
t

� �
−ν s1t

� �
� þ tν s1t

� �
¼ −t þ 2½ν s1t ;…; stt

� �
þ ν s1t ;…; st−1

t

� �
þ…þ ν s1t

� �
�:

Relation (3.1) implies:

ν s1t ;…; stt
� �

þ ν s1t ;…; st−1
t

� �
þ…þ ν s1t

� �
¼ c
�
ν s1t−1;…; stt−1

� �
−ν s1t−1;…; st−1

t−1

� �
þν s1t−1;…; st−1

t−1

� �
−ν s1t−1;…; st−2

t−1

� �
þ…

þν s1t−1; s
2
t−1

� �
−ν s1t−1

� �
þ ν s1t−1

� �
�

þν s1t−1;…; st−1
t−1

� �
þ…þ ν s1t−1

� �
¼ cþ ν s1t−1;…; st−1

t−1

� �
þ…þ ν s1t−1

� �
:

Remark. As ν(st − 1
1 ,…,st − 1

t ) = 1, the right-hand side of the equation
can be simplified as indicated.

It follows that:

E Xtð Þ ¼ −t þ 2½cþ ν s1t−1;…; st−1
t−1

� �
þ…þ ν s1t−1

� �
�

¼ −t þ 2½cþ cþ ν s1t−2;…; st−2
t−2

� �
þ…þ ν s1t−2

� �
�…

¼ −t þ 2½ t−1ð Þcþ ν s11
� �

� ¼ t 2c−1ð Þ: QED

Appendix 6. Proof of Proposition 5

Relation (5) is true for t=1, andwe suppose that it holds for a given
t (t ≤ T). With relation (3.1), we have:

Δνn
tþ1 ¼ cν s1t ;…snt

� �
þ 1−cð Þν s1t ;…sn−1

t

� �
−cν s1t ;…sn−1

t

� �
− 1−cð Þν s1t ;…sn−2

t

� �
¼ c½ν s1t ;…snt

� �
−ν s1t ;…sn−1

t

� �
� þ 1−cð Þ½ν s1t ;…sn−1

t

� �
−ν s1t ;…sn−2

t

� �
�

¼ cΔνn
t þ 1−cð ÞΔνn−1

t

¼ c n−1
t

� �
ct−nþ1 1−cð Þn−1 þ 1−cð Þ n−2

t

� �
ct−nþ2 1−cð Þn−2

¼ n−1
t

� �
þ n−2

t

� �
 �
ct−nþ2 1−cð Þn−1

¼ n−1
t þ 1

� �
ct−nþ2 1−cð Þn−1

:

Relation (5.1) is then satisfied for t + 1 and, by induction, for any t.

Remark. To interpret formula (5.1), let us recall that on a
comonotonic cone,14 a capacity is represented by a particular proba-
bility distribution. In the present case, the distribution is a standard
binomial distribution, with parameters such that B(T, p) is in the
core of capacity ν.
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There is then a clear link with the multiple-priors approach. Indeed,
for a convex capacity(c b 1/2), the core is given by:

Core ν ¼ μ;probability distribution=μ≥νf g; and over one period :

½p ¼ μ sutþ1=st
� �

≥ν sutþ1=st
� � ¼ c;1−p ¼ μ sdtþ1=st

� �
≥ν sdtþ1=st
� �

¼ c�⇒p∈½c;1−c�:

For a symmetric randomwalk, Eμ[Xt+ 1− Xt/st]=2p− 1, so that the
maxmin criterion yields: ArgMin

μ∈core νð Þ
Eμ Xtþ1−Xt=stð Þ ¼ c;1−cð Þ. This prob-

ability distribution, applied in each period, yields the binomial distribu-
tion corresponding to formula (5.1).

Appendix 7. Proof of Proposition 6

Take a time interval [0, T], where the number of periods in the inter-
val is N, and the length of each period is h= T/N. Recall that, in discrete
time, Xn is independent of Yn and that the Yn's are independent15. More-
over, with Eq. (5.1), Xn=Xn − 1+ Yn, inwhich Yn takes a value of 1with
probability c and a value of −1 with probability 1 − c.

Then: E[Yn] = 2c − 1 = m, Var[Yn] = 4c(1− c) = s2.
If we define a discrete time process Wn by: Wn = m h + s h1/2 Un,

where Un takes a value of 1 with probability 1/2 and a value of −1
with a probability 1/2, then E[Wn] = m h, Var[Wn] = s2 h.

A standard result for Brownianmotion is thatWn converges to a gen-
eral Wiener process in continuous time t ∈ [0, T]:W(t) = m t + s B(t),
where B(t) is the Brownian motion.

References

Agliardi, E., Sereno, L., 2011. The effects of environmental taxes and quotas on the optimal
timing of emission reductions under Choquet–Brownian uncertainty. Econ. Model.
28, 2793–2802.

Billingsley, P., 1999. Convergence of Probability Measures. John Wiley & Sons, NY.
Chateauneuf, A., Eichberger, J., Grant, S., 2007. Choice under uncertainty with the best and

worst in mind: neo-additive capacities. J. Econ. Theory 137.
Chen, Z., Epstein, L., 2002. Ambiguity, risk, and asset returns in continuous time.

Econometrica 70, 1403–1443.
Choquet, G., 1954. Theory of capacities. Ann. Inst. Fourier 5, 131–295.
Dieccidue, E., Wakker, P., 2002. Dutch Books: avoiding strategic and dynamic complica-

tions and a comonotonic extension. Math. Soc. Sci. 43, 135–149.
Dixit, R., Pindyck, A., 1994. Investments Under Uncertainty. Princeton University Press,

Princeton NJ.
Dow, J., Werlang, S.R.C., 1992. Uncertainty aversion, risk aversion and the optimal choice

of portfolio. Econometrica 60, 197–204.
E., Agliardi, Agliardi, R., 2009. Fuzzy defaultable bonds. Fuzzy Sets Syst. 160, 2597–2607.
Ellsberg, D., 1961. Risk, ambiguity and the savage axioms. Q. J. Econ. 75 (4), 643–669.
Epstein, L., Schneider, M., 2003. Recursive multiple-priors. J. Econ. Theory 113, 1–31.
Epstein, L., Wang, T., 1994. Intertemporal asset pricing under knightian uncertainty.

Econometrica 62 (3), 283–322.
Ghirardato, P., Maccheroni, F., Marinacci, M., 2004. Differentiating ambiguity and ambigu-

ity attitude. J. Econ. Theory 118, 133–173.
Gilboa, I., 1987. Expected utility with purely subjective non-additive probabilities. J. Math.

Econ. 16, 65–88.
Gilboa, I., Schmeidler, D., 1989. Maxmin expected utility with non-unique priors. J. Math.

Econ. 18, 141–153.
Guidolin, M., Rinaldi, F., 2011. Ambiguity in Asset Pricing and Portfolio Choice: A Review

of the Literature. IGIER Working Paper 417.
Jacod, J., Shiryaev, A., 2002. Limit Theorems for Stochastic Processes, 2nd ed. Springer.
Karni, E., Schmeidler, D., 1991. Atemporal dynamic consistency and expected utility the-

ory. J. Econ. Theory 54, 401–408.
Kast, R., Lapied, A., 2010a. Dynamically consistent Choquet random walk and real invest-

ments. Working Paper LAMETA DR 2010-21.
Kast, R., Lapied, A., 2010b. Valuing cash flowswith non separable discount factors and non

additive subjective measures: conditional Choquet capacities on time and on uncer-
tainty. Theory Decis. 69 (1), 27–53.

Kim, K., Kwak, M., Choi, U.J., 2009. Investment under ambiguity and regime-switching en-
vironment. Unpublished work.

Klibanoff, P., Marinacci, M., Mukerji, S., 2005. A smooth model of decision-making under
ambiguity. Econometrica 73 (6), 1849–1892.
15 Note that we are here in the probabilistic version of the capacity (as we are on a
comonotonic cone, which implies the existence of a unique probabilistic representation
of the capacity). Therefore, in this proof, independence is understood in the classical
(probabilistic) sense of the notion. We are dealing with a Markovian process.
Klibanoff, P., Marinacci, M., Mukerji, S., 2009. Recursive smooth ambiguity preferences.
J. Monet. Econ. 144, 930–976.

Koopmans, T., 1972. Representation of preference orderings over time. In: Mac Guire, C.,
Radner, R. (Eds.), Decision and Organization. North Holland, pp. 79–100.

Merton, R., 1969. Lifetime portfolio selection under uncertainty: the continuous time case.
Rev. Econ. Stat. 51, 247–257.

Merton, R., 1971. Optimum consumption and portfolio rules in a continuous time model.
J. Econ. Theory 3, 373–413.

Merton, R., 1973. An intertemportal capital asset pricing model. Econometrica 41, 867–887.
Nishimura, K., Ozaki, H., 2003. A simple axiomatization of iterated Choquet objectives.

Working Paper. CIRJE, Tokyo University.
Nishimura, K., Ozaki, H., 2007. Irreversible investment and knightian uncertainty. J. Econ.

Theory 136, 668–694.
Riedel, F., 2004. Dynamic coherent risk measures. Stoch. Process. Appl. 112, 185–200.
Riedel, F., 2009. Optimal stopping with multiple priors. Econometrica 77 (3), 857–908.
Roubaud, D., Lapied, A., Kast, R., 2010. Real options under Choquet–Brownian ambiguity.

Working Paper. GREQAM, pp. 2010–2036.
Sarin, R., Wakker, P., 1992. A simple axiomatization of nonadditive expected utility.

Econometrica 60.
Sarin, R., Wakker, P., 1998. Dynamic choice and non expected utility. J. Risk Uncertain. 17,

87–119.
Schmeidler, D., 1986. Integral representation without additivity. Proc. Am. Math. Soc. 97,

255–261.
Schmeidler, D., 1989. Subjective probability and expected utility without additivity.

Econometrica 57, 571–587.
Schroder, D., 2008. Investment under ambiguity with the best and worst in mind. Math.

Finan. Econ. 4–2, 107–133.
Skiadas, C., 2014. Smooth ambiguity aversion toward small risks and continuous-time re-

cursive utility. J. Polit. Econ. 12 (4), 775–792.
Trigeorgis, L., 1996. Real Options. The MIT Press, Cambridge Ma.

Dr. Robert Kast is a ResearchDirector at CNRS (‘National Cen-
ter for Scientific Research’). He was a Visiting Professor at
Stanford University, Bocconi University, ICER and the Univer-
sity of Turin. His research fields of interests are in the areas of
decision theory under uncertainty, models of financial mar-
kets and valuation, with an emphasis on individual risk per-
ceptions and behaviours in front of risks (economics of
uncertainty), as well as measures of time and of uncertainty
(mathematical models). His recent work has been published
in The Geneva papers on risk and insurance,Mathematical Social
Sciences,Mathematical Finance, Theory and Decision.
Dr. André Lapied is a Full Professor of Economics at the Aix-
Marseille University. He is theHead of the “Decision, Interac-
tions and Networks” Research Department at GREQAM. His
fields of interests are financial models, decision theory and
risk models. His recent work has been published in Theory
and Decision, Mathematical Social Sciences, Mathematical Fi-
nance and Finance.
Dr. David Roubaud is a graduate from HEC School of Man-
agement and Sciences Po in Paris. Before completing a PhD
in Economics (2011), he worked as a Consultant in Strategy
in Russia and prior to that was an Associate within the
Mergers & Acquisitions department at Merrill Lynch in New
York and London. He is an Associate Professor of Finance at
Montpellier Business School and is the Dean of the Faculty.
His topics of Research include stochastic processes and the
representation of Ambiguity in economic and financial
models. His recent work has been published in Economic
Modelling.

http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0010
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0010
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0010
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0015
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0020
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0020
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0025
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0025
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0030
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0035
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0035
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0040
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0040
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0045
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0045
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0225
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0050
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0055
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0060
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0060
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0070
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0070
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0075
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0075
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0080
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0080
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0200
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0200
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0090
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0095
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0095
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0205
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0205
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0210
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0210
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0210
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0105
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0105
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0110
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0110
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0215
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0215
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0115
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0115
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0120
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0120
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0125
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0135
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0135
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0140
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0140
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0145
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0150
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0155
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0155
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0160
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0160
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0165
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0165
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0175
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0175
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0180
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0180
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0185
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0185
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0220
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0220
http://refhub.elsevier.com/S0264-9993(14)00010-8/rf0190
Unlabelled image

	Modelling under ambiguity with dynamically consistent Choquet random walks and Choquet–Brownian motions
	1. Introduction
	2. Dynamically consistent binomial Choquet random walks
	2.1. Method
	2.2. Insuring dynamic consistency
	2.3. Choquet expectation of symmetric Choquet random walks

	3. Convergence to Choquet–Brownian motion
	3.1. Discussion of properties and sensitivity analysis

	4. Applications
	5. Conclusion
	Acknowledgments
	Appendix 1. Axiomatic basis for Choquet random walks
	1.1. Interpretation
	1.2. Proof of Proposition 1
	1.3. Interpretation

	Appendix 2. Proof of Proposition 2
	Appendix 3. Proof of Proposition 3
	Appendix 4. Proof of relation 3.1
	Appendix 5. Proof of Proposition 4
	Appendix 6. Proof of Proposition 5
	Appendix 7. Proof of Proposition 6
	References


