H. H. Kampinga, J. Hageman, M. J. Vos, H. Kubota, R. M. Tanguay et al., Guidelines for the nomenclature of the human heat shock proteins, Cell Stress & Chaperones, vol.14, issue.1, pp.105-116, 2009.

J. M. Fontaine, X. K. Sun, R. Benndorf, and M. J. Welsh, Interactions of HSP22 (HSPB8) with HSP20, alpha Bcrystallin, and HSPB3. Biochemical and Biophysical Research Communications, vol.337, pp.1006-1017, 2005.

A. P. Arrigo, J. P. Suhan, and W. J. Welch, Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein, Molecular and Cellular Biology, vol.8, issue.12, pp.5059-71, 1988.

J. Landry, H. Lambert, M. Zhou, J. N. Lavoie, E. Hickey et al., Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II, Journal of Biological Chemistry, vol.267, issue.2, pp.794-803, 1992.

C. Garrido, M. Brunet, C. Didelot, Y. Zermati, E. Schmitt et al., Heat shock proteins 27 and 70, Cell Cycle, vol.5, issue.22, pp.2592-601, 2006.

J. Kargul and G. J. Laurent, Small heat shock proteins: Molecular protectors against the disease, International Journal of Biochemistry & Cell Biology, vol.44, issue.10, 2012.

A. Vidyasagar, N. A. Wilson, and A. Djamali, Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target, Fibrogenesis & tissue repair, vol.5, issue.1, p.3464729, 2012.

P. D. Neufer and I. J. Benjamin, Differential Expression of alpha B-Crystallin and Hsp27 in Skeletal Muscle during Continuous Contractile Activity. Relationship to myogenic regulatory factors, Journal of Biological Chemistry, vol.271, issue.39, pp.24089-95, 1996.

W. J. Welch, Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease, vol.72, pp.1063-81, 1992.

J. Morton, A. Kayani, A. Mcardle, and B. Drust, The Exercise-Induced Stress Response of Skeletal Muscle, with Specific Emphasis on Humans, Sports Med, vol.39, issue.8, pp.643-62, 2009.

K. Huey, C. A. Hilliard, and C. R. Hunt, Effect of HSP25 Loss on Muscle Contractile Function and Running Wheel Activity in Young and Old Mice, Frontiers in Physiology, vol.4, 2013.

J. N. Cobley, G. K. Sakellariou, D. J. Owens, S. Murray, S. Waldron et al., Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle, Free Radical Biology and Medicine, vol.70, issue.0, pp.23-32, 2014.

M. Folkesson, A. L. Mackey, H. Langberg, E. Oskarsson, K. Piehl-aulin et al., The expression of heat shock protein in human skeletal muscle: effects of muscle fibre phenotype and training background, Acta Physiologica, vol.209, issue.1, pp.26-33, 2013.

G. Paulsen, F. Lauritzen, M. L. Bayer, J. M. Kalhovde, I. Ugelstad et al., Subcellular movement and expression of HSP27, ?B-crystallin, and HSP70 after two bouts of eccentric exercise in humans, Journal of Applied Physiology, vol.107, issue.2, pp.570-82, 2009.

T. J. Koh and J. Escobedo, Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions, American Journal of Physiology-Cell Physiology, vol.286, issue.3, pp.713-735, 2003.

H. Y. Liu, T. Lundh, J. Dicksved, and J. E. Lindberg, Expression of heat shock protein 27 in gut tissue of growing pigs fed diets without and with inclusion of chicory fiber, Journal of Animal Science, vol.90, pp.25-32, 2012.

G. Morrow and R. M. Tanguay, Small heat shock protein expression and functions during development, International Journal of Biochemistry & Cell Biology, vol.44, issue.10, pp.1613-1634, 2012.

L. Magnol, O. Monestier, K. Vuillier-devillers, S. Wagner, O. Cocquempot et al., A sensitised mutagenesis screen in the mouse to explore the bovine genome: study of muscle characteristics, animal, vol.5, issue.05, pp.663-71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01211944

M. Kammoun, I. Cassar-malek, B. Meunier, and B. Picard, A reliable immunohistochemical classification of skeletal muscle fibres in mice, European Journal of Histochemistry, vol.58, issue.2, 2014.

B. Meunier, B. Picard, T. Astruc, and R. Labas, Development of image analysis tool for the classification of muscle fibre type using immunohistochemical staining, Histochem Cell Biol, vol.134, issue.3, pp.307-324, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02660249

C. Ashmore, W. Parker, H. Stokes, and L. Doerr, Comparative aspects of muscle fibre types in fetuses of the normal and double muscled cattle, Growth, vol.38, pp.501-507, 1974.

B. Picard, C. Barboiron, D. Chadeyron, and C. Jurie, Protocol for high-resolution electrophoresis separation of myosin heavy chain isoforms in bovine skeletal muscle, Electrophoresis, vol.32, issue.14, pp.1804-1810, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647016

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1/2, pp.248-54, 1976.

T. Chaze, B. Meunier, C. Chambon, C. Jurie, and B. Picard, In vivo proteome dynamics during early bovine myogenesis, PROTEOMICS, vol.8, issue.20, pp.4236-4284, 2008.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, issue.5259, pp.680-685, 1970.

J. Peca, C. Feliciano, J. T. Ting, W. Wang, M. F. Wells et al., Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, vol.472, issue.7344, pp.437-479, 2011.

B. Picard, M. P. Duris, and C. Jurie, Classification of bovine muscle fibres by different histochemical techniques, HistochemJ, vol.30, issue.7, pp.473-482, 1998.

R. Bakthisaran, R. Tangirala, and C. M. Rao, Small heat shock proteins: Role in cellular functions and pathology, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, vol.1854, issue.4, pp.291-319, 2015.

M. Kim, D. Geum, I. Khang, Y. M. Park, B. M. Kang et al., Expression pattern of HSP25 in mouse preimplantation embryo: Heat shock responses during oocyte maturation. Molecular Reproduction and Development, vol.61, pp.3-13, 2002.

L. Huang, J. N. Min, S. Masters, N. F. Mivechi, and D. Moskophidis, Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption, Genesis, vol.45, issue.8, pp.487-501, 2007.

J. Crowe, A. Aubareda, K. Mcnamee, P. M. Przybycien, X. Lu et al., Heat Shock Protein B1-Deficient Mice Display Impaired Wound Healing, PLoS ONE, vol.8, issue.10, p.77383, 2013.

X. Hao, S. Zhang, B. Timakov, and P. Zhang, The Hsp27 gene is not required for Drosophila development but its activity is associated with starvation resistance, Cell Stress & Chaperones, vol.12, issue.4, pp.364-72, 2007.

R. C. Middleton and E. A. Shelden, Small heat shock protein HSPB1 regulates growth of embryonic zebrafish craniofacial muscles, Experimental Cell Research, vol.319, issue.6, pp.860-74, 2013.

B. Eroglu, J. Min, Y. Zhang, E. Szurek, D. Moskophidis et al., An Essential Role for Heat Shock Transcription Factor Binding Protein 1 (HSBP1) During Early Embryonic Development. Developmental biology, vol.386, pp.448-60, 2014.

M. Kammoun, B. Picard, J. Henry-berger, and I. Cassar-malek, A network-based approach for predicting Hsp27 knock-out targets, Computational and Structural Biotechnology Journal, vol.6, issue.7, p.201303008, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189801

B. Picard, M. Kammoun, M. Gagaoua, C. Barboiron, B. Meunier et al., Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice, Proteomes, vol.4, issue.2, p.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02639482

G. Morrow, L. E. Hightower, and R. M. Tanguay, Small heat shock proteins: big folding machines, Cell Stress and Chaperones, vol.20, issue.2, pp.207-219, 2014.

A. Zoubeidi, A. Zardan, E. Beraldi, L. Fazli, R. Sowery et al., Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer research, vol.67, 2007.

M. B. Stope, T. Schubert, D. Staar, C. Ronnau, A. Streitborger et al., Effect of the heat shock protein HSP27 on androgen receptor expression and function in prostate cancer cells, World Journal of Urology, vol.30, issue.3, pp.327-358, 2012.

Q. Zhang, H. G. Lee, J. A. Han, S. K. Kang, N. K. Lee et al., Differentially expressed proteins associated with myogenesis and adipogenesis in skeletal muscle and adipose tissue between bulls and steers, Molecular Biology Reports, vol.39, issue.2, pp.953-60, 2012.

C. Fuoco, R. Rizzi, A. Biondo, E. Longa, A. Mascaro et al., In vivo generation of a mature and functional artificial skeletal muscle, EMBO Molecular Medicine, vol.7, issue.4, pp.411-433, 2015.

M. H. Hoofnagle, R. L. Neppl, E. L. Berzin, T. Pipes, G. C. Olson et al., Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes, AJP: Heart and Circulatory Physiology, vol.300, issue.5, pp.1707-1728, 2011.

T. C. Mackenzie, G. P. Kobinger, J. Louboutin, A. Radu, E. H. Javazon et al., Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors, The Journal of Gene Medicine, vol.7, issue.1, pp.50-58, 2005.

F. J. Miana-mena, S. Roux, J. C. Benichou, R. Osta, and P. Brulet, Neuronal activity-dependent membrane traffic at the neuromuscular junction, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.3234-3243, 2002.

C. T. Pappas, R. M. Mayfield, C. Henderson, N. Jamilpour, C. Cover et al., Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality, Proceedings of the National Academy of Sciences, vol.112, issue.44, pp.13573-13581, 2015.

N. R. Tucker and E. A. Shelden, Hsp27 associates with the titin filament system in heat-shocked zebrafish cardiomyocytes, Experimental Cell Research, vol.315, issue.18, pp.3176-86, 2009.

M. Dubi?ska-magiera, J. Jab?o?ska, J. Saczko, J. Kulbacka, T. Jagla et al., Contribution of small heat shock proteins to muscle development and function, FEBS Letters, vol.588, issue.4, pp.517-547, 2014.

M. D. Perng, L. Cairns, P. Van-den-ijssel, A. Prescott, A. M. Hutcheson et al., Intermediate filament interactions can be altered by HSP27 and alpha B-crystallin, Journal of Cell Science, vol.112, issue.13, p.000081603500005, 1999.

G. Paulsen, F. Lauritzen, M. L. Bayer, J. M. Kalhovde, I. Ugelstad et al., Subcellular movement and expression of HSP27, alpha beta-crystallin, and HSP70 after two bouts of eccentric exercise in humans, Journal of Applied Physiology, vol.107, issue.2, pp.570-82, 2009.

N. Mounier and A. P. Arrigo, Actin cytoskeleton and small heat shock proteins: how do they interact?, Cell Stress & Chaperones, vol.7, issue.2, p.000180194000006, 2002.

J. Guay, H. Lambert, G. Gingrasbreton, J. N. Lavoie, J. Huot et al., Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27, WOS:A1997WJ70000008, vol.110, pp.357-68, 1997.

D. D. Brown, K. S. Christine, C. Showell, and F. L. Conlon, Small heat shock protein hsp27 is required for proper heart tube formation, Genesis, vol.45, issue.11, pp.667-78, 2007.

C. Garrido, C. Paul, R. Seigneuric, and H. H. Kampinga, The small heat shock proteins family: The long forgotten chaperones, International Journal of Biochemistry & Cell Biology, vol.44, issue.10, pp.1588-92, 2012.

J. Acunzo, M. Katsogiannou, and P. Rocchi, Small heat shock proteins HSP27 (HspB1), alpha B-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death, International Journal of Biochemistry & Cell Biology, vol.44, issue.10, pp.1622-1653, 2012.

L. Huang, J. Min, S. Masters, N. F. Mivechi, and D. Moskophidis, Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. genesis, vol.45, pp.487-501, 2007.