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NONPARAMETRIC ESTIMATION OF THE DENSITY OF THE ALTERNATIVE
HYPOTHESIS IN A MULTIPLE TESTING SETUP. APPLICATION TO LOCAL

FALSE DISCOVERY RATE ESTIMATION

Van Hanh Nguyen
1,2

and Catherine Matias
2

Abstract. In a multiple testing context, we consider a semiparametric mixture model with two com-
ponents where one component is known and corresponds to the distribution of p-values under the null
hypothesis and the other component f is nonparametric and stands for the distribution under the
alternative hypothesis. Motivated by the issue of local false discovery rate estimation, we focus here on
the estimation of the nonparametric unknown component f in the mixture, relying on a preliminary
estimator of the unknown proportion θ of true null hypotheses. We propose and study the asymptotic
properties of two different estimators for this unknown component. The first estimator is a randomly
weighted kernel estimator. We establish an upper bound for its pointwise quadratic risk, exhibiting the
classical nonparametric rate of convergence over a class of Hölder densities. To our knowledge, this is
the first result establishing convergence as well as corresponding rate for the estimation of the unknown
component in this nonparametric mixture. The second estimator is a maximum smoothed likelihood
estimator. It is computed through an iterative algorithm, for which we establish a descent property. In
addition, these estimators are used in a multiple testing procedure in order to estimate the local false
discovery rate. Their respective performances are then compared on synthetic data.
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1. Introduction

In the framework of multiple testing problems (microarray analysis, neuro-imaging, etc.), a mixture model
with two populations is considered

∀x ∈ Rd, g(x) = θφ(x) + (1 − θ)f(x), (1.1)

where θ is the unknown proportion of true null hypotheses, φ and f are the densities of the observations
generated under the null and alternative hypotheses, respectively. More precisely, assume the test statistics
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2 V.H. NGUYEN AND C. MATIAS

Table 1. Possible outcomes from testing n hypotheses H1, . . . , Hn.

Accepts Hi Rejects Hi Total
Hi is true TN FP n0

Hi is false FN TP n1

Total N P n

are independent and identically distributed (iid) with a continuous distribution under the corresponding null
hypotheses and we observe the p-values X1, X2, . . . , Xn associated with n independent tested hypotheses, then
the density function φ is the uniform distribution on [0, 1] while the density function f is assumed unknown.
The parameters of the model are (θ, f), where θ is a Euclidean parameter while f is an infinite-dimensional one
and the model becomes

∀x ∈ [0, 1], g(x) = θ + (1 − θ)f(x). (1.2)

In the following, we focus on model (1.2) that is slightly simpler than (1.1). A central problem in the multiple
testing setup is the control of type I (i.e. false positive) and type II (i.e. false negative) errors. The most popular
criterion regarding type I errors is the false discovery rate (FDR), proposed by [3]. To set up the notation, let
Hi be the ith (null) hypothesis. The outcome of testing n hypotheses simultaneously can be summarized as
indicated in Table 1.

[3] define FDR as the expected proportion of rejections that are incorrect,

FDR = E

[
FP

max(P, 1)

]
= E

[
FP
P

∣∣P > 0
]

P(P > 0).

They provide a multiple testing procedure that guarantees the bound FDR ≤ α, for a desired level α. [22]
proposes to modify FDR so as to obtain a new criterion, the positive FDR (or pFDR), defined by

pFDR = E

[
FP
P

∣∣P > 0
]
,

and argues that it is conceptually more sound than FDR. For microarray data for instance, there is a large
value of the number of hypotheses n and the difference between pFDR and FDR is generally small as the extra
factor P(P > 0) is very close to 1 see [13]. In a mixture context, the pFDR is given by

pFDR(x) = P(Hi being true |X ≤ x) =
θΦ(x)

θΦ(x) + (1 − θ)F (x)
,

where Φ and F are the cumulative distribution functions (cdfs) for densities φ and f , respectively. (It is nota-
tionally convenient to consider events of the form X ≤ x, but we could just as well consider tail areas to the
right, two-tailed events, etc.).

[6] define the local false discovery rate (�FDR) to quantify the plausibility of a particular hypothesis being true,
given its specific test statistic or p-value. In a mixture framework, the �FDR is the Bayes posterior probability

�FDR(x) = P(Hi being true |X = x) = 1 − (1 − θ)f(x)
θφ(x) + (1 − θ)f(x)

· (1.3)

In many multiple testing frameworks, we need information at the individual level about the probability for
a given observation to be a false positive [2]. This motivates estimating the local false discovery rate �FDR.
Moreover, the quantities pFDR and �FDR are analytically related by pFDR(x) = E[�FDR(X)|X ≤ x]. As
a consequence (and recalling that the difference between pFDR and FDR is generally small), [18] propose to
estimate FDR by

F̂DR(xi) =
1
i

i∑
j=1

�̂FDR(xj),
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where �̂FDR is an estimator of �FDR and the observations {xi} are increasingly ordered. A natural strategy
to estimate �FDR is to start by estimating both the proportion θ and either f or g. Another motivation for
estimating the parameters in this mixture model comes from the works of Sun and Cai [24, 25], who develop
adaptive compound decision rules for false discovery rate control. These rules are based on the estimation of the
parameters in model (1.1) (dealing with z-scores) rather than model (1.2) (dealing with p-values). However, it
appears that in some very specific cases (when the alternative is symmetric about the null), the oracle version
of their procedure based on the p-values (and thus relying on estimators of the parameters in model (1.2)) may
outperform the one based on model (1.1), see [24] for more details. In the following, we are thus interested in
estimating parameters in model (1.2).

In a previous work [16], we discussed the estimation of the Euclidean part of the parameter θ in model (1.2).
Thus, we will not consider further this point here. We rather focus on the estimation of the unknown density f ,
relying on a preliminary estimator of θ. We just mention that many estimators of θ have been proposed in
the literature. One of the most well-known is the one proposed by [21], motivating its use in our simulations.
Some of these estimators are proved to be consistent (under suitable model assumptions). Of course, we will
need some specific properties of estimators θ̂n of θ to obtain rates of convergence of estimators of f . Besides,
existence of estimators θ̂n satisfying those specific properties is a consequence of [16].

Now, different modeling assumptions on the marginal density f have been proposed in the literature. For
instance, parametric models have been used with Beta distribution for the p-values, see [1, 13, 17] for example
or Gaussian distribution of the probit transformation of the p-values [14]. In the framework of nonparametric
estimation, [23] proposed a modified Grenander density estimator for f , which has been initially suggested
by [11]. This approach requires monotonicity constraints on the density f . Other nonparametric approaches
consist in relying on regularity assumptions on f . This is done for instance in [15], who is primarily interested
in estimating θ under the assumption that it is equal to g(1). Relying on a kernel estimator of g, he derives
nonparametric rates of convergence for θ. Another kernel estimator has been proposed by [18], along with a
multiple testing procedure, called kerfdr. This iterative algorithm is inspired by an expectation-maximization
(em) procedure [5]. It is proved to be convergent as the number of iterations increases. However, it does not
optimize any criterion and contrarily to the original em algorithm, it does not increase the observed data
likelihood function. Besides, the asymptotic properties (with the number of hypotheses n) of the kernel estimator
underlying ’s approach have not been studied. Indeed, its iterative form prevents from obtaining any theoretical
result on its convergence properties.

The first part of the present work focuses on the properties of a randomly weighted kernel estimator, which
in essence, is very similar to the iterative approach proposed by [18]. Thus, this part may be viewed as a
theoretical validation of kerfdr approach that gives some insights about the convergence properties (as the
sample size increases) of this method. In particular, we establish that relying on a preliminary estimator of
θ that roughly converges at parametric rate (see exact condition in Cor. 3.4), we obtain an estimator of the
unknown density f that converges at the usual minimax nonparametric rate. To our knowledge, this is the
first result establishing convergence as well as corresponding rate for the estimation of the unknown component
in model (1.2). In a second part, we are interested in a new iterative algorithm for estimating the unknown
density f , that aims at maximizing a smoothed likelihood. We refer to Paragraph 4.1 in [8] for an interesting
presentation of kernel estimators as maximum smoothed likelihood ones. Here, we base our approach on the
work of [12], who study a maximum smoothed likelihood estimator for multivariate mixtures. The main idea
consists in introducing a nonlinear smoothing operator on the unknown component f as proposed in [7]. We
prove that the resulting algorithm possesses a desirable descent property, just as an em algorithm does. We also
show that it is competitive with respect to kerfdr algorithm, both when used to estimate f or �FDR.

The article is organized as follows. In Section 2, we start by describing different procedures to estimate f . We
distinguish two types of procedures and first describe direct (non iterative) ones in Section 2.1. We mention a
direct naive approach but the main procedure from this section is a randomly weighted kernel estimator. Then,
we switch to iterative procedures (Sect. 2.2). The first one is not new: kerfdr has been proposed in [10,18]. The
second one, called msl, is new and adapted from the work of [12] in a different context (multivariate mixtures).
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These iterative procedures are expected to be more accurate than direct ones, but their properties are in general
more difficult to establish. As such, the direct randomly weighted kernel estimator from Section 2.1 may be
viewed as a proxy for studying the convergence properties (with respect to f) of kerfdr procedure (properties
that are unknown). Section 3 then gives the theoretical properties of the procedures described in Section 2. In
particular, we establish (Thm. 3.3) an upper bound on the pointwise quadratic risk of the randomly weighted
kernel procedure. Moreover, we prove that msl procedure possesses a descent property with respect to some
criterion (Prop. 3.5). In Section 4, we rely on our different estimators to estimate both density f and the local
false discovery rate �FDR. We present simulated experiments to compare their performances. All the proofs
have been postponed to Section 5. Moreover, some of the more technical proofs have been further postponed to
Appendix A.

2. Algorithmic procedures to estimate the density f

2.1. Direct procedures

Let us be given a preliminary estimator θ̂n of θ as well as a nonparametric estimator ĝn of g. We propose
here to rely on a kernel estimator of the density g

ĝn(x) =
1
nh

n∑
i=1

K

(
x−Xi

h

)
=

1
n

n∑
i=1

Ki,h(x), (2.1)

where K is a kernel (namely a real-valued integrable function such that
∫
K(u)du = 1), h > 0 is a bandwidth

(both are to be chosen later) and

Ki,h(·) =
1
h
K

( · −Xi

h

)
· (2.2)

Note that this estimator of g is consistent under appropriate assumptions.

A naive approach. From equation (1.2), it is natural to propose to estimate f with

f̂naive
n (x) =

ĝn(x) − θ̂n

1 − θ̂n
1{θ̂n �=1},

where 1A is the indicator function of set A. This estimator has the same theoretical properties as the ran-
domly weighted kernel estimator presented below. However, it is much worse in practice, as we shall see in the
simulations of Section 4.

A randomly weighted kernel estimator. We now explain a natural construction for an estimator of f
relying on a randomly weighted version of a kernel estimator of g. For any hypothesis, we introduce a (latent)
random variable Zi that equals 0 if the null hypothesis Hi is true and 1 otherwise,

∀i = 1, . . . , n Zi =

{
0 if Hi is true,

1 otherwise.
(2.3)

Intuitively, it would be convenient to introduce a weight for each observationXi, meant to select this observation
only if it comes from f . Equivalently, the weights are used to select the indexes i such that Zi = 1. Thus, a
natural kernel estimate of f would be

f1(x) =
1
h

n∑
i=1

Zi∑n
k=1 Zk

K

(
x−Xi

h

)
=

n∑
i=1

Zi∑n
k=1 Zk

Ki,h(x), x ∈ [0, 1].

However, f1 is not an estimator and cannot be directly used since the random variables Zi are not observed.
A natural approach (initially proposed in [18]) is to replace them with their conditional expectation given the
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data {Xi}1≤i≤n, namely with the posterior probabilities τ(Xi) = E(Zi|Xi) defined by

∀x ∈ [0, 1], τ(x) = E(Zi|Xi = x) =
(1 − θ)f(x)

g(x)
= 1 − θ

g(x)
· (2.4)

This leads to the following definition

∀x ∈ [0, 1], f2(x) =
n∑
i=1

τ(Xi)∑n
k=1 τ(Xk)

Ki,h(x). (2.5)

Once again, the weight τi = τ(Xi) depends on the unknown parameters θ and f and thus f2 is not an estimator
but rather an oracle. To solve this problem, [18] proposed an iterative approach, called kerfdr and discussed
below, to approximate (2.5). For the moment, we propose to replace the posterior probabilities τi by direct
(rather than iterative) estimators to obtain a randomly weighted kernel estimator of f . Specifically, we propose
to estimate the posterior probability τ(x) by

∀x ∈ [0, 1], τ̂(x) = 1 − θ̂n
ĝn(x)

· (2.6)

Then, by defining the weight

τ̂i = τ̂ (Xi) = 1 − θ̂n
g̃n(Xi)

, where g̃n(Xi) =
1

(n− 1)

n∑
j �=i

Kj,h(Xi), (2.7)

we get a randomly weighted kernel estimator of the density f defined as

∀x ∈ [0, 1], f̂ rwk
n (x) =

n∑
i=1

τ̂i∑n
k=1 τ̂k

Ki,h(x). (2.8)

Note that it is not necessary to use the same kernel K in defining ĝn and f̂ rwk
n , nor the same bandwidth h. In

practice, we rely on the same kernel chosen with a compact support (to avoid boundary effects) and as we will
see in Section 3, the bandwidths have to be chosen of the same order. Also note that the slight modification
from ĝn to g̃n in defining the weights (2.7) is minor and used in practice to reduce the bias of g̃n(Xi).

2.2. Iterative procedures

In this section, we still rely on a preliminary estimator θ̂n of θ. Two different procedures are described:
kerfdr algorithm, proposed by [10, 18] and a maximum smoothed likelihood msl estimator, inspired from the
work of [12] in the context of multivariate nonparametric mixtures. Both rely on an iterative randomly weighted
kernel approach. The general form of these procedures is described by Algorithm 1. The main difference between
the two procedures lies in the choice of the functions K̃i,h (that play the role of a kernel) and the way the weights
are updated.

Note that the parameter θ is fixed throughout these iterative procedures. Indeed, as already noted by [18],
the solution θ = 0 is a fixed point of a modified kerfdr algorithm where θ would be iteratively updated. This
is also the case with the maximum smoothed likelihood procedure described below in the particular setup of
model (1.2). This is why we keep θ fixed in both procedures. We now describe more explicitly the two procedures.

Kerfdr algorithm. This procedure has been proposed by [10,18] as an approximation to the estimator suggested
by (2.5). In this procedure, functions K̃i,h more simply denoted Ki,h are defined through (2.2) where K is a
kernel (namely

∫
K(u)du = 1) and following (2.4), the weights are updated as follows

ω̂
(s)
i =

(1 − θ̂n)f̂ (s)(xi)

θ̂n + (1 − θ̂n)f̂ (s)(xi)
· (2.9)
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Algorithm 1. General structure of the iterative algorithms.
// Initialization;
Set initial weights ω̂0

i ∼ U
(
[0, 1]

)
, i = 1, 2, . . . , n.

while maxi |ω̂(s)
i − ω̂

(s−1)
i |/ω̂

(s−1)
i ≥ ε do

// Update estimation of f ;

f̂ (s)(xi) =
∑

j ω̂
(s−1)
j K̃j,h(xi)/

∑
k ω̂

(s−1)
k

// Update of weights;

ω̂
(s)
i : depends on the procedure, see equations (2.9) and (2.11)

s← s + 1;

// Return;

f̂ (s)(·) =
∑

i ω̂
(s−1)
i K̃i,h(·)/∑k ω̂

(s−1)
k

This algorithm has some em flavor [5]. Actually, updating the weights ω̂(s)
i is equivalent to expectation-step,

and f̂ (s)(x) can be seen as an average of {Ki,h(x)}1≤i≤n so that updating the estimator f̂ may look like a
maximization-step. However, as noted in [18], the algorithm does not optimize any given criterion. Besides, it
does not increase the observed data likelihood function.

The relation between f̂ (s) and ω̂(s) implies that the sequence {ω̂(s)}s≥0 satisfies ω̂(s) = ψ(ω̂(s−1)), where

ψ : [0, 1]n\{0} → [0, 1]n, ψi(u) =
∑

i uibij∑
i uibij +

∑
i ui

, with bij =
1 − θ̂n

θ̂n
× Ki,h(xj)

φ(xj)
·

Thus, if the sequence {ω̂(s)}s≥0 is convergent, it has to converge towards a fixed point of ψ. [18] prove that
under some mild conditions, kerfdr estimator is self-consistent, meaning that as the number of iterations s
increases, the sequence f̂ (s) converges towards the function

f3(x) =
n∑
i=1

ω̂∗
i∑
k ω̂

∗
k

Ki,h(x),

where ω̂∗
i is the (unique) limit of {ω̂(s)

i }s≥0. Note that contrarily to f2, function f3 is a randomly weighted kernel
estimator of f . However, nothing is known about the convergence of f3 nor f̂ (s) towards the true density f when
the sample size n tends to infinity (while the bandwidth h = hn tends to 0). Indeed, the weights {ω̂(s)

i }s≥0

used by the kernel estimator f̂ (s) form an iterative sequence. Thus it is very difficult to study the convergence
properties of this weight sequence or of the corresponding estimator.

We thus propose another randomly weighted kernel estimator, whose weights are slightly different from those
used in the construction of f̂ (s). More precisely, those weights are not defined iteratively but they mimic the
sequence of weights {ω̂(s)

i }s≥0.

Maximum smoothed likelihood estimator. Following the lines of [12], we construct an iterative estimator
sequence of the density f that relies on the maximisation of a smoothed likelihood. Assume in the following
that K is a positive and symmetric kernel on R. We define its rescaled version as

Kh(x) = h−1K(h−1x).

We consider a linear smoothing operator S : L1([0, 1]) → L1([0, 1]) defined as

Sf(x) =
∫ 1

0

Kh(u− x)f(u)∫ 1

0 Kh(s− u)ds
du, for all x ∈ [0, 1].
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We remark that if f is a density on [0, 1] then Sf is also a density on [0, 1]. Let us consider a submodel of
model (1.2) restricted to densities f ∈ F with

F = {densities f on [0, 1] such that log f ∈ L1([0, 1])}.
We denote by S∗ : L1([0, 1]) → L1([0, 1]) the operator

S∗f(x) =

∫ 1

0
Kh(u− x)f(u)du∫ 1

0
Kh(s− x)ds

·

Note the difference between S and S∗. The operator S∗ is in fact the adjoint operator of S. Here, we rely more
specifically on the earlier work of [9] that takes into account the case where the density support ([0, 1] in our
case) is different from the kernel support (usually R). Indeed in this case, the normalisation terms introduce a
difference between S and S∗. Then for a density f ∈ F , we approach it by a nonlinear smoothing operator N
defined as

Nf(x) = exp{(S∗(log f))(x)}, x ∈ [0, 1].

Note that Nf is not necessarily a density. Now, the maximum smoothed likelihood procedure consists in applying
Algorithm 1, relying on

K̃i,h(x) =
Ki,h(x)∫ 1

0
Ki,h(s)ds

, (2.10)

where Ki,h is defined through (2.2) relying on a positive symmetric kernel K and

ω̂
(s)
i =

(1 − θ̂n)N f̂ (s)(xi)

θ̂n + (1 − θ̂n)N f̂ (s)(xi)
· (2.11)

In Section 3.2, we explain where these choices come from and why this procedure corresponds to a maximum
smoothed likelihood approach. Let us remark that as in kerfdr algorithm, the sequence of weights {ω̂(s)}s≥0

also satisfies ω̂(s) = ϕ(ω̂(s−1)) for some specific function ϕ. Then, if the sequence {ω̂(s)}s≥0 is convergent, it
must be convergent to a fixed point of ϕ. Existence and uniqueness of a fixed point for msl algorithm is explored
below in Proposition 3.6.

In the following section, we thus establish theoretical properties of the procedures presented here. These are
then further compared on simulated data in Section 4.

3. Mathematical properties of the algorithms

3.1. Randomly weighted kernel estimator

We provide below the convergence properties of the estimator f̂ rwk
n defined through (2.8). In fact, these

naturally depend on the properties of the plug-in estimators θ̂n and ĝn. We are interested here in controlling
the pointwise quadratic risk of f̂ rwk

n . This is possible on a class of densities f that are regular enough. In
the following, we denote by Pθ,f and Eθ,f the probability and corresponding expectation in the more specific
model (1.2). Moreover, �x� denotes the largest integer strictly smaller than x. Now, we recall that the order
of a kernel is defined as its first nonzero moment [26] and we recall below the definition of Hölder classes of
functions.

Definition 3.1. Fix β > 0, L > 0 and denote by H(β, L) the set of functions ψ : [0, 1] → R that are l-times
continuously differentiable on [0, 1] with l = �β� and satisfy

|ψ(l)(x) − ψ(l)(y)| ≤ L|x− y|β−l, ∀x, y ∈ [0, 1].

The set H(β, L) is called the (β, L)-Hölder class of functions.
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We denote by Σ(β, L) the set

Σ(β, L) =
{
ψ : ψ is a density on [0, 1] and ψ ∈ H(β, L)

}
.

According to the proof of Theorem 1.1 in [26], we remark that

sup
ψ∈Σ(β,L)

‖ψ‖∞ < +∞.

In order to obtain the rate of convergence of f̂ rwk
n to f , we introduce the following assumptions

(A1) The kernel K is a right-continuous function.
(A2) K is of bounded variation.
(A3) The kernel K is of order l = �β� and satisfies∫

K(u)du = 1,
∫
K2(u)du <∞, and

∫
|u|β|K(u)|du <∞.

(B1) f is a uniformly continuous density function.
(C1) The bandwidth h is of order αn−1/(2β+1), α > 0.

Note that there exist kernels satisfying assumptions (A1)−(A3), see for instance Section 1.2.2 in [26]. Note also
that if f ∈ Σ(β, L), it automatically satisfies assumption (B1).

Remark 3.2.

i) We first remark that if kernel K satisfies assumptions (A1), (A2) and if assumptions (B1) and (C1) hold,
then the kernel density estimator ĝn defined by (2.1) converges uniformly almost surely to g [27]. In other
words

‖ĝn − g‖∞ a.s−−−−→
n→∞ 0.

ii) If kernel K satisfies assumption (A3) and if assumption (C1) holds, then for all n ≥ 1

sup
x∈[0,1]

sup
f∈Σ(β,L)

Eθ,f (|ĝn(x) − g(x)|2) ≤ Cn
−2β
2β+1 ,

where C = C(β, L, α,K), see Theorem 1.1 in [26]

In the following theorem, we give the rate of convergence to zero of the pointwise quadratic risk of f̂ rwk
n .

Theorem 3.3. Assume that kernel K satisfies assumptions (A1)−(A3) and K ∈ L4(R). If θ̂n converges almost
surely to θ and the bandwidth h = αn−1/(2β+1) with α > 0, then for any δ > 0, the pointwise quadratic risk of
f̂ rwk
n satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f (|f̂ rwk
n (x) − f(x)|2) ≤ C1 sup

θ∈[δ,1−δ]
sup

f∈Σ(β,L)

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

+C2n
−2β
2β+1 ,

where C1, C2 are two positive constants depending only on β, L, α, δ and K.

The proof of this theorem is postponed to Section 5.1. It works as follows: we first start by proving that the
pointwise quadratic risk of f2 (which is not an estimator) is of order n−2β/(2β+1). Then we compare estimator
f̂ rwk
n with function f2 to conclude the proof. We evidently obtain the following corollary from this theorem.
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Corollary 3.4. Under the assumptions of Theorem 3.3, if θ̂n is such that

lim sup
n→+∞

n
2β

2β+1

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

< +∞, (3.1)

then for any fixed value (θ, f), there is some positive constant C such that

sup
x∈[0,1]

Eθ,f (|f̂ rwk
n (x) − f(x)|2) ≤ Cn

−2β
2β+1 .

Note that estimators θ̂n satisfying (3.1) exist. Indeed, relying on the same arguments as in the proofs of
Propositions 2 or 3 in [16], we can prove that for instance histogram-based estimators or the estimator proposed
by [4] both satisfy that

lim sup
n→+∞

n

[
Eθ,f

(
|θ̂n − θ|

)4
] 1

2

< +∞.

Note also that the rate n−β/(2β+1) is the usual nonparametric minimax rate over the class Σ(β, L) of Hölder
densities in the case of direct observations. While we do not formally prove that this is also the case in undirect
model (1.2), it is likely that the rate in this latter case is not faster as the problem is more difficult. A difficulty
in establishing such a lower bound lies in the fact that when θ ∈ [δ, 1 − δ] the direct model (θ = 0) is not a
submodel of (1.2). Anyway, such a lower bound would not be sufficient to conclude that estimator f̂ rwk

n achieves
the minimax rate. Indeed, the corollary states nothing about uniform convergence of f̂ rwk

n (x) with respect to
the parameter value (θ, f) since the convergence of the estimator θ̂n is not known to be uniform.

3.2. Maximum smoothed likelihood estimator

Let us now explain the motivations for considering an iterative procedure with functions K̃i,h and weights
ω̂

(s)
i respectively defined through (2.10) and (2.11). Instead of the classical log-likelihood, we follow the lines

of [12] and consider (the opposite of) a smoothed version of this log-likelihood as our criterion, namely

ln(θ, f) =
−1
n

n∑
i=1

log[θ + (1 − θ)Nf(Xi)].

In this section, we denote by g0 the true density of the observations Xi. For any fixed value of θ, up to the
additive constant

∫ 1

0 g0(x) log g0(x)dx, the smoothed log-likelihood ln(θ, f) converges almost surely towards
l(θ, f) defined as

l(θ, f) :=
∫ 1

0

g0(x) log
g0(x)

θ + (1 − θ)Nf(x)
dx.

This quantity may be viewed as a penalized Kullback−Leibler divergence between the true density g0 and its
smoothed approximation for parameters (θ, f). Indeed, let D(a | b) denote the Kullback−Leibler divergence
between (positive) measures a and b, defined as

D(a | b) =
∫ 1

0

{
a(x) log

a(x)
b(x)

+ b(x) − a(x)
}

dx.

Note that in the above definition, a and b are not necessarily probability measures. Moreover it can be seen
that we still have the property D(a|b) ≥ 0 with equality if and only if a = b [9]. We now obtain

l(θ, f) = D(g0|θ + (1 − θ)Nf) + (1 − θ)
(

1 −
∫ 1

0

Nf(x)dx
)
.
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The second term in the right-hand side of the above equation acts as a penalization term [9,12]. Our goal is to
construct an iterative sequence of estimators of f that possesses a descent property with respect to the criterion
l(θ, ·), for fixed value θ. Indeed, as previously explained, θ has to remain fixed otherwise the following procedure
gives a sequence {θt} that converges to 0. We start by describing such a procedure, relying on the knowledge
of the parameters (thus an oracle procedure). Let us denote by ln(f) the smoothed log-likelihood ln(θ, f) and
by l(f) the limit function l(θ, f). We want to construct a sequence of densities {f t}t≥0 such that

l(f t) − l(f t+1) ≥ cD(f t+1 | f t) ≥ 0, (3.2)

where c is a positive constant depending on θ, the bandwidth h and the kernelK. We thus consider the difference

l(f t) − l(f t+1) =
∫ 1

0

g0(x) log
θ + (1 − θ)Nf t+1(x)
θ + (1 − θ)Nf t(x)

dx

=
∫ 1

0

g0(x) log

{
1 − ωt(x) + ωt(x)

Nf t+1(x)
Nf t(x)

}
dx,

where

ωt(x) =
(1 − θ)Nf t(x)

θ + (1 − θ)Nf t(x)
·

By the concavity of the logarithm function, we get that

l(f t) − l(f t+1) ≥
∫ 1

0

g0(x)ωt(x) log
Nf t+1(x)
Nf t(x)

dx

≥
∫ 1

0

g0(x)ωt(x)
[S∗(log f t+1)(x) − S∗(log f t)(x)

]
dx

≥
∫ 1

0

g0(x)ωt(x)
(∫ 1

0

Kh(s− x)ds
)−1(∫ 1

0

Kh(u− x) log
f t+1(u)
f t(u)

du
)

dx

≥
∫ 1

0

(∫ 1

0

g0(x)ωt(x)Kh(u − x)∫ 1

0
Kh(s− x)ds

dx

)
log

f t+1(u)
f t(u)

du. (3.3)

Let us define

αt =
1∫ 1

0 ωt(u)g0(u)du
and f t+1(x) = αt

∫ 1

0

Kh(u− x)ωt(u)g0(u)∫ 1

0 Kh(s− u)ds
du, (3.4)

then f t+1 is a density function on [0, 1] and

l(f t) − l(f t+1) ≥ 1
αt
D(f t+1 | f t).

With the same arguments as in the proof of following Proposition 3.5, we can show that α−1
t is lower bounded

by a positive constant c depending on θ, h and K. The sequence {f t}t≥0 thus satisfies property (3.2). However,
we stress that it is an oracle as it depends on the knowledge of the true density g0 that is unknown. Now,
the estimator sequence {f̂ (t)}t≥0 defined through equations (2.10), (2.11) and Algorithm 1 is exactly the Monte
Carlo approximation of {f t}t≥0. We prove in the next proposition that it also satisfies the descent property (3.2).

Proposition 3.5. For any initial value of the weights ω̂0 ∈ (0, 1)n, the sequence of estimators {f̂ (t)}t≥0 defined
through (2.10), (2.11) and Algorithm 1 satisfies

ln(f̂ (t)) − ln(f̂ (t+1)) ≥ cD(f̂ (t+1) | f̂ (t)) ≥ 0,

where c is a positive constant depending on θ, the bandwidth h and the kernel K.
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To conclude this section, we study the behavior of the limiting criterion l. Let us introduce the set

B = {Sϕ;ϕ density on [0, 1]}.
Proposition 3.6. The criterion l has a unique minimum f� on B. Moreover, if there exists a constant L
depending on h such that for all x, y ∈ [−1, 1]

|Kh(x) −Kh(y)| ≤ L|x− y|,
then the sequence of densities {f t}t≥0 converges uniformly to f�.

Note that the previous assumption may be satisfied by many different kernels. For instance, if K is the density
of the standard normal distribution, then this assumption is satisfied with

L =
1

h2
√

2π
e−1/2.

As a consequence and since ln is lower bounded, the sequence {f̂ (t)}t≥0 converges to a local minimum of ln as
t increases. Moreover, we recall that as the sample size n increases, the criterion ln converges (up to a constant)
to l. Thus, the outcome of Algorithm 1 that relies on equations (2.10) and (2.11) is an approximation of the
minimizer f� of l.

4. Estimation of local false discovery rate and simulation study

4.1. Estimation of local false discovery rate

In this section, we study the estimation of local false discovery rate (�FDR) by using the previously intro-
duced estimators of the density f and compare these different approaches on simulated data. Let us recall
definition (1.3) of the local false discovery rate

�FDR(x) = P(Hi being true |X = x) =
θ

θ + (1 − θ)f(x)
, x ∈ [0, 1].

For a given estimator θ̂ of the proportion θ and an estimator f̂ of the density f , we obtain a natural estimator
of the local false discovery rate for observation xi

�̂FDR(xi) =
θ̂

θ̂ + (1 − θ̂)f̂(xi)
· (4.1)

Let us now denote by f̂rwk the randomly weighted kernel estimator of f constructed in Section 2.1, by f̂kerfdr

the estimator of f presented in Algorithm 1 and by f̂msl the maximum smoothed likelihood estimator of f
presented in Algorithm 1. Note that f̂kerfdr is available through the R package kerfdr. We also let �̂FDRm,m ∈
{rwk, kerfdr,msl} be the estimators of �FDR induced by a plug-in of estimators f̂m in (4.1) and �̂FDRst be the
estimator of �FDR computed by the method of [23]. We compute the root mean squared error (RMSE) between
the estimates and the true values

RMSEm =
1
S

S∑
s=1

√√√√ 1
n

n∑
i=1

{�̂FDR
(s)

m (xi) − �FDR(xi)}2,

for m ∈ {rwk, kerfdr,msl, st} and where s = 1, . . . , S denotes the simulation index (S being the total number
of repeats). We also compare L2-norms between f̂m and f for m ∈ {rwk, kerfdr,msl}, relying on the root mean
integrated squared error

RMISEm =
1
S

S∑
s=1

√∫ 1

0

[f̂ (s)
m (u) − f(u)]2du.



12 V.H. NGUYEN AND C. MATIAS

The quality of the estimates provided by method m is measured by the mean RMSEm or RMISEm: the smaller
these quantities, the better the performances of the method.

We mention that we also tested the naive method described in Section 2.1 and the results were bad. In order
to present clear figures, we have chosen not to show those.

4.2. Simulation study

In this section, we give an illustration of the previous results on some simulated experiments. We simulate
sets of p-values according to the mixture model (1.2). We consider three different cases for the alternative
distribution f and two different values for the proportion: θ = 0.65 and 0.85. In the first case, we simulate
p-values under the alternative with distribution

f(x) = ρ
(
1 − x

)ρ−1

1[0,1](x),

where ρ = 4, as proposed in [4]. In the second case, the p-value corresponds to the statistic T which has a
mixture distribution θN (0, 1) + (1 − θ)N (μ, 1), with μ = 2. In the third case, the p-value corresponds to the
statistic T which has a mixture density θ(1/2) exp{−|t|}+ (1− θ)(1/2) exp{−|t−μ|}, with μ = 1. The p-values
densities obtained with those three models are given in Figure 1 for θ = 0.65.

For each of the 3 × 2 = 6 configurations, we generate S = 100 samples of size n ∈ {500, 1000, 2000, 5000}. In
these experiments, we choose to consider the estimator of θ initially proposed by [19], namely

θ̂ =
#{Xi > λ; i = 1, . . . , n}

n(1 − λ)
,

with parameter value λ optimally chosen by bootstrap method, as recommended by [21]. The kernel is chosen
with compact support, for example the triangular kernel or the rectangular kernel. The bandwidth is selected
according to a rule of thumb due to [20], Section 3.4.2,

h = 0.9 min
{
SD,

IQR

1.34

}
n−1/5,

where SD and IQR are respectively the standard deviation and interquartile range of the data values.
Figures 2–4 show the RMISEs and the RMSEs for the six configurations and the four different methods.

We first comment the results on the estimation of f (top half of each figure). Except for model 2, the RMISEs
obtained are small for all the three procedures. Model 2 exhibits a rather high RMISEs and this may be explained
by the fact that density f is not bounded near 0 in this case. We note that the methods rwk and kerfdr have
very similar performances, except in the third model where kerfdr seems to slightly outperform rwk. Let us
recall that we introduced this latter method only as a way of approaching the theoretical performances of kerfdr
method. Now, in five out of the six configurations, msl outperforms the two other methods (rwk, kerfdr).

Then, we switch to comparing the methods with respect to estimation of �FDR (bottom half of each figure).
First, note that the four methods exhibit small RMSEs with respect to �FDR and are thus efficient for estimating
this quantity. We also note that rwk tends to have lower performances than kerfdr,msl. Now, msl tends to
slightly outperform kerfdr. Thus msl appears as a competitive method for �FDR estimation. The comparison
with [23]’s approach is more difficult: for model 1, the method compares with msl, while it outperforms all the
methods in model 2 and is outperformed by msl in model 3.

As a conclusion, we claim that msl is a competitive method for estimating both the alternative density f and
the �FDR.
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Figure 1. Densities of the p-values in the three different models, with θ = 0.65. Top left: first
model, top right: second model, bottom left: third model.

5. Proofs

5.1. Proof of Theorem 3.3

The proof works as follows: we first start by proving that the pointwise quadratic risk of function f2 defined
by (2.5) is order of n−2β/(2β+1) in the following proposition. Then we compare the estimator f̂ rwk

n with the
function f2 to conclude the proof. To simplify notation, we abbreviate f̂ rwk

n to f̂n.
We shall need the following two lemmas. The proof of the first one may be found for instance in Proposition 1.2

in [26]. The second one is known as Bochner’s lemma and is a classical result in kernel density estimation.
Therefore its proof is omitted.

Lemma 5.1 (Prop. 1.2 in [26]). Let p be a density in Σ(β, L) and K a kernel function of order l = �β� such
that ∫

R

|u|β|K(u)|du <∞.

Then there exists a positive constant C3 depending only on β, L and K such that for all x0 ∈ R,∣∣∣∣
∫

R

K(u) [p(x0 + uh) − p(x0)] du
∣∣∣∣ ≤ C3h

β , ∀h > 0.
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Figure 2. RMISE (for density f) and RMSE (for �FDR) in the first model as a function of
n. Methods: “•” = rwk, “�” = kerfdr, “�” = msl, “�” = st (only for �FDR). Left: θ = 0.65,
right: θ = 0.85.

Lemma 5.2 (Bochner’s lemma). Let g be a bounded function on R, continuous in a neighborhood of x0 ∈ R

and Q a function which satisfies ∫
R

|Q(x)|dx <∞.

Then, we have

lim
h→0

1
h

∫
R

Q
(x− x0

h

)
g(x)dx = g(x0)

∫
R

Q(x)dx.

Now, we come to the first step in the proof.

Proposition 5.3. Assume that kernel K satisfies assumption (A3) and bandwidth h = αn−1/(2β+1), with α > 0.
Then the pointwise quadratic risk of function f2, defined by (2.5) and depending on (θ, f), satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f (|f2(x) − f(x)|2) ≤ C4n
−2β
2β+1 ,

where C4 is a positive constant depending only on β, L, α, δ and K.

Proof of Proposition 5.3. Let us denote by

Sn =
n∑
i=1

f(Xi)
g(Xi)

·
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Figure 3. RMISE (for density f) and RMSE (for �FDR) in the second model as a function of
n. Methods: “•” = rwk, “�” = kerfdr, “�” = msl, “�” = st (only for �FDR). Left: θ = 0.65,
right: θ = 0.85.

The pointwise quadratic risk of f2 can be written as the sum of a bias term and a variance term

Eθ,f (|f2(x) − f(x)|2) = [Eθ,f (f2(x)) − f(x)]2 + Varθ,f [f2(x)].

Let us first study the bias term. According to (2.5) and the definition (2.4) of the weights, we have

Eθ,f [f2(x)] =
n

h
Eθ,f

⎡
⎣τ1K

(
x−X1

h

)( n∑
k=1

τk

)−1
⎤
⎦

=
n

h
Eθ,f

[
f(X1)
g(X1)

K

(
x−X1

h

)
S−1
n

]

=
n

h

∫ 1

0

f(t)K
(
x− t

h

)
Eθ,f

[(
f(t)
g(t)

+ Sn−1

)−1
]

dt

= n

∫ (1−x)/h

−x/h
K(t)f(x+ th)Eθ,f

[(
f(x+ th)
g(x+ th)

+ Sn−1

)−1
]

dt. (5.1)
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Figure 4. RMISE (for density f) and RMSE (for �FDR) in the third model as a function of
n. Methods: “•” = rwk, “�” = kerfdr, “�” = msl, “�” = st (only for �FDR). Left: θ = 0.65,
right: θ = 0.85.

Since the functions f and g are related by the equation g(t) = θ+(1−θ)f(t) for all t ∈ [0, 1], the ratio f(t)/g(t)
is well defined and satisfies

0 ≤ f(t)
g(t)

≤ 1
1 − θ

≤ δ−1, ∀t ∈ [0, 1], and ∀θ ∈ [δ, 1 − δ].

Then for all t ∈ [−x/h, (1 − x)/h], we get

1
Sn−1 + δ−1

≤
(
f(x+ th)
g(x+ th)

+ Sn−1

)−1

≤ 1
Sn−1

,

where the bounds are uniform with respect to t.
By combining this inequality with (5.1), we obtain

n

(∫ (1−x)/h

−x/h
K(t)f(x+ th)dt

)
Eθ,f

(
1

Sn−1 + δ−1

)
≤ Eθ,f

[
f2(x)

]

and Eθ,f
[
f2(x)

] ≤ n

(∫ (1−x)/h

−x/h
K(t)f(x+ th)dt

)
Eθ,f

(
1

Sn−1

)
·

Then, we apply the following lemma, whose proof is postponed to Appendix A.1.
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Lemma 5.4. There exist some positive constants c1, c2, c3, c4 (depending on δ) such that for n large enough,

Eθ,f

(
1
Sn

)
≤ 1
n

+
c1
n2
, (5.2)

Eθ,f

(
1
S2
n

)
≤ c2
n2
, (5.3)

Eθ,f

(
1

Sn + 2δ−1

)
≥ 1
n
− c3
n2
, (5.4)

and Eθ,f

(
1
S2
n

)
− E2

θ,f

(
1

δ−1 + Sn

)
≤ c4
n3

· (5.5)

Relying on inequalities (5.2) and (5.4), we have for n large enough

∫ (1−x)/h

−x/h
K(t)f(x+ th)dt− c3

n
≤ Eθ,f

[
f2(x)

] ≤ ∫ (1−x)/h

−x/h
K(t)f(x+ th)dt+

c1
n
·

Since f(x+ th) = 0 for all t /∈ [−x/h, (1 − x)/h], we may write

∫ (1−x)/h

−x/h
K(t)f(x+ th)dt =

∫
R

K(t)f(x+ th)dt.

Thus, the bias of f2(x) satisfies

|b(x)| = |Eθ,f
[
f2(x)

]− f(x)| ≤
∫

R

K(t)|f(x+ th) − f(x)|dt+
c5
n
·

By using Lemma 5.1 and the choice of bandwidth h, we obtain that

b2(x) ≤ C5h
2β ,

where C5 = C5(β, L,K). Let us study now the variance term of f2(x). We have

Varθ,f
[
f2(x)

]
=

1
h2

[
nVarθ,f(Y1) + n(n− 1)Covθ,f(Y1, Y2)

]
, (5.6)

where

Yi =
f(Xi)
g(Xi)

K

(
x−Xi

h

)
S−1
n .

The variance of Y1 is bounded by its second moment and

Eθ,f(Y 2
1 ) = Eθ,f

[(
f(X1)
g(X1)

)2

K2

(
x−X1

h

)
S−2
n

]
=
∫ 1

0

f2(t)
g(t)

K2

(
x− t

h

)
Eθ,f

[(
f(t)
g(t)

+ Sn−1

)−2
]

dt.

Now, recalling that 0 ≤ f/g ≤ δ−1 and using inequality (5.3) of Lemma 5.4, we get

Eθ,f (Y 2
1 ) ≤ h

(∫ (1−x)/h

−x/h

f2(x+ th)
g(x+ th)

K2(t)dt

)
Eθ,f

(
1

S2
n−1

)

≤ hδ−1 sup
f∈Σ(β,L)

‖f‖∞
(∫

K2(t)dt
)
c2
n2

≤ C6h

n2
· (5.7)
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We now study the covariance of Y1 and Y2

Covθ,f(Y1, Y2) = Eθ,f (Y1Y2) − E2
θ,f(Y1)

= Eθ,f

[
f(X1)f(X2)
g(X1)g(X2)

K
(x−X1

h

)
K
(x−X2

h

)
S−2
n

]
− E2

θ,f

[
f(X1)
g(X1)

K
(x−X1

h

)
S−1
n

]

=
∫

[0,1]2
f(t)f(u)K

(x− t

h

)
K
(x− u

h

)
Eθ,f

[(
f(t)
g(t)

+
f(u)
g(u)

+ Sn−2

)−2
]

dtdu

−
(∫ 1

0

f(t)K
(x− t

h

)
Eθ,f

[(
f(t)
g(t)

+ Sn−1

)−1
]

dt

)2

=
∫

[0,1]2
f(t)f(u)K

(x− t

h

)
K

(
x− u

h

)
A(t, u)dtdu,

where

A(t, u) = Eθ,f

[(
f(t)
g(t)

+
f(u)
g(u)

+ Sn−2

)−2
]
− Eθ,f

[(
f(t)
g(t)

+ Sn−1

)−1
]

Eθ,f

[(
f(u)
g(u)

+ Sn−1

)−1
]

≤ Eθ,f

(
1

S2
n−2

)
− E2

θ,f

(
1

2δ−1 + Sn−2

)
·

Hence

Cov(Y1, Y2) ≤
∫

[0,1]2
f(t)f(u)K

(x− t

h

)
K
(x− u

h

)[
Eθ,f

(
1

S2
n−2

)
− E2

θ,f

(
1

2δ−1 + Sn−2

)]
dtdu

≤ h2

(∫
R

f(x+ th)K(t)dt
)2 [

Eθ,f

(
1

S2
n−2

)
− E2

θ,f

(
1

2δ−1 + Sn−2

)]

≤ C7h
2

[
Eθ,f

(
1

S2
n−2

)
− E2

θ,f

(
1

2δ−1 + Sn−2

)]
·

According to inequality (5.5) of Lemma 5.4, we have

Eθ,f

(
1

S2
n−2

)
− E2

θ,f

(
1

2δ−1 + Sn−2

)
≤ c4
n3
,

hence

Covθ,f(Y1, Y2) ≤ C8h
2

n3
· (5.8)

By returning to equality (5.6) and combining with (5.7) and (5.8), we obtain

Varθ,f [f2(x)] ≤ 1
h2

[
C6h

n
+ n(n− 1)h2C8h

2

n3

]
≤ C9

nh
·

Thus, as the bandwidth h is of order n−1/(2β+1), the pointwise quadratic risk of f2(x) satisfies

Eθ,f(|f2(x) − f(x)|2) ≤ C4n
−2β
2β+1 · �

Proof of Theorem 3.3. First, the pointwise quadratic risk of f̂n(x) is bounded in the following way

Eθ,f (|f̂n(x) − f(x)|2) ≤ 2Eθ,f(|f2(x) − f(x)|2) + 2Eθ,f(|f̂n(x) − f2(x)|2). (5.9)
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According to Proposition 5.3, we have

Eθ,f(|f2(x) − f(x)|2) ≤ C4n
−2β
2β+1 , (5.10)

and it remains to study the second term appearing in the right-hand side of (5.9). We write

f̂n(x) − f2(x) =
1
h

n∑
i=1

(
τ̂i∑
k τ̂k

− τi∑
k τk

)
K

(
x−Xi

h

)

=
1
h

n∑
i=1

τ̂i − τi∑
k τ̂k

K

(
x−Xi

h

)
+

1
h

n∑
i=1

τi

(
1∑
k τ̂k

− 1∑
k τk

)
K

(
x−Xi

h

)

=
n∑
k τ̂k

× 1
nh

n∑
i=1

(τ̂i − τi)K
(
x−Xi

h

)

+
n2∑

k τ̂k
∑

k τk
×
∑

k(τk − τ̂k)
n

× 1
nh

n∑
i=1

τiK

(
x−Xi

h

)
.

Moreover, recalling the definition of the weights (2.7), we have for all 1 ≤ i ≤ n,

τ̂i − τi =
θ̂n

g̃n(Xi)
− θ

g(Xi)
= θ̂n

[
1

g̃n(Xi)
− 1
g(Xi)

]
+

1
g(Xi)

(θ̂n − θ),

and thus get

f̂n(x) − f2(x) =
nθ̂n∑
k τ̂k

× 1
nh

n∑
i=1

[
1

g̃n(Xi)
− 1
g(Xi)

]
K

(
x−Xi

h

)

+
n(θ̂n − θ)∑

k τ̂k
× 1
nh

n∑
i=1

1
g(Xi)

K

(
x−Xi

h

)

+
n2θ̂n∑

k τ̂k
∑

k τk
× 1
n

∑
k

[
1

g̃n(Xk)
− 1
g(Xk)

]
× 1
nh

n∑
i=1

τiK

(
x−Xi

h

)

+
n2(θ̂n − θ)∑
k τ̂k

∑
k τk

× 1
n

∑
k

1
g(Xk)

× 1
nh

n∑
i=1

τiK

(
x−Xi

h

)
· (5.11)

Let us control the different terms appearing in this latter equality. We first remark that for all i,

0 ≤ τi ≤ 1 and
1

g(Xi)
≤ 1
θ
≤ δ−1. (5.12)

Since by assumption θ̂n
as−−−−→

n→∞ θ ∈ [0, 1], for n large enough we also get |θ̂n| < 3/2, a.s. According to the law of

large numbers and Eθ,f (τ1) = 1 − θ, we also obtain that for n large enough

δ

2
≤ 1 − θ

2
≤ 1
n

n∑
i=1

τi ≤ 3(1 − θ)
2

≤ 3(1 − δ)
2

a.s. (5.13)

Moreover, by using a Taylor expansion of the function u → 1/u with an integral form of the remainder term,
we have for all i, ∣∣∣∣∣ 1

g̃n(Xi)
− 1
g(Xi)

∣∣∣∣∣ =
|g̃n(Xi) − g(Xi)|

g2(Xi)

∫ 1

0

(
1 + s

g̃n(Xi) − g(Xi)
g(Xi)

)−2

ds.
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Since convergence of ĝn to g is valid pointwise and in L∞ norm (see Rem. 3.2), and since g̃n is a slight modification
of ĝn, we have almost surely, for n large enough and for all s ∈ [0, 1] and all x ∈ [0, 1],

1 + s
g̃n(x) − g(x)

g(x)
≥ 1 − s

‖ĝn − g‖∞
θ

≥ 1 − s

2
> 0.

Hence, for all x ∈ [0, 1] and large enough n,

∫ 1

0

(
1 + s

g̃n(x) − g(x)
g(x)

)−2

ds ≤
∫ 1

0

4ds
(2 − s)2

= 2,

and we obtain ∣∣∣∣∣ 1
g̃n(Xi)

− 1
g(Xi)

∣∣∣∣∣ ≤ 2δ−2|g̃n(Xi) − g(Xi)| a.s. (5.14)

We also use the following lemma, whose proof is postponed to Appendix A.2.

Lemma 5.5. For large enough n, we have

n

|∑k τ̂k|
≤ c7 a.s. (5.15)

By returning to equality (5.11) and combining with (5.12), (5.13), (5.14) and (5.15), we obtain

|f̂n(x) − f2(x)|2 ≤ c8

(
1
nh

n∑
i=1

|g̃n(Xi) − g(Xi)| ×
∣∣∣∣K(x−Xi

h

)∣∣∣∣
)2

+ c9|θ̂n − θ|2
(

1
nh

n∑
i=1

∣∣∣∣K
(
x−Xi

h

)∣∣∣∣
)2

(5.16)

+ c10

(
1
n

n∑
i=1

|g̃n(Xi) − g(Xi)|
)2(

1
nh

n∑
i=1

K

(
x−Xi

h

))2

a.s.

We now successively control the expectations T1, T2 and T3 of the three terms appearing in this upper-bound.
For the first term, we have

T1 = Eθ,f

⎡
⎣( 1

nh

n∑
i=1

|g̃n(Xi) − g(Xi)| ×
∣∣∣∣K

(
x−Xi

h

)∣∣∣∣
)2
⎤
⎦

= Eθ,f

⎡
⎣ 1
n2h2

n∑
i,j=1

|g̃n(Xi) − g(Xi)||g̃n(Xj) − g(Xj)| ×
∣∣∣∣K

(
x−Xi

h

)
K

(
x−Xj

h

)∣∣∣∣
⎤
⎦

=
1
nh

Eθ,f

[
1
h
|g̃n(X1) − g(X1)|2K2

(
x−X1

h

)]

+
n− 1
n

Eθ,f

[
1
h2

|g̃n(X1) − g(X1)||g̃n(X2) − g(X2)| ×
∣∣∣∣K

(
x−X1

h

)
K

(
x−X2

h

)∣∣∣∣
]
.
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Now,

T11 = Eθ,f

[
1
h
|g̃n(X1) − g(X1)|2K2

(
x−X1

h

)]

=
∫ 1

0

Eθ,f
(|ĝn−1(t) − g(t)|2)K2

(
x− t

h

)
g(t)
h

dt (according to definition (2.7))

≤ C10n
−2β
2β+1

∫ 1

0

K2

(
x− t

h

)
g(t)
h

dt (according to Rem. 3.2)

≤ C11n
−2β
2β+1 (according to Lem. 5.2), (5.17)

and in the same way

T12 = Eθ,f

[
1
h2

|g̃n(X1) − g(X1)||g̃n(X2) − g(X2)|K
(
x−X1

h

)
K

(
x−X2

h

)]

=
∫ 1

0

∫ 1

0

Eθ,f

[∣∣∣∣∣n− 2
n− 1

ĝn−2(t) − g(t) +
1

(n− 1)h
K

(
t− s

h

) ∣∣∣∣∣
×
∣∣∣∣∣n− 2
n− 1

ĝn−2(s) − g(s) +
1

(n− 1)h
K

(
s− t

h

) ∣∣∣∣∣
]∣∣∣∣∣K

(
x− t

h

)
K

(
x− s

h

)∣∣∣∣∣g(t)g(s)h2
dtds.

This last term is upper-bound by

T12 ≤
∫ 1

0

∫ 1

0

Eθ,f

[(
|ĝn−2(t) − g(t)| + 1

n− 1
g(t) +

1
(n− 1)h

∣∣∣K( t− s

h

)∣∣∣)

×
(
|ĝn−2(s) − g(s)| + 1

n− 1
g(s) +

1
(n− 1)h

∣∣∣K(s− t

h

)∣∣∣)]

×
∣∣∣K(x− t

h

)
K
(x− s

h

)∣∣∣g(t)g(s)
h2

dtds

≤
∫ 1

0

∫ 1

0

{
E

1/2
θ,f

[|ĝn−2(t) − g(t)|2]E1/2
θ,f

[|ĝn−2(s) − g(s)|2]+ o
( 1
nh

)}

×
∣∣∣∣K(x− t

h

)
K
(x− s

h

)∣∣∣∣ g(t)g(s)h2
dtds.

According to Remark 3.2, we have

T12 ≤ C12n
−2β
2β+1

[∫ 1

0

∣∣∣∣∣K
(
x− t

h

) ∣∣∣∣∣g(t)h dt

]2

≤ C13n
−2β
2β+1 (according to Lem. 5.2). (5.18)

Thus we get that

T1 = Eθ,f

⎡
⎣( 1

nh

n∑
i=1

|g̃n(Xi) − g(Xi)|
∣∣∣∣∣K

(
x−Xi

h

) ∣∣∣∣∣
)2
⎤
⎦ ≤ C14n

−2β
2β+1 . (5.19)

For the second term in the right hand side of (5.16), we have

T2 = Eθ,f

⎡
⎣|θ̂n − θ|2

(
1
nh

n∑
i=1

∣∣∣∣∣K
(
x−Xi

h

) ∣∣∣∣∣
)2
⎤
⎦

≤ E
1/2
θ,f

[
|θ̂n − θ|4

]
E

1/2
θ,f

⎡
⎣
(

1
nh

n∑
i=1

∣∣∣∣K
(
x−Xi

h

)∣∣∣∣
)4
⎤
⎦ ·

The proof of the following lemma is postponed to Appendix A.3.
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Lemma 5.6. There exist some positive constant C15 such that

Eθ,f

⎡
⎣
(

1
nh

n∑
i=1

∣∣∣∣K
(
x−Xi

h

)∣∣∣∣
)4
⎤
⎦ ≤ C15. (5.20)

This lemma entails that

T2 ≤ C15

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2
. (5.21)

Now, we turn to the third term in the right hand side of (5.16). We have

T3 = Eθ,f

⎡
⎣
(

1
n

n∑
i=1

|g̃n(Xi) − g(Xi)|
)2(

1
nh

n∑
i=1

∣∣∣∣K
(
x−Xi

h

)∣∣∣∣
)2
⎤
⎦

= Eθ,f

⎡
⎣ 1
n4h2

n∑
i,j,k,l=1

|g̃n(Xi) − g(Xi)||g̃n(Xj) − g(Xj)|
∣∣∣∣K(x−Xk

h

)
K

(
x−Xl

h

)∣∣∣∣
⎤
⎦ ·

By using the same arguments as for obtaining (5.17) and (5.18), we can get that

T3 ≤ C16n
−2β
2β+1 . (5.22)

According to (5.19), (5.21) and (5.22), we may conclude

Eθ,f(|f̂n(x) − f2(x)|2) ≤ C15

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2

+ C17n
−2β
2β+1 . (5.23)

By returning to inequality (5.9) and combining it with (5.10) and (5.23), we achieve that

Eθ,f (|f̂n(x) − f(x)|2) ≤ C1

[
Eθ,f

(
|θ̂n − θ|4

)] 1
2

+ C2n
−2β
2β+1 . �

5.2. Other proofs

Proof of Proposition 3.5. By using the same arguments as for obtaining (3.3), we can get that

ln(f̂ (t)) − ln(f̂ (t+1)) ≥ 1
n

n∑
k=1

ω̂
(t)
k D(f̂ (t+1) | f̂ (t)).

Let us now denote by
m = inf

x∈[−1,1]
Kh(x) and M = sup

x∈[−1,1]

Kh(x),

then m and M are two positive constants depending on the bandwidth h and the kernel K. We note that for
all x ∈ [0, 1],

m ≤
∫ 1

0

Kh(u− x)du ≤ min(M, 1).

Thus, for all t ≥ 1, the estimate f̂ (t) is lower bounded by m. Since the operator N is increasing, it follows that
N f̂ (t) is also lower bounded by m. Now the function

x → (1 − θ)x
θ + (1 − θ)x
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is increasing, so that we finally obtain

ω̂
(t)
k =

(1 − θ)N f̂ (t)(Xk)
θ + (1 − θ)N f̂ (t)(Xk)

≥ (1 − θ)m
θ + (1 − θ)m

= c.

This concludes the proof. �

Proof of Proposition 3.6. We start by stating a lemma, whose proof is postponed to Appendix A.4.

Lemma 5.7. The function l : B → R is continuous with respect to the topology induced by uniform convergence
on the set of functions defined on [0, 1].

First, for all f ∈ B, we remark that m ≤ f(·) ≤ M/m. Thus, N (f) and l(f) are well-defined for f ∈ B.
Moreover, it is easy to see that l(f) is bounded below on B. According to the definition (3.4) of the sequence
{f t}t≥0, every function f t belongs to B. As a consequence, we obtain that the sequence {l(f t)}t≥0 is decreasing
and lower bounded, thus it is convergent and the sequence {f t}t≥0 converges (simply) to a local minimum of l.

Now, it is easy to see that l is a strictly convex function on the convex set B (relying on [9]). Existence and
uniqueness of the minimum f� of l in B thus follows, as well as the simple convergence of the iterative sequence
{f t}t≥0 to this unique minimum.

For all x, y ∈ [0, 1] and for all t, we have

|f t(x) − f t(y)| =
1∫ 1

0 ωt(u)g0(u)du

∣∣∣ ∫ 1

0

[Kh(u− x) −Kh(u− y)]ωt(u)g0(u)∫ 1

0 Kh(s− u)ds
du
∣∣∣

≤ 1∫ 1

0
ωt(u)g0(u)du

∫ 1

0

|Kh(u− x) −Kh(u− y)|ωt(u)g0(u)
m

du

≤ L

m
|x− y|,

so that the sequence {f t} is uniformly bounded and equicontinuous. Relying on Arzelà–Ascoli theorem, there
exists a subsequence {f tk} of {f t} which converges uniformly to some limit. However, this uniform limit must
be the simple limit of the sequence, namely the minimum f� of l. Now, uniqueness of the uniform limit value
of the sequence {f t}t≥0 entails its convergence. �

Appendix A. Proofs of technical lemmas

A.1. Proof of Lemma 5.4

Proof. We first show (5.3). According to the law of large numbers, since Eθ,f
(
f(X1)/g(X1)

)
= 1, we have

Sn
n

=
1
n

n∑
i=1

f(Xi)
g(Xi)

as−−−−→
n→∞ 1. (A.1)

Hence
n2

S2
n

=
(
Sn
n

)−2
as−−−−→

n→∞ 1.

By the dominated convergence theorem, there exists a constant c2 > 0 such that for n large enough

Eθ,f

[
1
S2
n

]
=

1
n2

Eθ,f

[
n2

S2
n

]
≤ c2
n2
,
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establishing (5.3). Let us now prove (5.2). By using a Taylor’s expansion, we have

1
Sn

=
1
n
× 1

1 +
(
Sn

n − 1
) =

1
n

[
2 − Sn

n
+
(
Sn
n

− 1
)2 1

(1 + γn
(
Sn

n − 1
)
)3

]
,

where γn ∈]0, 1[ depends on Sn. Combining this with (A.1), we obtain

1
(1 + γn(Sn

n − 1))3
as−−−−→

n→∞ 1.

Thus, there exist some positive constants c, c′ such that for n large enough,

1
n

[
2 − Sn

n
+ c′

(Sn
n

− 1
)2] ≤ 1

Sn
≤ 1
n

[
2 − Sn

n
+ c

(
Sn
n

− 1
)2
]

a.s. (A.2)

This implies in particular that

Eθ,f

[
1
Sn

]
≤ 1
n

[
2 − Eθ,f [Sn]

n
+ cEθ,f

[(
Sn
n

− 1
)2
]]

=
1
n

+
c

n
Eθ,f

[(
Sn
n

− 1
)2
]
·

In addition,

Eθ,f

[(
Sn
n

− 1
)2
]

= Var
(
Sn
n

)
=

1
n

Var
(
f(X1)
g(X1)

)
·

Remember that the ratio f/g is bounded (by δ−1) and thus has finite variance. Hence, there exists a positive
constant c1 such that for n large enough

Eθ,f

[
1
Sn

]
≤ 1
n

+
c1
n2

·

We now prove (5.4). By using again a Taylor expansion, we have

1
Sn + δ−1

=
1
Sn

× 1
1 + 1/(δSn)

=
1
Sn

− 1
δS2

n

× 1
[1 + βn/(δSn)]

2 ,

where βn ∈]0, 1[ depends on Sn. We also have

1

[1 + βn/(δSn)]
2

as−−−−→
n→∞ 1.

Thus, there exists a positive constant c′′ such that for n large enough

Eθ,f

[
1

Sn + δ−1

]
= Eθ,f

[
1
Sn

− 1
δS2

n

× 1
[1 + βn/(δSn)]2

]
≥ Eθ,f

[
1
Sn

]
− Eθ,f

[
c′′

S2
n

]
a.s.

According to (A.2), we have

Eθ,f

[
1
Sn

]
≥ 1
n

[
2 − Eθ,f [Sn]

n
+ c′Eθ,f

[(
Sn
n

− 1
)2
]]

=
1
n

+
c′

n2
Var

(
f(X1)
g(X1)

)
,
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and it is proved above that

Eθ,f

[
1
S2
n

]
≤ c2
n2

·

Thus we obtain Inequality (5.4), namely

Eθ,f

[
1

Sn + δ−1

]
≥ 1
n
− c3
n2

·

Finally, we show (5.5). In the same way as we proved (5.4) above, we have for large enough n,

Eθ,f

[
1

Sn + 2δ−1

]
≥ 1
n
− c′3
n2

> 0

and thus

E2
θ,f

[
1

Sn + 2δ−1

]
≥ 1
n2

(
1 − 2c′3

n
+
c′23
n2

)
≥ 1
n2

(
1 − 2c′3

n

)
. (A.3)

According to inequality (A.2) (containing only positive terms for n large enough), we have

1
S2
n

≤ 1
n2

[
4 +

S2
n

n2
+ c2

(
Sn
n

− 1
)4

− 4
Sn
n

+ 4c
(
Sn
n

− 1
)2

− 2c
Sn
n

(
Sn
n

− 1
)2
]

(as)

≤ 1
n2

[
4 +

S2
n

n2
+ c2

(
Sn
n

− 1
)4

− 4
Sn
n

+ 4c
(
Sn
n

− 1
)2
]

a.s.

Since

Eθ,f [Sn] = n, Eθ,f [S2
n] = nVar

(
f(X1)
g(X1)

)
+ n2 and Eθ,f

[(
Sn
n

− 1
)2
]

=
1
n

Var
(
f(X1)
g(X1)

)
,

we have

Eθ,f

[
1
S2
n

]
≤ 1
n2

[
4 +

Eθ,f [S2
n]

n2
+ c2Eθ,f

[(
Sn
n

− 1
)4
]
− 4

Eθ,f [Sn]
n

+ 4cEθ,f

[(
Sn
n

− 1
)2
]]

≤ 1
n2

[
4 +

1
n

Var
(
f(X1)
g(X1)

)
+ 1 + c2Eθ,f

[(
Sn
n

− 1
)4
]
− 4 +

4c
n

Var
(
f(X1)
g(X1)

)]

≤ 1
n2

[
1 +

C4

n
+ c2Eθ,f

[(
Sn
n

− 1
)4
]]

. (A.4)

Combining (A.3) and (A.4), we get that

Eθ,f

[
1
S2
n

]
− E2

θ,f

[
1

Sn + 2δ−1

]
≤ C

n3
+
c2

n2
Eθ,f

[(
Sn
n

− 1
)4
]
. (A.5)

We now upper-bound the quantity Eθ,f
[
(Sn

n − 1)4
]
. Let us denote by

Ui =
f(Xi)
g(Xi)

− 1.
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We have

(
Sn
n

− 1
)4

=
1
n4

(
n∑
i=1

Ui

)4

=
1
n4

n∑
i=1

U4
i +

1
n4

n∑
i�=j

U3
i Uj

+
1
n4

n∑
i�=j

U2
i U

2
j +

1
n4

n∑
i�=j �=k

U2
i UjUk +

1
n4

n∑
i�=j �=k �=l

UiUjUkUl.

Since the random variables Ui are iid with mean zero, we obtain

Eθ,f

[(
Sn
n

− 1
)4
]

=
1
n4

[
nEθ,f (U4

1 ) + n(n− 1)Eθ,f (U2
1U

2
2 )
]

= O

(
1
n2

)
· (A.6)

Finally, according to (A.5) and (A.6) we have

Eθ,f

[
1
S2
n

]
− E2

θ,f

[
1

Sn + 2δ−1

]
= O

(
1
n3

)
· �

A.2. Proof of Lemma 5.5

Proof. We write

1∑
k τ̂k

=
1∑

k τk +
∑
k(τ̂k − τk)

=
1∑
k τk

−
∑
k(τ̂k − τk)
(
∑
k τk)2

×
∫ 1

0

(
1 + s

∑
k(τ̂k − τk)∑

k τk

)−2

ds.

Let us establish that ‖τ̂ − τ‖∞,[0,1] = supx∈[0,1] |τ̂ (x) − τ(x)| converges almost surely to zero. Indeed,

τ̂ (x) − τ(x) = (θ − θ̂n)
1

g(x)
+ θ̂n

(
1

g(x)
− 1
g̃n(x)

)

and using the same argument as for establishing (5.14), we get that for n large enough and for all x ∈ [0, 1],

|τ̂ (x) − τ(x)| ≤ |θ̂n − θ|
θ

+ 2|θ̂n| ‖ĝn − g‖∞
θ2

≤ δ−1|θ̂n − θ| + 2δ−2‖ĝn − g‖∞.

By using consistency of θ̂n and Remark 3.2, we obtain that ‖τ̂ − τ‖∞,[0,1] converges almost surely to zero. Now,

∀s ∈ [0, 1], 1 + s

∑
k(τ̂k − τk)∑

k τk
≥ 1 − s

n‖τ̂k − τk‖∞,[0,1]∑
k τk

≥ 1 − s
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θ
≥ 1 − s

2
> 0 a.s.

We obtain that

n
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n
∑
k |τ̂k − τk|

(
∑
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(
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ds
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(
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2
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ds

≤ 2
1 − θ

+
8‖τ̂ − τ‖∞,[0,1]

(1 − θ)2
≤ c7 a.s. �
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A.3. Proof of Lemma 5.6

Proof. In order to prove (5.20), let us consider iid random variables U1, . . . , Un defined as

Ui =
∣∣∣∣K

(
x−Xi

h

)∣∣∣∣ ·
For all 1 ≤ p ≤ 4, we have

Eθ,f(U
p
i ) =

∫ ∣∣∣∣Kp

(
x− t

h

)∣∣∣∣ g(t)dt = h

∫ ∣∣Kp(t)
∣∣g(x+ th)dt ≤ C15h.

We then write (
1
nh

n∑
i=1

∣∣∣∣K
(
x−Xi

h

)∣∣∣∣
)4

=
1

n4h4

(∑
i

Ui

)4

, (A.7)

where (∑
i

Ui

)4

=
∑
i

U4
i +

∑
i�=j

U3
i Uj +

∑
i�=j

U2
i U

2
j +

∑
i�=j �=k

U2
i UjUk +

∑
i�=j �=k �=l

UiUjUkUl.

And for all choice of the bandwidth h > 0 such that nh→ ∞,

Eθ,f

⎡
⎣
(∑

i

Ui

)4
⎤
⎦

=nEθ,f (U4
1 ) + n(n− 1)Eθ,f(U3

1U2) + n(n− 1)Eθ,f(U2
1U

2
2 )+

+ n(n− 1)(n− 2)Eθ,f(U2
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=nEθ,f (U4
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1 )E2

θ,f (U1) + n(n− 1)(n− 2)(n− 3)E4
θ,f (U1)

≤C15n
4h4. (A.8)

According to (A.7) and (A.8) we obtain the result. �

A.4. Proof of Lemma 5.7

Proof. Let f be a function in B and {fn} be a sequence of densities on [0, 1] such that ‖fn − f‖∞ −−−−→
n→∞ 0. Let

us recall that every f ∈ B satisfies the bounds m ≤ f ≤M/m. We have

| l(fn) − l(f) | =

∣∣∣∣∣
∫ 1

0

g0(x) log
θ + (1 − θ)Nf(x)
θ + (1 − θ)Nfn(x)

dx

∣∣∣∣∣
≤
∫ 1

0

g0(x)

∣∣∣∣∣ log
{

1 +
(1 − θ)[Nfn(x) −Nf(x)]

θ + (1 − θ)Nfn(x)

} ∣∣∣∣∣dx,
and

| Nfn(x) −Nf(x) | = Nf(x)

∣∣∣∣∣ exp

∫ 1

0
Kh(u− x)[log fn(u) − log f(u)]du∫ 1

0 Kh(s− x)ds
− 1

∣∣∣∣∣
≤ M

m

∣∣∣∣∣ exp

∫ 1

0
Kh(u− x)[log fn(u) − log f(u)]du∫ 1

0 Kh(s− x)ds
− 1
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For |x| < ε small enough, we have | log(1 + x)| ≤ 2|x| and | exp(x) − 1| ≤ 2|x|. Combining with the fact that f
is bounded, we get that∣∣∣∣∣

∫ 1

0

Kh(u− x)[log fn(u) − log f(u)]du | ≤
∫ 1

0

Kh(u − x)

∣∣∣∣∣ log
{

1 +
fn(u) − f(u)

f(u)

} ∣∣∣∣∣du
≤ 2‖fn − f‖∞

and thus
‖Nfn −Nf‖∞ ≤ 4M

m2
‖fn − f‖∞.

We finally obtain
| l(fn) − l(f) |≤ C‖fn − f‖∞,

where C is a constant depending on h,K and θ. �
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