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Abstract

The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the
correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight
the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient
mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies
provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis
promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However,
MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-
viral cytokines, TNF and IFNc, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive
transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD
background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of
persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and
negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates,
CHIKV antigen and stimulation of IFNa/b and T cell responses. These studies highlight that, secondary to antibodies, several
factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and
transcriptionally active CHIKV RNA.
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Introduction

The arthritogenic alphaviruses comprise a group of globally

distributed, mosquito-borne, single-stranded positive-sense RNA

viruses that cause sporadic outbreaks of predominantly rheumatic

disease. They include the predominantly Afro-Asian chikungunya

virus (CHIKV), the primarily Australian Ross River and Barmah

Forest viruses, the African o’nyong-nyong virus, the Sindbis group

of viruses and the South American Mayaro virus. Symptomatic

infection of adults with these alphaviruses is nearly always

associated with rheumatic disease, primarily polyarthralgia and/

or polyarthritis. The arthopathy can be chronic and debilitating

and usually lasts weeks to months, occasionally longer [1]. The

largest documented outbreak of CHIKV disease ever recorded

began in 2004, resulting in an estimated 1.4–6.5 million cases,

mainly in Africa and Asia. Imported cases were reported in nearly

40 countries including Europe, Japan and the USA [1,2]. The

outbreak continues in 2013/2014 with thousands of cases in Papua

New Guinea [3] and the Caribbean [4,5]. At present, no licensed

vaccine or particularly effective drug is available for human use for

any alphavirus, although analgesics and non-steroidal anti-

inflammatory drugs can provide relief from symptoms [1,6].

Alphavirus infections in vivo result in a brief, usually 5–7 day

viraemia, which is primarily controlled by IFNa/b initially, and

subsequently by anti-viral antibodies. Infection of genetically

modified mice defective in IFNa/b responses have illustrated that
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a rapid early induction of IFNa/b is required to control the acute

viraemia and protect against mortality [7,8,9,10]. Antibodies are

also well recognized as mediating protection, with anti-viral

antibodies [11,12,13,14] and antibody-based vaccines [15,16,17,

18] being developed as potential prophylactic interventions. An

important role for CD4 T cells in driving CHIKV arthritis was

recently established [19,20]. However, the role of T cells in

controlling alphaviral viraemia remains controversial with recent

reports suggesting they have no role [20,21], whilst early literature

described a role for T cells in cross protection between different

alphaviruses [22,23,24]. NK cells appear to have a protective role

for alphaviral infections in some settings [25], but not others [26],

with NK cells also implicated in arthritic disease [27,28].

Alphaviruses have a well recognized propensity to establish

persistent infections in vitro [29,30,31,32,33] and in vivo
[34,35,36,37], with such persistence in joint tissues likely responsible

for chronic arthritic disease [38,39,40]. How such post-viraemia

persistence is achieved in the face of robust anti-viral antibody and

T cell responses remains a matter of considerable speculation

[32,41,42,43,44,45,46]. Antibodies and T cell IFNc are believed to

be involved in the ultimate clearance of persistent Sindbis virus from

neurons [47]. However, knowledge regarding the nature of

persistent arthritogenic alphavirus infections, and the inflammatory

responses stimulated by them, currently remains limited [38,40].

We recently developed an adult C57BL/6 (wild-type) mouse

model of CHIKV infection and arthritis that mimics many aspects

of human disease [48]. Herein we use this infection model in a

series of genetically modified mouse strains deficient in one or

more immune responses to explore the contribution of B, T and

NK cells and the non-obese diabetic (NOD) background to (i)

protection against CHIKV viraemia and (ii) promotion of arthritic

disease. We also show, consistent with human and monkey data

[38,40], that in C57BL/6 mice, CHIKV RNA and protein persists

for extended periods and continues to stimulate innate and

adaptive immune responses.

Materials and Methods

Mice
The mice strains used in this study were: (i) NRG (B, T and NK

cell deficient on a NOD background), NOD.Cg-Rag1tm1Mom

Il2rgtm1Wjl/SzJ, NOD-congenic mice harboring the Rag1null

mutation and the IL2rcnull mutation (JAX); (ii) NOD, NOD/ShiLtJ

(non-obese diabetic mouse) (JAX); (iii) Rag2/Il2rg (B, T and NK cell

deficient on a B6 background), B10; B6-Rag2tm1Fwa Il2rgtm1Wjl

(Taconic, Hudson, NY), (iv) Rag12/2 (B and T cell deficient on a

C57BL/6 background), B6.129S7-Rag1tm1Mom/J (JAX); (v) mMT (B

cell deficient on a C57BL/6 background, no expression of

membrane-bound IgM), B6.129S2-Igh-6tm1Cgn/J (JAX); (vi)

MHCIID/D (CD4 T cell deficient, no class II MHC on a C57BL/

6 background) [49]; (vii) FccR2/2 mice (Fc gamma receptor

deficient on a C57BL/6 background), B6.129P2-Fcer1gtm1Rav
N12 (Taconic). All strains (except FccR2/2) were bred at the QIMR

Berghofer animal house facility. C57BL/6 mice were purchased

from Animal Resources Center (Canning Vale, WA, Australia). All

animals were handled in accordance with good animal practice as

defined by the National Health and Medical Research Council of

Australia. All experiments were approved by the QIMR Berghofer

animal ethics committee (P1060 A0705-603M).

Virus infections, viraemia determination and
measurement of foot swelling

The Reunion Island isolate (LR2006-OPY1) of CHIKV is a

primary isolate obtained from the recent outbreak in Reunion

Island and was grown in C6/36 cells, inoculated into mice, and

serum viraemia determined as described previously using a

modified CPE-based assay on Vero cells [8,48]. Female mice

were used with an age range of 6–12 weeks (mean age of each

group was 8–10.5 weeks); we have not observed significant

differences in foot swelling for mice within this age range using this

model (Table S1 in Text S1). Mice were inoculated with 104

CCID50 of virus subcutaneously (s.c.) into the dorsal side of both

hind feet, toward the ankle. Blood was collected from the tail vein

into MiniCollect tubes (Greiner Bio-One GmbH, Kremsmunster,

Austria) and viral titers expressed as log10 50% cell culture

infectivity dose (CCID50) (method of Spearman and Kaber). Foot

swelling was measured using digital Vernier calipers and is

presented as a group average of the percentage increase in foot

height times width for each foot compared with the same

foot on day 0 (i.e. n = 12 feet means n = 6 mice unless stated

otherwise).

Cytokine/chemokine analyses
Serum cytokine protein levels were analyzed using the BD

Cytometric Bead Array Bioanalyzer system (Becton Dickinson,

Franklin Lakes, NJ) and IFNa levels were determined by Mouse

IFN-alpha FlowCytomix Simplex (eBioscience, San Diego, CA,

USA) according to the manufacturer’s instructions.

Vaccination and proliferation assays
Mice were vaccinated s.c. with 10 mg of inactivated CHIKV as

described [48]. Standard proliferation assays using tritiated

thymidine uptake were undertaken using splenocytes isolated 3

weeks post vaccination. Briefly, splenocytes (2.56105 cells/96 well,

6 replicates) were cultured with 10 mg/ml of inactivated CHIKV

[48] for 3 days, tritiated thymidine was then added and cells

harvested the next day onto a MicroBeta Filtermat-96 A using the

FilterMateTM Cell Harvester (PerkinElmer). Radioactivity was

measured using the MicroBeta Liquid Scintillation Counter

(PerkinElmer).

ELISA assays
Anti-CHIKV IgG2c and IgG1 antibody titers were determined

by standard isotype-specific ELISA using ELISA plates coated

with inactivated CHIKV as described [15].

Author Summary

The largest epidemic ever recorded for chikungunya virus
(CHIKV) started in 2004 in Africa, then spread across Asia
and recently caused tens of thousands of cases in Papua
New Guinea and the Caribbean. This mosquito-borne
alphavirus primarily causes an often debilitating, acute and
chronic polyarthritis/polyarthalgia. Despite robust anti-viral
immune responses CHIKV is able to persist, with such
persistence poorly understood and the likely cause of
chronic disease. Herein we highlight the propensity of
CHIKV to persist long term, both as a persistent viraemia in
different B cell deficient mouse strains, but also as
persistent viral RNA in wild-type mice. These studies
suggest that, aside from antibodies, other immune factors,
such as CD4 T cells and TNF, are active in viraemia control.
The work also supports the notion that CHIKV disease, with
the exception of encephalitis, is largely an immunopathol-
ogy. Persistent CHIKV RNA in wild-type mice continues to
stimulate type I interferon and T cell responses, with this
model of chronic disease recapitulating many of the
features seen in chronic CHIKV patients.

Immune Factors in Chikungunya Virus Infection
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Anti-CHIKV anti-serum
Anti-CHIKV anti-serum was generated by infecting C57BL/6

mice with CHIKV and after 10 weeks vaccinating them with

10 mg of inactivated CHIKV [48]. Serum was harvested after 2

weeks and had an end point neutralization titer of 1/2560

determined as described [15].

Histology
Tissues were fixed in 10% neutral buffered formalin, feet were

decalcified (15% EDTA in 0.1% phosphate buffer over 10 days),

tissue was embedded in paraffin wax, and 6 mm-thick sections

were cut and stained with hematoxylin-eosin. Sections were

digitally scanned using Scan Scope XT digital slide scanner

(Aperio, Vista, CA). Image analyses were undertaken using Aperio

ImageScope Software (v10) and the Positive Pixel Count v9

algorithm (default settings).

Real time quantitative RT-PCR
Quantitative real time RT-PCR was undertaken as described

[48]. Briefly, feet and spleen were stored in RNAlater solution

(Ambion, Austin, TX, USA), placed in TRIzol (Life Technologies,

Carlsbad, CA, USA) and homogenization using steel balls and

TissueLyser (Qiagen) at 25 Hertz for 6 min. on ice. cDNA was

then generated using Superscript III (Invitrogen) and random

hexamer oligonucleotides. Real-time PCR analysis used the

following primers (59 to 39): CHIKV E1 F AGCTCCGCGT-

CCTTTACC, R CAAATTGTCCTGGTCTTCCTG; ISG54 F

CTCTCTGGAGCAAGCCATTC, R GCCATTGCTTGGTT-

TTTATG. Quantitative real-time PCR (qRT-PCR) was per-

formed in a reaction consisting of 1 ml of cDNA, 10 ml of SYBR

green Super mix-UDG (Invitrogen), 1 ml BSA, 6 ml H2O, and 1 ml

of 10 mM of forward and reverse primers. cDNA was amplified

and PCR products were detected using Rotorgene 6000 (Corbett

Research, Mortlake, Australia) under the following cycling

conditions: one cycle of 50uC for 2 min, one cycle of 95uC for

2 min, 45 cycles of 94uC for 5 sec, 60uC for 10 sec and 72uC for

30 sec. Data were analyzed using Rotor-Gene Real Time Analysis

software (Corbett Research, Australia). Each sample was analyzed

in duplicate and normalized to RPL13A mRNA as described [48].

Negative-strand specific qRT PCR was undertaken essentially

as described [50]. cDNA was synthesized as described [48] with

the exception that random hexamer oligonucleotides were

substituted with 10 pg of a primer, that comprised a tag sequence

linked to a CHIKV nsP1 sequence (59-GGCAGTATCGTGAAT-
TCGATGCGACACGGAGACGCCAACATT-39; tag sequence

in italics). qRT PCR used a forward primer with the tag sequence

(59-AATAAATCATAAGGCAGTATCGTGAATTCGATGC-39) and

a reverse primer from nsP1 (59-AATAAATCATAAGTCTGCTC-

TCTGTCTACATGA-39), with flap sequences (underlined) added to

increase fluorescent signal strength [50].

Statistics
Analyses were performed using IBM SPSS Statistics (version 19).

The t test was used if the difference in the variances was ,4,

skewness was .22, and kurtosis was ,2. Where the data was non-

parametric and difference in variances was ,4, the Mann Whitney

U test was used, if .4 the Kolmogorov-Smirnov test was used.

Microarray studies
Microarray studies were performed essentially as described [19].

RNA from feet taken day 0 was compared with RNA from feet

taken day 30 post infection, two microarrays were undertaken for

each time point. Probe sets that did not represent known genes

were removed and only expressed genes with a mean log2

expression$6 and variance .0.1 across all 4 samples were

included. A t-test was performed to compare gene expression

between day 0 and day 30 samples for the 4,805 remaining genes.

Genes where p,0.05 were considered differentially expressed.

Differentially expressed genes were analyzed using web-based

Ingenuity pathway analysis (IPA) using canonical pathway analysis

[19] and the upstream regulator function [51].

Results

CHIKV viraemia in B cell, T cell and/or NK cell deficient
mice

The following mouse strains were infected with CHIKV and

their viraemias were monitored over time; (i) C57BL/6 mice, (ii)

non obese diabetic (NOD) mice, (iii) MHCIID/D mice (MHCII

deficient mice on a C57BL/6 background), which lack of

functional Th cells and thus no T cell help for B cells [49], (iv)

mMT mice (B cell deficient on a C57BL/6 background), (v)

Rag12/2 mice (B and T deficient on a C57BL/6 background), (vi)

Rag2/Il2rg mice (B, T and NK cell deficient on a C57BL/6

background), (vii) NRG mice (B, T and NK cell deficient on a

NOD background). The mice and their characteristics are fully

described in Table S2 in Text S1.

C57BL/6, NOD and MHCIID/D mice were able efficiently to

control viraemia by day 5–7 (Fig. 1, C57BL/6, NOD, MHCIID/

D); these mouse strains all have B cells. The results for C57BL/6

and MHCIID/D mice are consistent with previous reports

[19,20,48]. The mean viraemia in MHCIID/D mice was <2.5

logs higher than in C57BL/6 mice on day 4 (p = 0.024,

Kolmogorov Smirnov test), <1.5 logs higher on day 5 (not

significant), and <0.5 logs higher on day 6 (not significant),

suggesting a slight delay in viraemia control in these mice (see also

below for antibody responses in these mice).

In mouse strains lacking B cells, CHIKV viraemias peaked on

days 2–3, and then settled to relatively constant levels that were

distinct in several mouse strains (Fig. 1, bottom 4 graphs;

mMT2/, Rag12/2, Rag2/Il2rg and NRG). Persistent CHIKV

infection in Rag12/2 and mMT2/2 mice has been reported

previously [36,37]. The leveling out of viraemias in these mice

(Fig. 1) is reminiscent of peripheral blood set-point viral loads

described for HIV, with the set-point levels deemed to be a

reflection of functional anti-viral immunity [52]. Applying this

concept to the data presented herein (Fig. 1), the CHIKV set-

point viraemias were determined by calculating the mean of all

viraemia measurements taken on and after day 10 post infection

(Fig. 1, values in bold +SD). The set-point viraemia levels were

(lowest to highest) mMT,Rag12/2 = Rag2/Il2rg ,NRG, with

each ‘‘,’’ representing statistically significant differences (Fig. 1,

p values). These results suggest that T cells contribute to

suppression of viraemia as the set-point viraemia was <2 logs

higher in Rag12/2 mice (B and T cell deficient) than in mMT

mice (B cell deficient) (Fig. 1, Rag12/2 vs. mMT). NK cells do

not appear to play a major role in viraemia control as the set-

point viraemia in Rag12/2 mice (B and T cell deficient) and

Rag2/Il2rg mice (B, T and NK cell deficient) was not

significantly different (Fig. 1, Rag12/2 vs. Rag2/Il2rg). The

NOD background (in addition to B, T and NK cell deficiency)

further increased the set-point viraemia, with NRG mice showing

a significant mean <0.8 log higher level than Rag2/Il2rg mice

(Fig. 1, NRG vs. Rag2/Il2rg). The NOD background has defects

in a number of innate immune activities that might be responsible

for this difference [53,54,55].

Immune Factors in Chikungunya Virus Infection
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MHCIID/D mice generate MHC II-independent anti-viral
IgG2c responses

MHCIID/D mice are defective for T cell help in B cell IgG class

switching and have a dearth of CD4+ Th cells [49]. Analysis of the

antibody responses in these mice showed that following CHIKV

infection, MHCIID/D mice generated no anti-viral IgG1 responses,

but did make anti-viral IgG2c responses, albeit at about <100 fold

lower titers than C57BL/6 mice (Fig. 2A). CD42/2 mice also

show reduced anti-CHIKV IgG1 and IgG2c responses following

CHIKV infection [37]; however, CD4-negative MHC II-restrict-

ed T cells in these mice retain immunoglobulin isotype class

switching activity [56]. MHCII-restricted CD4 T cell-independent

IgG2c production has been shown previously to be reliant on

IFNa/b signaling in B cells [57], with abundant IFNa/b
production well described for CHIKV infections [8]. MHCII-

restricted CD4 Th cells thus appear to be required for IgG1 and

high titer IgG2c anti-viral responses after CHIKV infection.

MHCIID/D mice were able effectively to control the viraemia by

day 5 (Fig. 1, MHCIID/D). Whether this was due to IgM responses

(intact in MHCIID/D mice) or IgG2c responses remains unre-

solved, with IgG responses detected in mice using sensitive

techniques as early as day 3 post viral infection [58].

Vaccination of mMT mice suppressed acute viraemia but
exacerbated arthritis

The significant <2 log difference in set-point viraemia between

Rag12/2 and mMT mice (Fig. 1) suggested that T cells play a role

in suppressing viraemia (with this being clearly discernable when B

cells are absent). CD8 T cells have been shown not to influence

viraemia in a Ross River virus mouse model [32] and not to

influence viraemia and disease in a CHIKV mouse model [20,32],

suggesting CD4 T cells are likely involved. To further investigate

the role of T cells in viraemia control (in the absence of the

dominant role of antibodies), B cell deficient mMT mice were

vaccinated with an inactivated (non-adjuvanted) CHIKV whole-

virus vaccine. This vaccine was previously shown to provide

complete protection against CHIKV viraemia and foot swelling

(arthritis) in C57BL/6 mice [48]. Vaccinated mMT mice generated

similar levels of CHIKV-specific T cell responses to C57BL/6

mice, as measured by standard proliferation assays using

inactivated virus as antigen (Fig. 2B). A parallel group of

vaccinated and control (PBS-vaccinated) mMT mice were chal-

Figure 1. Viraemias in different mouse strains; B cell deficiency
results in persistent ‘‘set point’’ viraemias. The viraemias for the
indicated mouse strains at the indicated times are shown (strains
ranked best to worst in terms of ability to control the viraemia); C57BL/6
(n = 43–50 mice before day 6, 3–9 thereafter; data from 8 independent
experiments; not all time points were tested in each experiment), NOD
(n = 6, except day 44 where n = 4, data from 2 independent
experiments), MHCIID/D (CD4 T cell deficient) (n = 9–16 day 0–6, n = 4–
7 thereafter; data from 4 independent experiments), mMT (B cell
deficient) (n = 6–10; data from 2 independent experiments), Rag12/2 (B
and T cell deficient) (n = 7–16; data from 3 independent experiments),
Rag2/Il2rg (B, T and NK cell deficient) (n = 4), NRG (B, T and NK cell
deficient on a NOD background) (n = 5–13 day 0–37, n = 3–9 thereafter;
data from 3 independent experiments). Set-point viraemia levels for
each mouse strain are indicated (bold, top right) and represent the
mean (log10CCID50/ml of serum +SD) of all viraemia measurements
taken $10 days post infection. For B cell deficient mice (bottom 4
panels), statistical comparisons (by t test) of set-point viraemia levels
(e.g. p = 3.8E–11 for comparison of Rag12/2 with NRG) used all viraemia
measurements taken $10 days post infection. All mice were on a
C57BL/6 background except the NOD and NRG mice.
doi:10.1371/journal.pntd.0003354.g001
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lenged with CHIKV. Vaccinated mice showed a significant <1

and <1.5 log lower viraemia on days 3 and 4, respectively,

compared with control mMT mice. This effect was lost at later

time points (Fig. 2C), by which time the control mMT mice would

presumably have generated CHIKV-specific T cells in response to

the infection. Given unadjuvanted, killed, whole-virus vaccines are

generally poor at inducing CD8 T cells [59] and CD4 T cell recall

responses usually peak around day 4 [60], this experiment

provides further support for an antibody-independent role of

CD4 T cells in CHIKV viraemia suppression.

Following challenge, the vaccinated mMT mice showed much

earlier and higher foot swelling than unvaccinated mMT mice

(Fig. 2D, Control). This observation is consistent with the notion

that CD4 T cells have an important immunopathological role

in arthritis [19], and highlights a potential risk if a vaccine

were to induce T cell responses, but inadequate antibody

responses.

Adoptively transferred antibodies clear virus for only a
brief period in Rag12/2 and mMT mice

Adoptive transfer of anti-viral antibodies has been suggested as

both prophylactic and therapeutic interventions for CHIKV

[11,12,13,14]. To gain insights into how effective such treatments

might be, Rag12/2 and mMT mice persistently infected for .480

days, were treated with mouse polyclonal anti-CHIKV anti-

serum. The viraemia became undetectable for 10 and 30 days in

Rag12/2 and mMT mice, respectively, but then reappeared

thereafter to levels seen prior to antibody administration

(Fig. 3A). Passive transfer of antibody was thus unable to clear

the virus permanently from these mice, an observation that is

consistent with the inability of robust anti-viral humoral

immunity to clear persistent virus and/or viral RNA from

infected monkeys [38] and humans [40]. In these B cell deficient

mice, the adoptive transfer of antibodies worked for only a

limited period, consistent with the limited serum half-life of

adoptively transferred antibodies [1].

Persistent viraemia in Rag12/2 mice was associated with
elevated serum TNF and IFNc

To determine what cytokines might be implicated in limiting the

viraemia in B and T cell deficient mice, serum cytokine levels were

measured in persistently infected Rag12/2 mice. Although acute

induction of serum IFNa was observed, levels did not remain

elevated despite the ongoing viraemia (Fig. 3B, IFNa). The well

described tight control (and thus transient) production of IFNa/b
[61,62] thus appeared to be largely retained in persistently

viraemic Rag12/2 mice. In contrast to IFNa/b, serum IFNc,

TNF and IL-6 were persistently up-regulated in persistently

infected Rag12/2 mice (Fig. 3B, IFNc, TNF, IL-6), with IFNc
and TNF previously shown to have anti-alphaviral activities

[63,64]. Elevated levels of CCL2/MCP-1 (a chemokine with no

antiviral activity against CHIKV [51]) were also seen, peaking at

<1000 pg/ml day 1 and settling to a constant level of

200+13.4 pg/ml after day 3. No IL-12 was detected.

Persistent virus recovered from Rag12/2 mice
The ability of alphaviruses to acquire mutations and better

evade the antiviral effects of IFNa/b have been reported [29,65],

with CHIKV and other alphaviruses having evolved strategies to

counter the host’s type I and II interferon responses [66,67]. Virus

isolated from Rag12/2 mice on 100 behaved no differently from

parental virus (with respect to viraemia and foot swelling) when

isolated from blood, expanded in C6/36 cells, and used to infect

C57BL/6 mice (S1 Figure A in S1 Text). Virus isolated from three

Rag12/2 mice day 429 post infection also did not show consistent

or significant viraemia differences from parental virus in C57BL/6

mice (S1 Figure A in S1 Text). CHIKV thus appears unable to

evade further (via adaptive mutations) the innate factors that

maintain the viraemia at the set-point level in Rag12/2 mice. One

might speculate that TNF [64] (rather than IFNc [67]) plays a

dominant role in viraemia suppression in these mice (Fig. 3B). For

CHIKV to evolve a capacity to counter the anti-viral effects of

TNF may be unrealistic in the limited time frame.

Deep sequencing of virus isolated day 100 from Rag12/2

mouse serum showed only a limited number of mutations (S1

Figure B in S1 Text) and a limited quasi-species diversity (Fig.

S1C in Text S1); perhaps surprising given the low fidelity of viral

RNA replication [68]. Alphavirus isolation generally involves

virus expansion in vitro (in this case using C6/36 cells), which

may bias the results [69]; however, many genetically diverse

alphaviruses can be expanded on C6/36 cells. These results

(S1 Figure B, C, in S1 Text) would therefore suggest that despite

100 days of continuous replication in Rag12/2 mice, a highly

diverse infectious virion quasi-species population was not

generated [70].

Foot swelling and arthritis
The mouse strains shown in Fig. 1 were also analyzed for foot

swelling post CHIKV infection. Relative to C57BL/6 mice, NOD

mice showed a clear increase in foot swelling (Fig. 4, NOD). Foot

swelling in NOD mice was associated with profound cellular

infiltrates and edema (S2 Figure A in S1 Text). NOD mice have a

range of immune defects that could contribute to exacerbated

CHIKV arthritis (see Discussion).

MHC IID/D and NRG mice show clearly reduced foot swelling

when compared with C57BL/6 mice (Fig. 4, C57BL/6, MHC

IID/D and NRG), consistent with previous data showing that CD4

T cells are important for driving CHIKV arthritis [19,20].

Curiously, Rag12/2 mice (also T cell deficient) showed no

reduction in foot swelling compared with C57BL/6 mice.

However, histological examination illustrated that this swelling

in Rag12/2 mice was largely due to edema, both on day 3 and

day 6, with the density of cellular infiltrates actually lower in

Rag12/2 mice than in C57BL/6 mice (S2 Figure B in S1 Text);

an observation consistent with previous findings [36]. T cells

Figure 2. MHCIID/D mice generate IgG2c responses and vaccinated mMT mice show lower early viraemia, but exacerbated arthritic
disease. (A) MHCIID/D and C57BL/6 mice were analyzed for CHIKV-specific IgG2c and IgG1 levels by ELISA at 21 days post-infection (n = 4 per group).
Statistics by Kolmogorov-Smirnov test comparing 50% end point titers. (B) mMT and C57BL/6 mice were inoculated with 10 mg of inactivated CHIKV
vaccine (Vaccinated) or PBS s.c. (Control). Splenocytes were harvested day 21 post infection and used in a standard proliferation (tritiated thymidine
incorporation) assay using inactivated CHIKV as antigen. Shown is the mean of 2 independent experiments both of which showed significant
differences between vaccinated and Control for each mouse strain (mMT p = 0.013 and 0.043; C57BL/6 p = 0.037 and 0.027, statistics by Kolmogorov-
Smirnov and t test (n = 4–5 per group). (C) Viraemia following standard CHIKV challenge of mMT mice that had received PBS (mMT Control) or 10 mg of
inactivated CHIKV vaccine s.c. (mMT vaccinated) 3 weeks previously. Statistics by Mann Whitney U or Kolmogorov-Smirnov tests, (n = 6–10 mice per
group; data from 2 independent experiments). (D) Foot swelling following standard CHIKV challenge of mMT mice that had received PBS or CHIKV
vaccine as for C. Statistics by Kolmogorov-Smirnov tests (n = 8–20 feet per group; data from 2 independent experiments).
doi:10.1371/journal.pntd.0003354.g002
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would thus appear to be involved in the marked recruitment of

inflammatory cells that characterizes arthritic disease in C57BL/6

mice [51].

Rag2/Il2rg mice showed less foot swelling than Rag12/2 mice

on day 3 (Fig. 4, Rag2/Il2rg vs Rag12/2), perhaps suggesting a role

for NK cells in promoting edema (a contention proposed previously

[71]). CHIKV infections are well known to induce edema [72].

Foot swelling was significantly higher in mMT mice than

C57BL/6 mice on days 4, 5, 7, 8, 9 and 11 (Fig. 4, mMT),

consistent with a previous report using a different CHIKV isolate

[37]. The density of the cellular infiltrates was similar in mMT and

C57BL/6 mice (S2 Figure in S1 Text), illustrating that the foot

swelling in mMT mice was not simply due to edema. The increased

arthritis from day 4 onwards in mMT mice (which have T cells) is

consistent with the arthritogenic role of CHIKV-specific CD4 T

cells [19,20]. Loss of viraemia control in B cell-deficient mice

(including mMT mice) significantly diverged from C57BL/6 mice

on day 4 post-infection (Fig. S3A in Text S1), consistent with the

appearance of neutralizing antibodies on day 4 post-infection in

C57BL/6 mice (S3 Figure B in S1 Text). The increased viraemia

from day 4 onwards in mMT mice presumably leads to the

exacerbated arthritic disease.

Despite the reported roles of Fc receptors in suppressing antiviral

responses and promoting arboviral disease [73,74,75], foot swelling

and viraemia was largely unaffected in mice deficient for the common

gamma chain of the Fc receptor (FcRc) (S4 Figure in S1 Text).

Pathology associated with persistent viraema in Rag12/2

and NRG mice
The persistent viraemias in the B cell deficient mouse strains

(with the exception of NRG mice - see below) resulted in

surprisingly little overt pathology with mice appearing and

behaving normally based on regular monitoring by trained animal

house staff. To investigate further the pathological effects of a

persistent alphaviral infection, the liver, lungs, brain, spleen,

lymph nodes, muscle, skin, and feet of Rag12/2 mice chronically

infected for 430 days were examined by histology. The only clear

histopathological modifications associated with infection were a

marked increase in granulocytosis and granulopoiesis in the spleen

(S5 Fig in S1 Text), a feature previously associated with infection

and inflammation [76]. Persistent alphaviral replication in Rag12/

2 mice was thus associated with surprisingly little pathology

identifiable by standard histology. A previous study using young

Rag12/2 mice, showed persistent infection and mild persistent

joint pathology [36], perhaps consistent with increased disease

associated with alphavirus infection of young mice [10,77,78].

In NRG mice the chronic CHIKV viraemia was eventually

associated with morbidity and mortality. NRG mice often showed

altered gait and balance, and impaired hind foot limb movement,

with animals requiring euthanasia between days 120 and 230 (S6

Figure in S1 Text). These signs and symptoms are suggestive of

neurological disease [79,80,81]. Histological examination of brain

tissue from euthanized mice showed clear signs of on-going

inflammation in the central nervous system, with severe vacuoliza-

tion and edema, astrocytosis, microgliosis, and mild degeneration of

neurons evident (S7 Figure A in S1 Text). Immunohistochemistry

with an anti-capsid antibody showed that both neurons and

oligodendrocytes were infected (S7 Fig B in S1 Text). Infection of

these cells has been reported previously for the encephalopathies

caused by CHIKV [82] and other alphaviruses [81].

Persistent CHIKV RNA and negative-strand CHIKV RNA in
C57BL/6 mice

A number of reports have suggested that virus and/or viral

RNA of CHIKV and other alphaviruses persists in vivo long after

the viraemia has abated [20,36,38,40,66,83]. Persistence of

CHIKV RNA was also seen in our C57BL/6 mouse model, with

significant levels of CHIKV RNA detected by standard qRT PCR

for 100 days post infection in feet (Fig. 5A); this method measures

the levels of both positive-strand and negative-strand CHIKV

RNA. Significant levels of negative-strand RNA, detected by

strand-specific qRT PCR [50], were also seen over the same

period (Fig. 5B). qRT-PCR analyses of spleens revealed that no

significant levels of CHIKV RNA were detectable from day 14 (S8

Fig A in S1 Text), consistent with a published report using

CHIKV infection of young mice [84].

The time course of viral RNA and negative-stranded RNA

levels in feet showed a rapid decline from the peak viraemia (day 3)

to the end of the viraemic period (day 6) (Fig. 5A, B; Fig. S8B in

Text S1), a drop likely largely mediated by anti-CHIKV

antibodies inhibiting viral infection (S3 Figure A, B, in S1 Text).

Thereafter CHIKV RNA levels in the feet fell more slowly

(Fig. 5A, B; S8 Figure B in S1 Text), with curve fitting from day 14

onwards suggestive of an exponential decay with a half life of

<10–11 days for both RNA and negative-strand RNA levels (S8

Figure B in S1 Text).

Persistent ISG54 up-regulation, CHIKV antigen and
arthritic inflammation in C57BL/6 mice

Significant levels of mRNA of the IFNa/b stimulated gene,

ISG54 [85], were detected for up to 60 days post infection (Fig. 5C),

suggesting ongoing stimulation of IFNa/b responses by persistent

CHIKV RNA. Immunohistochemistry using a new monoclonal

antibody that recognizes the capsid protein of CHIKV (Goh et al.

submitted), also indicated the presence of capsid-positive cells in foot

tissues on day 30 post infection (S9 Figure in S1 Text), suggesting

the persistent RNA is translationally active. Although foot swelling

was no longer detectable after day 10–12 in C57BL/6 mice,

histological examination of feet illustrated the presence of small foci

of inflammatory infiltrates; examples of such lesions in muscle and

synovial membrane are shown (Fig. 5D). Quantitation using Aperio

Positive Pixel Count analyses of whole foot sections confirmed that

significantly elevated levels of these infiltrates could be detected up

to day 45 post infection (Fig. 5E).

This mouse model of CHIKV infection thus recapitulates the

persistence of viral RNA and protein seen in monkeys and humans

[38,40], and supports the view that such persistence gives rise to

chronic inflammatory arthropathy [39,86].

Transcriptomic analysis C57BL/6 feet at day 30 post
infection

To gain insights into the chronic inflammatory signature in

C57BL/6 mice, a microarray analysis was undertaken as described

Figure 3. Antibodies were unable to clear virus from persistently infected Rag1 and2/2 mMT mice, and IFNc, TNF and IL-6 levels were
persistently elevated in persistently infected Rag12/2 mice. (A) Rag12/2 mice day 485 post infection (n = 4) and mMT mice day 550 post
infection (n = 4) were given 200 ml immune serum (neutralization titer 1/2560) i.p. on day 0 and viraemia determined on the indicated days. (B) Serum
cytokine levels measured in Rag12/2 mice at the indicated times post-infection (n = 3/4 mice per time point). (Data for IFNa day 1 & 2 and day 60 &
120, and day 200 & 265 for the other cytokines were combined, as n = 2 for each one of these times).
doi:10.1371/journal.pntd.0003354.g003
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previously [19] using feet from C57BL/6 mice at day 0 and 30

post-infection; (a principal component analysis is shown in S10

Figure A in S1 Text). The fold changes in gene expression on day

30 (relative to day 0) were generally much lower (range 1.44–12.21

fold, S3 Table in S1 Text) than the changes seen during peak

disease (day 7) [19], likely due to the .2 logs lower levels of

CHIKV in the feet at this time (Fig. 5A, B). Nevertheless, 192

significantly up-regulated genes were identified (S3 Table S3 in S1

Text); (a heat map of these genes is shown in S10 Figure B in S1

Text). Differential expression of two genes (in addition to ISG54,

Fig. 5C) was also demonstrated by qRT-PCR (S10 Figure C in S1

Text). Ingenuity Pathway Analysis of the 192 genes suggested

activation of canonical pathways associated with T cells, autoim-

munity, antigen presentation, NK cells, innate sensing (primarily

IFNa/b pathways), monocytes/macrophages, apoptosis and cyto-

kines (S11 Figure in S1 Text). These pathway groupings were

broadly similar to those described for day 7 post infection [19],

suggesting acute and chronic arthritis share many inflammatory

processes.

The same 192 up-regulated genes were analyzed using

Ingenuity Pathway Analysis of upstream regulators (Table 1, S4

Table in S1 Text). This analysis provided evidence for stimulation

of pathways involved in type I IFN responses and supports the

view that persistent CHIKV RNA continues to stimulate these

responses; it is also consistent with Fig. 5C and the up-regulation

of IFNa in joints of chronic CHIKV patients [40]. Poly(ADP-

ribose) polymerase-1 (PARP-1) and IL-6 were identified as

upstream regulators (Table 1), with these also up-regulated in

the synovial tissues of a chronic CHIKV patient [40]. Cleavage of

PARP-1 is associated with CHIKV-induced apoptosis [87] and

up-regulation of serum IL-6 has been associated with chronic

CHIKV disease [88]. Upstream regulators associated with T cells

and Th1 responses (IFNc and IL-12) were identified (Table 1),

with such responses again seen in chronic CHIKV patients

[40,46]. These results suggest that the mouse model used herein

recapitulates many of the chronic inflammatory pathways seen in

humans. STAT3 was also identified (Table 1), with this transcrip-

tion factor associated with M2 macrophage differentiation [89,90];

M2 differentiation was recently shown to be associated with

CHIKV persistence [91]. IRGM (Table 1) is an autophagy-

associated protein targeted by CHIKV-NS2 and E3 proteins [92],

with viruses believed to manipulate autophagy to promote their

own replication [93].

Discussion

Overall this paper highlights the propensity for CHIKV to

persist in vivo both as a persistent steady-state viraemia in B cell

deficient mice and as persistent RNA in C57BL/6 mice. The study

also provides evidence that other factors aside from antibodies and

IFNa/b, primarily CD4 T cells, are active in alphaviral viraemia

suppression. Finally the limited pathology associated with persis-

tent viraemias (except when levels were very high – see below), and

the lack of correlation between viraemia and arthritic disease,

underscores the immunopathological basis of CHIKV arthropa-

thy.

Immune factors involved in viraemia suppression
Herein we show that mice deficient in B cells maintain

persistent, relatively stable ‘‘set point’’ viraemias reminiscent of

Figure 4. Foot swelling in different mouse strains. Foot swelling

D/D (n = 14–18, 2 independent experiments), mMT (n = 16–36, 4 i-
2/2 (n = 12–26, 3 independent experi-

,0.008, # p,0.04. The

doi:10.1371/journal.pntd.0003354.g004
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those seen in HIV patients [52]. These experiments suggest that T

cells play a role (albeit secondary to IFNa/b and antibodies) in

suppressing viraemia, with the set-point viraemia <2 logs higher

in Rag12/2 mice (B and T cell deficient) than in mMT mice (B cell

deficient). Vaccination studies in mMT mice further support a role

for T cells in CHIKV viraemia suppression (Fig. 2 B, C). CD4 T

cells (rather than CD8 T cells) are implicated in this anti-viral

activity [20,32,59], with direct antiviral roles for CD4 T cells also

described for other viruses [94], including encephalitic alpha-

viruses [95].

Cytokine analysis in Rag12/2 mice showed persistently elevated

levels of circulating IFNc and TNF, with both of these cytokines

known to have anti-alphaviral activity [63,64]. Although neutral-

ization of TNF has been shown to be lethal in the related Ross

River virus mouse model [64], CHIKV infection of IFNc 2/2

mice did not show any significant increases in viraemia when

compared with C57BL/6 mice in this mouse model [19],

(although slight increases were observed by others using a slight

different model and assay system [20]). As both antibody [96] and

IFNa/b responses remain active in IFNc2/2 mice, the contribu-

tion of IFNc may be hard to dissect in this setting.

The <0.8 log higher set point viraemia in T, B and NK

deficient mice with a NOD background compared with T, B and

NK deficient mice on a C57BL/6 background (Fig. 1, NRG vs.

Rag2/Il2rg), suggests that further innate factors are involved in

viraemia suppression. The NOD background has a number of

defects in innate immunity that might be involved including (i)

altered apoptosis [54], IFNc signaling [53] and/or IL-1b
production [97,98] in macrophages, (ii) NKT cell deficiencies

[99], and/or (iii) lack of C5 complement activity [55,100]. Given

that NK cells do not appear to be involved in viraemia control, the

NK defects in NOD mice [101] are presumably not involved.

Correlates of arthritic pathology
Viraemia levels were not a good predictor of arthritic disease,

consistent with human studies [102]. Instead, arthritic disease was

associated with the presence of T cells, consistent with the

arthritogenic role of CD4 T cells in CHIKV infections [19,20].

Vaccination experiments in mMT mice also highlighted a potential

problem if vaccines were to induce CD4 T cell responses, but

inadequate B cell responses, with such a scenario resulting in

exacerbated arthritic disease post infection (Fig. 2D). T cell driven

pathology may also contribute to the severe disease seen in neonates

born to CHIKV infected mothers (see references in [1]), as maternal

Figure 5. Persistent CHIKV RNA, up-regulation of ISG54 and
inflammatory infiltrates in C57BL/6 mice. (A–C) RNA was isolated
from feet of infected mice at the indicated time points and analyzed by
qRT-PCR. (A) CHIKV RNA levels determined by standard qRT PCR using
primers specific for E1 normalized to RPL13A mRNA levels (n = 3–7 feet
from independent mice per time point). Statistics by Mann-Whitney U
tests comparing RNA levels at the indicated times post infection with
levels at time 0. (B) Negative strand-specific qRT PCR using primers
specific for nsP1 (n and statistics as for A). (C) ISG54 RNA levels as
determined by standard qRT PCR, normalized to RPL13A mRNA levels (n
and statistics as for A). (D) H & E staining of feet day 0 and day 30 post
CHIKV infection. Infiltrates are shown for day 30 in muscle tissue
(bottom left, while circles) and in the synovial membrane (bottom right,
black arrows). (E) Aperio Positive Pixel Count determination of the ratio
of blue (nuclear) to red (cytoplasmic) staining areas in whole foot
sections at the indicated times post-infection. Leukocytes tend to have
a high nuclear/cytoplasmic area ratio, so elevated ratios in whole foot
sections indicate the presence of leukocyte infiltrates. (n = 3/4 feet from
independent mice per time point, statistics by t test).
doi:10.1371/journal.pntd.0003354.g005
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antibodies are well known to inhibit the offspring’s own antibody

production, whilst allowing generation of T cell responses [103].

The increase in arthritis seen in NOD mice (that have intact T,

B and NK cells) when compared with C57BL/6 mice (Fig. 4) may

involve the NOD defects listed above and/or other defects

[104,105], although complement defects might be expected to

ameliorate disease [100,106]. Increased viral replication (as

suggested by increased viraemia in NRG mice - Fig. 1) in some

key cell types may also play a role in exacerbating arthritis. A role

for autoimmune T cells is improbable as there is no evidence that

Table 1. Upstream regulator analysis of 192 up-regulated genes from mouse feet at day 30 post CHIKV infection compared to day
0.

Upstream Regulator Activation z-score p-value of overlap

Type I IFN responses

Ifnar 4.5 1.4E-27

IFNB1 3.8 1.4E-23

IRF7 4.3 5.9E-20

STAT1 4.3 2.4E-17

IRF3 3.6 7.4E-16

TLR3 3.6 2.4E-14

Interferon alpha 4.4 5.1E-14

IFNL1 3.4 7.5E-14

IFNAR1 2.8 3.6E-13

IFN Beta 3.4 6.5E-13

IFNA2 3.7 2.0E-12

IFN alpha/beta 3.3 5.6E-12

IFNA1/IFNA13 2.9 8.5E-12

TLR4 3.3 1.3E-11

IFN type 1 2.9 2.2E-11

DDX58 (RIG-I) 2.0 4.0E-11

IFNE 2.4 8.3E-11

IFNK 2.2 1.1E-10

IKBKE 0.1 9.7E-10

Negative regulators of type I IFN responses

SOCS1 23.9 4.6E-20

TRIM24 24.1 9.4E-20

mir-21 23.8 1.0E-17

Cytokines

IFNc (Th1) 6.3 1.1E-21

IL12 (complex) (Th1) 1.8 5.7E-11

IL6 3.9 6.7E-10

T cell responses

DOCK8 3.2 3.6E-11

TCR 0.5 5.3E-11

Apoptosis

PARP1 3.1 1.6E-10

M2 differentiation

STAT3 2.3 2.5E-10

Autophagy

IRGM 22.8 3.8E-10

Others

PLK4 2.6 2.2E-10

PLK2 2.6 3.0E-10

FZD9 2.4 9.2E-10

All upstream regulators with a p value ,10e-9 are listed. A positive z-score indicates that the identified regulator is activated, since it normally up-regulates specific
genes found in the 192 gene set. Similarly, a negative z-score indicates that the identified regulator is inhibited, since it normally down-regulates specific genes found in
the 192 gene set. The full data set from this analysis with associated lists of up-regulated genes is shown in S4 Table in S1 Text.
doi:10.1371/journal.pntd.0003354.t001
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such cells are responsible for alphaviral arthritides [39], with self-

reactive diabetogenic T cells in NOD mice restricted to a subset of

T cells that recognize a specific insulin epitope [107].

Encephalitic pathology
The mouse strains lacking B cell responses developed surprisingly

little pathology, despite the persistent viraemias, suggesting that the

cytopathic alphaviral infections, in themselves, are generally not

major drivers of disease. However, this contention likely does not

hold true in NRG mice, which show relatively higher levels of

persistent viraemia and ultimately develop encephalitis, with

CHIKV infection of neurons and oligodendrocytes evident.

Infection and killing of neurons is believed to be responsible for

encephalopathy in the Sindbis virus mouse model [80] and may also

play a role in CHIKV encephalitis [82,108,109]. In contrast to the

alphaviral encephalitis induced by Semliki Forest virus [81],

conventional T cells are unlikely to be involved in NRG mice (as

these mice are defective for Rag1 activity). The high viraemias in

NRG mice may promote the encephalopathy, as high CHIKV

viraemias have been associated with lethal encephalitis (i) in mice

deficient for the IFNa/b receptor [10] and (ii) in monkeys

inoculated with high levels of CHIKV [38]. However, CHIKV

encephalitis in humans and primates generally occurs during acute

disease and near the peak viraemia [38,110,111], rather than

eventually arising from an extended viraemia.

Persistent CHIKV RNA
The C57BL/6 adult mouse model used herein recapitulates (i)

the persistence of CHIKV RNA and protein seen in humans and

monkeys and (ii) many of the persistent inflammatory responses

seen in humans with chronic CHIKV arthropathy. This mouse

model might thus be viewed as a model of both acute [48] and

chronic CHIKV disease.

The nature of persistent CHIKV RNA and protein remains

poorly understood. A key question is whether such persistence

simply represents material left over after active replication of virus

in tissues, or alternatively, involves ongoing replication of virus or

viral RNA [67,112]. Notwithstanding the propensity of alpha-

viruses to maintain persistent infections in vivo (Fig. 1) and the

aforementioned human and monkey studies [38,40], several lines

of evidence presented herein support the view that the persistent

CHIKV RNA is replicating: (i) the relatively long, 10–11 day half-

life of CHIKV RNA (S8 Figure B in S1 Text) compared with the

reported 3–10 hour half-life of cellular Sindbis virus RNA

[113,114]; (ii) the presence of CHIKV negative-strand RNA

[50] (packaged virions only containing positive-strand RNA

[115]); (iii) ongoing induction of double-stranded RNA, TLR3

and IFNa/b-inducible ISG54 [85,116] and (iv) the ability to detect

CHIKV structural proteins on day 30 post-infection, with capsid

synthesis requiring generation of subgenomic positive-strand RNA

(from negative strand RNA) by viral RNA-dependent RNA

polymerase [115]. Although CHIKV RNA appears to persist, we

have been unable to isolate infectious virus from C57BL/6 mice

beyond day 14 using a number of sensitive techniques (S5 Table in

S1 Text). This observation is consistent with the inability to isolate

infectious virus from patients with chronic alphaviral disease,

despite the presence of persistent alphaviral RNA [40,117,118].

The microarray study suggests chronic inflammatory disease is

similar in mice and humans [40,46,88], with IFNa/b, T cells, IL-

12, IFNc and IL-6 continuing to be stimulated long after the end

of the viraemic period. Such responses are likely involved in

ongoing arthritic inflammation and chronic disease [40,88].

However, whether they also ultimately help to clear persistent

CHIKV RNA/protein is unclear; clearance of persistent Sindbis

virus from neurons is thought to involve antibodies and T cell

IFNc [47]. Aged monkeys with reduced T cell responses also

showed increased viral persistence [119]; however, T cell

responses were not different in recovered compared with chronic

CHIKV patients [46]. Persistent CHIKV RNA is believed to

reside in macrophages [38,40], with tissue-resident rather than

inflammation-recruited macrophages recently implicated [51].

Perhaps noteworthy is that the estimated <10-11 day half-life of

persistent RNA (Fig. S8B in Text S1) is nominally remarkably

close to the natural turnover rate of tissue macrophages, estimated

to be 21–27 days for total replacement [120,121]. Further work is

clearly needed to understand how viral RNA persists, and to

differentiate between those immune responses required for viral

clearance and those driving chronic arthropathy.
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