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Abstract
Widely distributed species often show strong phylogeographic structure, with lineages

potentially adapted to different biotic and abiotic conditions. The success of an invasion pro-

cess may thus depend on the intraspecific identity of the introduced propagules. However,

pest risk analyses are usually performed without accounting for intraspecific diversity. In

this study, we developed bioclimatic models using MaxEnt and boosted regression trees

approaches, to predict the potential distribution in Europe of six economically important

Tephritid pests (Ceratitis fasciventris (Bezzi), Bactrocera oleae (Rossi), Anastrepha obliqua
(Macquart), Anastrepha fraterculus (Wiedemann), Rhagoletis pomonella (Walsh) and Bac-
trocera cucurbitae (Coquillet)). We considered intraspecific diversity in our risk analyses by

independently modeling the distributions of conspecific lineages. The six species displayed

different potential distributions in Europe. A strong signal of intraspecific climate envelope

divergence was observed in most species. In some cases, conspecific lineages differed

strongly in potential distributions suggesting that taxonomic resolution should be accounted

for in pest risk analyses. No models (lineage- and species-based approaches) predicted

high climatic suitability in the entire invaded range of B. oleae—the only species whose

intraspecific identity of invading populations has been elucidated—in California. Host avail-

ability appears to play the most important role in shaping the geographic range of this spe-

cialist pest. However, climatic suitability values predicted by species-based models are

correlated with population densities of B. oleae globally reported in California. Our study

highlights how classical taxonomic boundaries may lead to under- or overestimation of the

potential pest distributions and encourages accounting for intraspecific diversity when

assessing the risk of biological invasion.

Introduction
Controlling invasive species has become a task of utmost importance as the rate of biological
invasions increases, leading to a global economic cost estimated at US$ 1.4 trillion per year,
representing nearly 5% of the worldwide economy [1]. Because commercial exchanges are con-
tinuously increasing and since human activities lead to important environmental changes,
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numerous pest species are—and will be—susceptible to geographical expansion, thereby caus-
ing new problems for agriculture [2]. An important element of control lies in the development
of powerful and accurate predictive tools, allowing a proper risk assessment [3], which, in turn,
will be helpful to prevent the introduction of alien species and design cost-effective manage-
ment strategies. Pest risk analyses (PRAs) address organisms' biology and ecology to discrimi-
nate potentially innocuous exotic species from harmful ones. Besides integrating the
multiplicity of ecological and anthropological factors susceptible to enhance invasion risk, esti-
mating climatic tolerances of exotic species constitutes a crucial point in PRAs. Pest risk analy-
ses often rely on species distribution models (SDMs) when estimating the potential
distribution of target species outside their current geographical range [4]. The existence of dif-
ferent intraspecific lineages potentially adapted to different biotic (e.g. host-plant [5]) and abi-
otic conditions (e.g. climatic tolerances [6, 7]) is generally ignored. However, there is
increasing evidence that the origin of introduced population(s) might determine the success of
an invasion [7–10]. Thus, as suggested by Peterson & Holt [11], in cases where models have
been developed without taking into account the phylogeographic structure of the potential
invader, invasion risk could be under- or overestimated, leading to inappropriate phytosanitary
measures.

The ‘true’ fruit flies (Diptera, Tephritidae) are important agricultural pests worldwide [12].
The larvae of most species are phytophagous and attack tissues of a wide spectrum of plants,
especially fruits and flowers, significantly reducing crop yields. As a result, many species are of
high economic importance (especially in the genera Bactrocera, Anastrepha, Rhagoletis and
Ceratitis). In addition, several species (e.g. Bactrocera dorsalis (Hendel, 1912), Bactrocera
cucurbitae (Coquillet, 1899), Bactrocera oleae (Rossi, 1790), Bactrocera depressa (Shiraki,
1933), Ceratitis capitata (Wiedemann, 1824), and Ceratitis rosa Karsch, 1887) have been suc-
cessful invasive species over the past decades [13–19]. For these reasons, tephritid flies are
indiscriminately listed as quarantine organisms for Europe. Several tephritid species show
strong genetic structure and some are considered species complexes (e.g. the Anastrepha frater-
culus group, the Bactrocera dorsalis group and the Ceratitis fasciventris, C. rosa, C. anonae
complexes) [20–24]. Lineages can display different life history traits related to adaptations to
local climate [25–29] or different host preferences [30], which make control strategies more
difficult and lead to the validity of species-based PRAs to be questioned. Tephritid flies are thus
good candidates to test whether the phylogeographic structure of a potential invasive pest
should be considered when modeling species distribution in the context of invasion risk
assessment.

In the present paper, we first used the classical species-based approach to assess the poten-
tial distribution in Europe of these economically important tephritid species. In a second step,
we developed a set of models accounting the phylogeographic structure of the species.

Material & Methods

Species data and phylogeographic patterns
We studied six, widely distributed and economically important tephritid species, namely Bac-
trocera oleae, Bactrocera cucurbitae, Anastrepha obliqua (Macquart, 1835), Anastrepha frater-
culus (Wiedemann, 1830), Rhagoletis pomonella (Walsh, 1867) and Ceratitis fasciventris (Bezzi,
1920). We chose these species because their phylogeographic structure has previously been
described in the literature [21, 23, 31–37]. Most occurrences were collected from the scientific
literature (more than 95 publications; S1 File) and online databases (e.g. Global Biodiversity
Information Facility (GBIF), National Agricultural Pest Information System (NAPIS) and the
BioSystematics Database of World Diptera). Doubtful or imprecise records were removed
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from our datasets. We assigned each occurrence to a genetic lineage according to the phylogeo-
graphic pattern described in the relevant publication (Table 1 and S2 File). Several records
were assigned to more than one lineage, since several lineages occurred in the same geographi-
cal area. Some records were used in species-based models only when assignation to one lineage
was challenging according to phylogeographic studies (S2 File).

The olive fruit fly B. oleae occurs in Africa, Europe and Asia and has recently invaded Cali-
fornia and Mexico [38]. Genetic analyses suggest the Middle East region as the most likely ori-
gin of invading populations [21, 22, 38]. A deep genetic differentiation exists between Asian
(var. asiatica), Mediterranean and African populations and closely concurs with the pattern of
Quaternary differentiation of its hosts Olea spp. [22]. Within the Mediterranean region, micro-
satellite and mitochondrial markers suggested divergence between populations from the Near
East (eastern Turkey, Israel, Cyprus) and populations fromWestern Europe and Northern
Africa (Italy, Spain, Greece, France, Morocco, Algeria) [21, 22, 38, 39]. Recently, B. oleae was
also detected on olive in China, but whether these populations are native or recent invaders is
still a matter of debate [40]; for that reason, we did not consider the Chinese populations in our
study. Given the phylogeographic pattern of B. oleae, we considered four native lineages as rele-
vant in our study (Africa, Western Europe, Middle East and Pakistan) and one invasive popula-
tion (America) (Fig A in S2 File). As the reasons for the existence of shared haplotypes among
phylogeographic regions is still debated (e.g. cryptic invasions due to global olive trade or
incomplete lineage sorting [21]), we deliberately ignored potential geographic overlapping
among conspecific lineages.

The West Indian fruit fly Anastrepha obliqua occurs in the Neotropics from northern
Mexico to southern Brazil as well as in the Caribbean islands. This polyphagous pest species
mainly feeds onMangifera indica and Spondias species (Anacardiaceae) [41]. Three well-sup-
ported infraspecific lineages were identified using mitochondrial markers [23]. One lineage
encompasses specimens sampled across Central America, Mexico, Caribbean islands and
northern Andean highlands and all records from this area were assigned to this lineage (Fig C
in S2 File and Table 1). A second lineage encompasses specimens sampled mostly across
Mexico west to the Sierra Madre Occidental (SMOC). However, one haplotype associated with
this lineage was recovered in Southeastern Mexico (locality of Agua Blanca in Tabasco prov-
ince). The occurrence of this lineage in this region is being debated, so we did not consider this
record, which could probably have resulted from a recent invasion process [23]. All occur-
rences of A. obliqua in Western Mexico were assigned to this lineage (Table 1 and S2 File).
Finally, a third lineage encompasses haplotypes recovered from South America, including the
northern Andean highlands and Panama. All documented records from these regions were
assigned to this lineage (Table 1 and Fig C in S2 File).

The Afrotropical Ceratitis fasciventris is a polyphagous fruit fly [42, 43]. Genetic structure
was detected within C. fasciventris by both microsatellite data and mitochondrial markers [24,
44]. Molecular markers suggest that one infraspecific lineage occurs in western Africa and in
coastal Tanzania, while a second lineage occurs in the highlands of eastern Africa (Kenya,
Uganda, Ethiopia, Zambia) [24, 44]. Additionally, two clades composed of specimens from
Benin and Mali/Côte d’Ivoire were highlighted by the analysis of mitochondrial sequences of
specimens fromWestern Africa [44]. As the preliminary results showed that climatic envelopes
of these two clades were broadly similar, we considered these lineages as a single set. We
removed from our dataset the records of C. fasciventris in Democratic Republic of Congo,
Rwanda, Namibia, Angola and Congo, since these geographic zones were not sampled in the
phylogeographic studies [24, 44]. Finally, we assigned all records fromWestern Africa and the
lowlands of Tanzania to one lineage (Table 1 and Fig B in S2 File). The records from the high-
lands of Eastern Africa were assigned to a second lineage (Table 1 and Fig B in S2 File).

Assessing the Risk of Invasion by Tephritid Fruit Flies

PLOS ONE | DOI:10.1371/journal.pone.0135209 August 14, 2015 3 / 19



Anastrepha fraterculus is considered a species complex (AF complex) ranging from South
America to the USA [45]. Cryptic species of A. fraterculus occur in different geographic areas,
displaying different host preferences and showing signals of reproductive isolation [30, 46].
Although the taxonomic status of several entities within the complex is still debated, some of
them are differentiated based on genetic and morphological evidence [31, 37, 47–49]. In this
study, we considered independently a "Mexican' lineage occurring across Central America from
Mexico to Panama [37], an 'Andean' lineage [31, 37] occurring in the highlands of the Andean
region (approximately in regions located at altitudes ranging from 1200 to 2500 meters (see
[37]) and a 'Brazilian' lineage occurring in Brazil and Argentina [37, 47, 49] (Table 1 and Fig D
in S2 File). We did not consider types occurring in the lowlands of Peru, Venezuela and Colom-
bia because we lacked occurrences in these regions. As occurrences were also lacking to model
the distribution of the Andean lineage, we artificially generated 1,000 additional presences at
altitudes ranging between 1,200 and 2,500m to perform our SDMs. We estimated this amount
of occurrences to be large enough to accurately model the distribution of species [50, 51].

The apple maggot fly, R. pomonella, is widely distributed in the USA, Canada and moun-
tainous ranges of Mexico. This species has deep economic implications since R. pomonella
recently shifted to the introduced cultivated apple (Malus pumilaMill.). This species encom-
passes at least four genetically distinct populations [32, 33, 35] displaying mating incompatibil-
ities [52]. These populations occur respectively in the USA, the Eje Volcanico Trans Mexicano
(EVTM), the Sierra Madre Oriental (SMO) and the elevated regions of Chiapas in Mexico.
Because we lacked occurrences of R. pomonella in Mexico, and the preliminary results showed
high climatic envelope similarity among Mexican populations, we considered all Mexican rec-
ords as belonging to a 'Mexican' lineage (Table 1 and Fig E in S2 File).

When assessing the invasion risk of B. cucurbitae, we only considered the species level (Fig
F in S2 File). Although genetic structure exists in B. cucurbitae [34], differentiation among

Table 1. Tephritid fruit flies selected to assess invasion risk and integrate intraspecific diversity in species distribution models.

Species Lineages Symbol Geographic distribution

Bactrocera oleae All lineages Bo_all Africa, Asia, Europe, Americas

Middle East lineage Bo_me Israel, Turkey, Cyprus, Syria

Western Europe lineage Bo_we Spain, Italy, Greece, France, Morocco, Tunisia, Turkey, Algeria

Africa lineage Bo_af Africa

Asia lineage bo_as Pakistan

Ceratitis fasciventris All lineages Cf_all Africa

Western Africa lineage Cf_we Western Africa & Eastern Tanzania

Eastern Africa lineage Cf_ke Eastern & Central Africa

Anastrepha obliqua All lineages Ao_all Mexico, South and Central America, Caribbean

Northern lineage Ao_01 Central America, Caribbean, Northern Andean

Western Mexico lineage Ao_wm Western & Southeastern Mexico

South America lineage Ao_03 South America, Northern Andean, Panama

Anastrepha fraterculus All lineages Af_all USA, Mexico, Central America, South America

Mexican lineage Af_mex Mexico & Central America

Brazilian lineage Af_bra South America

Andean lineage Af_and Northern Andean (high altitude)

Rhagoletis pomonella All lineages Rp_all USA, Canada & Mexico

USA lineage Rp_usa USA & Canada

Mexican lineages Rp_mex Mexico

Bactrocera cucurbitae All lineages Bc_all Asia, Africa, USA, La Réunion

doi:10.1371/journal.pone.0135209.t001
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geographically distant populations appears mostly as a result of human-mediated range expan-
sions rather than ancient geographic and climatic events [53].

Species distribution modeling
We used climatic data available from the WorldClim database version 1.4 [54] to investigate
niche divergence between lineages and to model their distributions (Table 2). These climatic
data are derived from temperature and rainfall annual trends between 1950 and 2000. The
choice of environmental data set is crucial when modeling potential distribution in a new area
[55, 56]. We consequently decided to model the distribution of fruit flies species with a strongly
restricted climatic data set of moderately correlated (Pearson correlation index r< 0.7) and
biologically meaningful variables that were susceptible to inducing physiological stress for
these organisms. We did not include climatic descriptors depicting the annual range of temper-
atures and the seasonal structure of the climate because these variables probably influence the
phenology of the insects rather than inducing physiological stress. We thus selected the follow-
ing climatic variables: the mean temperature of the warmest month (bio5), the mean tempera-
ture of the coldest month (bio6), the precipitation of the wettest quarter (bio16) and the
precipitation of the driest quarter (bio17).

We modeled the distribution of species and intraspecific entities using MaxEnt version 3.3.3
with default settings [57] available in the 'dismo' R package [58] and the boosted regression
trees (BRT) [59, 60] available in the ‘gbm’ R package [61]. These two techniques were selected
because they are among the best-performing approaches to model species distributions [50,
62]. The MaxEnt approach is a ‘presence-only’method that performs well, even with a small
occurrence dataset [50, 51]. This algorithm contrasts the climatic envelope experienced by the
species with a set of localities randomly chosen within the background environment, where the
presence of the species is unknown. The choice of background area is crucial when modeling

Table 2. Bioclimatic variables used to investigate the climatic niche of tephritid fruit flies species and
lineages.

Bioclimatic variables symbol

Annual Mean Temperature BIO1

Mean Diurnal Range BIO2

Isothermality BIO3

Temperature Seasonality BIO4

Maximum Temperature of Warmest Month BIO5

Minimum Temperature of Coldest Month BIO6

Temperature Annual Range BIO7

Mean Temperature of Wettest Quarter BIO8

Mean Temperature of Driest Quarter BIO9

Mean Temperature of Warmest Quarter BIO10

Mean Temperature of Coldest Quarter BIO11

Annual Precipitation BIO12

Precipitation of Wettest Month BIO13

Precipitation of Driest Month BIO14

Precipitation Seasonality BIO15

Precipitation of Wettest Quarter BIO16

Precipitation of Driest Quarter BIO17

Precipitation of Warmest Quarter BIO18

Precipitation of Coldest Quarter BIO19

doi:10.1371/journal.pone.0135209.t002
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distribution with MaxEnt and depends on the purpose of the study [63–65]. The BRT model-
ing technique is a machine-learning approach relying on presences and absences that can fit
complex non-linear relationships and handle correlation effects between predictors [60]. All
information regarding the positioning of absences, pseudo-absences and background data used
to model the distribution of each species and lineage are available in Supplementary informa-
tion (S1 Text).

We modeled the distribution of all Species (‘S-models’) and IntraSpecific lineages (‘IS-mod-
els’). Each model was fitted using a random subset of 80% of the relevant occurrences (training
dataset) and tested with the remaining records. The predictive power of each model was
assessed by measuring the area under the receiver operating characteristics (ROC) curve
(AUC) [66]. The AUC is widely used in species distribution modeling because it is a threshold-
independent evaluation approach that gets around the problem of subjectivity of threshold
selection when assessing the accuracy of bioclimatic models. Values of AUC ranging from 0.5
(random prediction) to 1 (perfect prediction) indicate model performance better than random.
The AUC of each model for B. oleae in the invaded range was also assessed with observed pres-
ences in Western America and 10000 pseudo-absences generated in Western America (i.e. in a
square with longitude ranging from 122.3 to -115.4 and latitude ranging from 31.86 to 39.51).

All models were projected onto both world and Europe maps to assess the risk of biological
invasion at worldwide and European scales. Since projections onto new areas may be particu-
larly uncertain, we computed multivariate environmental similarity surface maps (MESS) [65]
that describe the similarity between the climatic spaces of the training and the projected areas.
Negative values of MESS indicate that the model is projected onto the area outside the climatic
space where the model was fitted (model extrapolation), whilst positive values of MESS indi-
cate model interpolation. We constructed MESS maps using occurrence and background data.

Niche comparison
We carried out direct climate comparisons by means of Principal Component Analysis (PCA).
This multivariate technique allows climate typologies to be drawn and groups of occurrences
associated to similar climate descriptors to be identified [67, 68]. The differences between line-
ages of a species were assessed using a between-class inertia test [69] based on 999 permuta-
tions [70]. The higher the between-class inertia, the greater the difference between classes in
the multivariate-space under study. The analyses were performed using the 19 bioclimatic vari-
ables from the WorldClim database (Table 2).

We investigated the degree of niche similarity between conspecific lineages by calculating
Schoener’ D index [71]. This metric measures the overlap of the SDM projections, which varies
from 0 for non-overlapping model predictions to 1 for complete overlap. We deliberately did
not address intraspecific niche divergence using recently developed statistical approaches [72–
76] because of the difficulty in delimiting different and non-overlapping background regions
(i.e. pseudoabsences) in SDMs among conspecific lineages. The uncertainty related to the posi-
tioning of pseudoabsences may, indeed, have large effects on SDM predictions and conse-
quently alter the reliability of tests of climatic niche divergence [72, 77].

Results

Realized climatic niche similarity between conspecific lineages
Between-class PCA analyses showed significant climatic envelope divergence for all of the spe-
cies considered (values of inertia are available in S1 Table). High divergence was observed
among conspecific lineages of C. fasciventris (p<0.001) and A. fraterculus (p<0.001) according
to temperature variables such as the mean annual temperature (bio1), the mean temperature of
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the warmest months (bio5, bio10), and the mean temperature of the coldest months (bio6,
bio11) (Fig 1 and Fig B in S3 File). The 'Andean' lineage of A. fraterculus occurred in regions
characterized by high precipitations (bio14, bio17) and fresh maximal temperatures (bio5,
bio10).

Conspecific lineages of R. pomonellamainly differed (p<0.001) according to minimal tem-
peratures (bio6, bio11), temperature annual range (bio2, bio3, bio4, bio7) and maximal precipi-
tations (bio13, bio16) (Fig C in S3 File). However, conspecific lineages of R. pomonella occur in
areas with similar maximal temperatures (bio5, bio10).

No strong differences were observed between the Ao_01 and Ao_03 lineages of A. obliqua
(p<0.001) along the two first PCA axes performed on the climatic data corresponding to
occurrence points (Fig A in S3 File). However, the climatic envelope of population Ao_02 was
different from that of populations Ao_01 and Ao_03 according to precipitations (bio12, bio13,
bio15) and maximal temperatures (bio5, bio10).

Lineages of B. oleae (p<0.001) were opposed on the first PCA axis by warmest temperatures
(bio5, bio10; Fig 2) and by precipitation descriptors such as the mean annual temperature
(bio12), the precipitation of the driest month (bio14) and the precipitations of the warmest
quarter (bio 18). On the second PCA axis, populations were opposed by the temperature
annual range (bio7, bio4) and by the minimum temperature (bio6, bio11; Fig 2). The biocli-
matic envelope of B. oleae in the invaded range was different from the other lineages with
respect to maximal temperatures (bio5, bio10) and minimal temperatures (bio6, bio11).

Potential distributions of tephritid species
Our SDMmodels displayed relatively high values of cross-validated AUC ranging from 0.76 to
0.98 (S2 Table). The BRT models globally displayed higher values of cross-validated AUC than
MaxEnt models. The distribution of suitable climatic conditions for C. fasciventris, A. fratercu-
lus, B. cucurbitae and A. obliqua predicted by SDMmodels encompassed most of the tropical
and subtropical areas of the world and a few regions with Mediterranean or temperate climate
(S4 and S5 Files). However, the distribution of suitable conditions for B. oleae and R. pomonella
mainly encompassed temperate regions of the world (Figs A and E in S4 and S5 Files). The
potential distributions of all tephritid species encompassed areas in Europe (Fig 3 and S5 File).
Both R. pomonella and B. oleae displayed the larger extents of suitable climatic conditions in
Europe (Fig 3 and Figs A and E in S5 File). Both C. fasciventris and A. obliqua showed a small
potential distribution range in Europe (Fig 3 and Figs B and C in S5 File). Maxent maps of C.
fasciventris predicted large potential areas in Europe (e.g. in the United Kingdom and Scandi-
navia; Fig B in S5 File). However, MESS maps indicated that large model extrapolation occurs
when predicting the potential distribution of C. fasciventris in Northern Europe. We argue that
the BRT prediction is the most reliable for C. fasciventris since the MaxEnt model predicts cli-
matic suitability in implausible areas in northern Europe (such inconsistency appears common
with the MaxEnt algorithm, see [78]). Both A. fraterculus and B. cucurbitae displayed a larger
extent of suitable climatic conditions with respect to A. obliqua and C. fasciventris (Fig 3 and
Figs D and F in S5 File).

We observed strong differences in the modeled distributions among conspecific lineages of
C. fasciventris, A. fraterculus and R. pomonella (Fig 3, S4 and S5 Files; Table 3). However, con-
specific lineages of B. oleae and A. obliqua showed similar but not identical modeled distribu-
tions (Fig 3 and Figs A and C in S4 and S5 Files; Table 3).

We suggest that the MaxEnt algorithm provides the most reliable potential distribution of
the Ao_03 lineage since the BRT model predicts climatic suitability in implausible areas (cold
mountainous regions of Europe and Greenland). The distributions of suitable climatic
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Fig 1. Principal component analysis (PCA) performed on 19 bioclimatic variables extracted from theWorldclim database [54] forCeratitis
fasciventris occurrences (see Table 2 for symbol meanings). These multivariate analyses draw the bioclimatic envelopes of the different
phylogeographic lineages belonging toC. fasciventris. Circles of correlation (a) and factorial scores of records (b) are shown. Percentages of variance
explained by each PCA axis are indicated in correlation circle.

doi:10.1371/journal.pone.0135209.g001

Fig 2. Principal component analysis (PCA) performed on 19 bioclimatic variables extracted from theWorldclim database [54] for Bactrocera oleae
occurrences (see Table 2 for symbol meanings). These multivariate analyses draw the bioclimatic envelopes of the different phylogeographic lineages
belonging to B. oleae as well as the invading populations in Americas. Circles of correlation (a) and factorial scores of records (b) are shown. Percentages of
variance explained by each PCA axis are indicated in correlation circle.

doi:10.1371/journal.pone.0135209.g002
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Fig 3. Projections of climatic suitability for six tephritid species and intraspecific lineages in Europe ((a-d)Bactrocera oleae, (e-h) Anastrepha
obliqua, (i-l) Anastrepha fraterculus, (m-o)Ceratitis fasciventris, (p-r)Rhagoletis pomonella and (s)Bactrocera cucurbitae) as predicted by
species distribution models (SDMs). Species- and lineage-based SDMs were performed using the Boosted Regression Trees (BRT) [60]. Climatic
suitability is shown by a color gradient, which goes from green (high probability) to light orange (low probability).

doi:10.1371/journal.pone.0135209.g003
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conditions predicted by the BRT and MaxEnt S-models for B. oleae were broadly congruent.
They matched the geographic distribution of mild temperate climates and Mediterranean-cli-
mate regions where native and cultivated olives occur (e.g. California, Australia, Southeast
China, Argentina, Chile, Mexico, Mediterranean area), while also encompassing colder tem-
perate regions. Our SDMs also predicted climatic suitability for B. oleae in temperate regions
(the United Kingdom, Northern France, Belgium, south-eastern United states), where olive
trees are not currently cultivated. The records of the genetically distinct lineage occurring in
Pakistan were well predicted by S-models. Conspecific lineages of B. oleae showed slightly dif-
ferent modeled distributions in the invaded range. The models predicted higher climatic suit-
ability in coastal region of California for the African lineage while inland regions were
predicted as more suitable for Western European and Middle Eastern lineages (Fig 4). The
AUC values displayed by MaxEnt and BRT S-models for B. oleae in the invaded range were
0.65 and 0.68 respectively indicating model performance better than random. The AUC values
in the invaded range displayed by the species-based BRT model was higher than those dis-
played by lineages-based BRT models (0.55, 0.46 and 0.57 for African, Western European and
Middle Eastern lineages respectively). The AUC value in the invaded range displayed by spe-
cies-based MaxEnt model was higher than those displayed by western European and Middle
Eastern lineages-based BRT models (0.51 and 0.60 respectively) but slightly inferior to AUC
displayed by African lineage-based MaxEnt model (0.73).

Discussion

Tephritid fruit flies: a current major threat with potential for future
expansion
Tephritid fruit flies are among the most destructive fruit pests and constitute a major threat to
worldwide agriculture. Because many species have invaded new regions where they cause
severe damage to fruit and other crops [79], the group is under surveillance by biosecurity
agencies to design cost-effective management strategies. In addition, investigating the climatic
suitability of Europe for mainly tropical tephritid should help to uncover why paradoxically
few species have invaded areas in Europe and in Northern Africa compared to other geo-
graphic regions such as California [19]. Our results show that all target tephritid species under
investigation could potentially find suitable climate conditions in Europe, albeit to different

Table 3. Measures of species distribution models overlapping among phylogeographic lineages of tephritid fruit flies. We calculated projection
overlapping by calculating the Schoener' D index, which range from 0 (no overlapping) to 1 (perfect overlapping).

Species Lineage 1 Lineage 2 Schoener' Index

BRT MaxEnt

Ceratitis fasciventris lineage Eastern Africa lineage Western Africa 0.46 0.23

Rhagoletis pomonella lineage USA lineage Mexico 0.1 0.13

Anastrepha fraterculus lineage Mexico lineage Brazil 0.8 0.64

lineage Mexico lineage Andean 0.13 0.12

lineage Brazil lineage Andean 0.09 0.11

Anastrepha obliqua lineage Central America lineage Western Mexico 0.91 0.55

lineage Central America lineage South America 0.86 0.59

lineage South America lineage Western Mexico 0.87 0.29

Bactrocera oleae lineage Africa lineage Western Europe 0.32 0.55

lineage Africa lineage Middle East 0.25 0.42

lineage Western Europe lineage Middle East 0.29 0.48

doi:10.1371/journal.pone.0135209.t003
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degrees (Fig 3 and S5 File). Three groups of species may be distinguished according to their
potential distribution range in Europe:

1. C. fasciventris and A. obliqua, which are restricted to low and mid-elevated areas of tropical
regions and consequently display a low probability of being established in European coun-
tries (Fig 3 and Figs B and C in S5 File). Only areas with mild winters (e.g. the Atlantic
coasts of Portugal and Spain, southern Greece, southern Turkey and Near East region)
appeared to be suitable for these species (Fig 3). Cold stress would likely be the most limiting
climatic variable for the long-term establishment of these flies in Europe. Indeed, A. obliqua
has been reported to be less abundant at high altitudes compared to its close relatives (e.g.
A. fraterculus, A. ludens) and Ceratitis species (e.g. C. capitata) [80, 81], while C. fasciventris
is absent from colder regions in South Africa where a congeneric species C. rosa occurs [82].
However, we cannot exclude that invasive fruit flies might overwinter as larvae within
infested host fruit as reported for C. capitata [83], and consequently could become estab-
lished in colder areas.

2. Anastrepha fraterculus and B. cucurbitae displayed a larger potential distribution in Europe
(Fig 3 and Figs D and F in S5 File). In their native range, these species occur in tropical low-
lands and in colder elevated regions, suggesting that low winter temperatures may be less

Fig 4. Projections of species- and lineage-basedmodels (MaxEnt and Boosted Regression Trees (BRT) for Bactrocera oleae in the invaded range
in Americas. Black crosses represent the occurrence of the olive fruit fly. Models were calibrated independently for the species and the different conspecific
lineages. Climatic suitability is shown by a color gradient, which goes from green (high probability) to light orange (low probability).

doi:10.1371/journal.pone.0135209.g004
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constraining than for C. fasciventris and A. obliqua. For example, A. fraterculus is sympatric
with C. capitata in South America and is thus expected to display climatic tolerances allowing
it to become established in parts of temperate Europe, which is also the case for C. capitata
[84, 85]. In the case of A. fraterculus, we deliberately calibrated SDMs with occurrences
located in dry areas where the species is associated with human settlements (e.g. irrigated
areas in the 'Chaco' region and in dry highlands of the Argentinean province of Jujuy). We
acknowledge that these records might lead to an overestimation of the potential distribution
of A. fraterculus into dry regions, since climatic layers do not reflect microclimates resulting
from human activities. We nevertheless added these records to our SDMs to avoid omission
error [84]. Indeed, irrigated agriculture is performed in many dry regions of the world and
might allow tephritid colonization despite apparently unfavorable macroclimatic conditions.
These results also highlighted that B. cucurbitaemight expand its invaded range towards
southern parts of Africa where it has not yet been detected (Fig F in S4 and S5 Files).

3. Rhagoletis pomonella and B. oleae occur only in temperate regions and in some tropical
highlands. Apart from very cold regions, the potential distribution of R. pomonella covers
all of Europe (Fig 3 and Figs A and E in S5 File). Since it naturally occurs in the Mediterra-
nean basin, B. oleae does not constitute a new threat for Europe and we will not discuss its
potential distribution in detail.

Niche variation among conspecific lineages
Although there is increasing evidence that climatic niche variation among conspecific lineages
may have strong implications in invasion risk management [7, 9, 10], such intraspecific varia-
tion in tephritid fruit flies has been poorly investigated so far (but see [25]). We illustrate here
how intraspecific structure of widely distributed pests is, in some cases, associated with strong
climate envelope divergence. Three fruit flies (C. fasciventris, A. fraterculus, R. pomonella)
highly differ in realized climatic niche and consequently display different potential distribu-
tions (Fig 3). Interestingly, models predict one lineage of C. fasciventris to be more susceptible
to expanding its geographic range into Europe. Similarly, parts of the Mediterranean Basin are
predicted to be suitable for the Mexican and Brazilian lineages of A. fraterculus but not for the
Andean lineage (Fig 3 and Fig D in S4 File). However, we detected no marked climate diver-
gence among lineages of A. obliqua (Fig A in S3 File). The distributions of conspecific lineages
of A. obliqua appear to be constrained by cold temperatures in Mexico as well as in South
America, meaning that conspecific lineages display similar potential distributions (Fig 3 and
Fig C in S4 File). Similarly, relatively high overlapping of SDM projections was observed
among lineages of B. oleae.

Among these species, we only addressed the invasion of B. oleae since the origin of invading
populations of the other target fruit flies under study is still unknown. Our species-based cli-
matic suitability maps indicate low climatic suitability in mountainous ranges and in southern
and central California, as previously reported [86]. Species-based and African lineage-based
models best explain the invaded range of B. oleae, suggesting that no marked ecological diver-
gence is associated with intraspecific genetic structure of this pest and invasive populations
might have potentially originated from every location in its entire native range. In addition, no
SDMs (species- and lineage-based approaches) predict the entire invasive range as climatically
suitable for B. oleae, suggesting that, given the monophagy in this fly, host distribution mainly
governs its distribution, as reported for other invasive specialist phytophagous insects [87].
Interestingly, our species-based models predict high climatic suitability in coastal region of Cal-
ifornia and in Sacramento valley where high B. oleae population densities are reported [15, 88].
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However, SDMs predict low climatic suitability in San Joaquin Valley and in southeastern
counties where lower population densities of B. oleae are reported probably because of the
extremely hot summer temperatures that occur in these regions [89]. This case highlights how
lowering the taxonomic resolution may lead, in some cases, to an increase of omission error in
PRA and underlines why such approaches still need to be interpreted with caution by risk
analysts.

Perspectives and pitfalls for plant biosecurity purposes. Niche divergence exists among
conspecific lineages in several of these pests (e.g. host preferences in AF complex, see [30]).
However, addressing climatic niche divergence among organisms is complex [90] and we
acknowledge that additional data are required to claim differences in invasion risk among con-
specific lineages with respect to climate. Other studies showed the poor performance of line-
age-based models to predict the infraspecific identity of invasive populations [91–93] and
suggested the existence of a cryptic niche conservatism that may explain, in some cases, the
poor predictive power of lineage-based models. In other words, these studies highlighted that
differences in the realized climatic niche [94] do not always reflect differences in physiological
tolerances (the fundamental climatic niche [94]). Realized climatic niche divergence may
reflect non-evolutionary mechanisms, since the geographic range of populations/lineages can
also be shaped by various biotic and historical factors in addition to their unique physiological
tolerances [94]. As most species, to our knowledge, do not show intraspecific divergence in
their diet (with the exception of the lineages of A. fraterculus occurring in Mesoamerica and in
Brazil and Argentina), we suggest that hosts do not artificially inflate climatic niche divergence
signals among the lineages under study. In this context, several recent studies underlined the
need to increase the taxonomic resolution in PRA to avoid underestimation of invasion risk
and capture the risks of niche shifts during the invasion process [95, 96]. Moreover, as phylo-
geographic and taxonomic studies are usually based on neutral genetic markers, we lack evi-
dence for genetic adaptations of lineages to particular climatic conditions and the role of
phenotypic plasticity in shaping geographic distributions still needs to be addressed. Testing
the predictive power of such SDMs usually involves a posteriori analyses of successful invasions
[4]; however, data were unfortunately lacking to test the validity of our approaches with most
of the species under scrutiny.

Such approaches open up new perspectives for the control of exotic species. There is now
clear evidence that a climatic niche evolves over moderate evolutionary times, as for those
involved in phylogeographic divergence and speciation [97, 98] with crucial consequences in
invasion context [7, 9]. Our study illustrates that the intraspecific structure of widely distrib-
uted pests played an important role in pest risk analysis and should be considered when assess-
ing quarantine status. Nowadays, the European list of quarantined organisms encompasses all
non-European tephritids and does not consider taxonomic entities below the species level.
Given the costs of invasive species management and quarantine measures, predicting with
more accuracy the potential distribution of intercepted propagules might generate substantial
economic benefits [99]. In addition, rapid and accurate molecular tools (e.g. barcoding) are
now available for biosecurity agencies to identify intercepted propagules to species and even
lineage levels [100–103]. The availability of such tools consequently holds great promise for the
design of cost-effective control strategies against exotic species.
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