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Extracting Subcellular Fibrillar Alignment with Error
Estimation: Application to Microtubules
Satoru Tsugawa,1 Nathan Hervieux,2 Oliver Hamant,2 Arezki Boudaoud,2 Richard S. Smith,3 Chun-Biu Li,1,*

and Tamiki Komatsuzaki1,*
1Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020 Japan; 2Plant Reproduction and Development Lab., INRA,
CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Lyon, France; and 3Department of Comparative Development and Genetics, Max Planck
Institute for Plant Breeding Research, Cologne, Germany
ABSTRACT The order and orientation of cortical microtubule (CMT) arrays and their dynamics play an essential role in plant
morphogenesis. To extract detailed CMT alignment structures in an objective, local, and accurate way, we propose an error-
based extraction method that applies to general fluorescence intensity data on three-dimensional cell surfaces. Building on pre-
vious techniques to quantify alignments, our method can determine the statistical error for specific local regions, or the minimal
scales of local regions for a desired accuracy goal. After validating our method with synthetic images with known alignments, we
demonstrate the ability of our method to quantify subcellular CMT alignments on images with microtubules marked with green
fluorescent protein in various cell types. Our method could also be applied to detect alignment structures in other fibrillar ele-
ments, such as actin filaments, cellulose, and collagen.
INTRODUCTION
A long-standing question in developmental biology is
how organs reach consistent shapes despite high variability
in shape and size found at the microscopic cellular
level (1–5). As cell structure and growth are closely related
with the dynamical behaviors of fibrillar elements, such as
the cytoskeleton and the extracellular matrix, part of the
answer may lie at this scale. In particular, to understand
cellular variability and possible coordination mechanisms
in plant development, cortical microtubules (CMTs) have
received a lot of attention (6–12) because of their essential
role in guiding the deposition of cellulose microfibril net-
works (13,14) responsible for the main load-bearing compo-
nents of the cell wall. For instance, the depolymerization of
microtubules leads to isotropic growth (15,16), because it re-
sults in a randomized deposition of cellulose in the cell wall,
thus with isotropic elastic properties. On the other hand, it
was found that organ shape and growth prescribe a mechan-
ical stress pattern on the cellwall that can channel andmodify
CMTorientations (12,17). Although the analysis of microtu-
bule behavior in multicellular development has been per-
formed at cellular resolution, a large array of experiments
and models show that microtubule behavior within a cell
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can be heterogeneous and dynamic (18–20). Furthermore,
there is evidence that the alignment structure of CMTswithin
a cell emerges from local interactions between individual
microtubules (7,10,21,22). Therefore, a detailed quantifica-
tion of the CMT alignment structure at both the cellular and
subcellular levels, and more generally the fibrillar alignment
structure, are crucial to provide better understanding of the
molecular mechanisms behind morphogenesis.

Different methods have been developed for the extraction
of fibrillar alignment structures. In terms of experimental
techniques, optical measurements that use two polarizers
placed before and after the sample along the optical path
can successfully infer the main orientations of the fibrillar
(e.g., collagen and cellulose) arrays in the extracellular
matrix or cell wall (23,24). However, these experimental me-
thodsmay not be suitable for general alignment quantification
because of the requirement of special instrumentation and of
their limited ability to handle heterogeneous alignment struc-
tures.On the other hand, various theoretical signal-processing
approaches have been proposed to extract alignment informa-
tion directly from two-dimensional (2D) fibrillar signals
(sometimes even three-dimensional (3D) signals) obtained
from general fluorescence-based imagings (19,25–32,34–
37) (see also a brief summary in (37)). These theoretical ap-
proaches offer mathematical quantifications that go beyond
a simple visual inspection of the fibrillar signals and provide
computational procedures (27–29) to evaluate alignment
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structures from optical images. Among them is the recently
developed method, termed nematic tensor analysis (NTA),
originally proposed to quantify spatial organizations in liquid
crystals (see supplements in (11,38)). The NTA estimates the
directions of fibrils in terms of intensity gradient vectors in the
images. Formulated as an eigenproblem, this method evalu-
ates the dominant orientation and anisotropy of the fibrillar
alignments in a preselected region of interest (ROI). It has
been shown (11,37) that the NTA has several advantages
compared with traditional stereological techniques (30–32),
including its applicability to general fluorescence-based im-
ages on 3D cell surface, noise insensitivity such that no pre-
smoothing procedure is needed. In Advantages and
Limitations below, we demonstrate a detailed comparison be-
tween the NTA and one of the most commonly used stereo-
logical techniques, Fourier transform method (FTM), on 2D
artificial images.

Despite the attractive features of NTA, the full power of
NTA is impeded by several limitations in its current form.
Specifically, the ROIs used to evaluate the fibrillar orienta-
tion and anisotropy are usually chosen a priori, e.g., the cell
region bound by the anticlinal cell wall is the most com-
mon choice of ROI to evaluate the overall CMT orientation
of whole cells (11,37). This causes problems when applied
to cells with larger sizes, such as hypocotyl cells (39), giant
cells in the Arabidopsis sepal (40,41), and pavement cells
with unusual cell shapes that resemble jigsaw puzzles
(12,42), in which the heterogeneity of fibrillar alignments
within the cell is expected to be crucial to understand the
local variation of growth and mechanical properties of
the cell wall at the subcellular level. Furthermore, a sys-
tematic error estimation of the evaluated fibrillar orienta-
tion and anisotropy is absent in NTA, which may also
cause problems if the calculated orientation and anisotropy
are subject to further statistical analyses that require the in-
formation of error rates to make quantitative statements
of the system, e.g., when evaluating orientation correla-
tions at the sub- and intracellular levels. In this study, we
focus on the estimation of error in the NTA associated
with the sampling error from a finite number of intensity
gradient vectors in the ROI, which should be distinct
from the dispersion from the mean orientation. We propose
a generalized NTA to resolve both of the above problems
simultaneously. Intuitively, we carefully formulated the er-
rors originated from finite sampling of intensity gradient
vectors in the ROI and asked two questions: 1) ‘‘What is
the minimal scale of the ROI needed for a desired error
value (the constant error description)?’’ and 2) ‘‘What is
the corresponding error in the estimated orientation and
anisotropy for the ROI (the constant scale description)?’’
The applications of our generalized method to several
typical CMT fluorescent images reveal that the sizes of
ROIs can be chosen with scales ð(mmÞ much smaller
than cell size (e.g., � 10mm� 102mm for sepal giant cells),
implying that our method enables the quantification of
local heterogeneity and variability of CMT alignments at
the subcellular level.

In this article, we show how the generalized NTA can be
formulated and discuss several features using fluorescent
CMT images as illustration. These features include the
incorporation of error estimations, the ability to take into ac-
count different intensity contrasts in the CMT signals to
evaluate nonuniform strength of CMT anisotropy, and the
comparisons of constant error and scale descriptions. We
then discuss the validations and limitations of our method
using synthetic images mimicking actual experimental ob-
servations. Finally, we give detailed demonstrations of the
ability of our method to unveil subcellular alignment struc-
tures in terms of CMT alignment quantification of various
types of cells, including sepal giant cells, trichome cells,
stomata, pavement cells, and hypocotyl cells.
MATERIALS AND METHODS

To introduce our generalized NTA method, we use a giant cell from an Ara-

bidopsis sepal. The data of a giant cell is described by the cell surface in-

formation that is composed of mesh points covering the cell surface and

detected by the 3D imaging analysis software MorphoGraphX (MGX)

(43) (see Appendix A), and the fluorescence intensity at the mesh points

measured by confocal laser scanning microscopy (see more experimental

details in Appendices B and C). The fluorescence intensity is in arbitrary

units (a.u.) (i.e., the confocal intensity value of the raw image). In

Fig. 1 a, the fluorescence intensity of CMT of the giant cell projected on

the mesh points and is shown by the color gradient (high intensity in green

and low intensity in dark). Also, the detected mesh points on the cell wall

are shown in white. Our method is applicable to both 2D and 3D fluores-

cence intensity image. The basic idea of the nematic tensor is that if there

is a unidirectional distribution of fluorescence intensity I (x, y) as schemat-

ically illustrated in Fig. 1 b, some CMTs should be aligned under the

distribution. Therefore, the vectors along the constant intensity lines
~t ¼ ðtx; tyÞ ¼ ð�vI=vy; vI=vxÞ, of which direction is perpendicular to the

gradient of the distribution, correspond to the microtubule orientation.

Note that we distinguish different contrasts of the intensity gradients using

the unnormalized vector instead of the normalized one as in the previous

method (see (11,37)). This generalization has not been reported so far, to

the best of our knowledge, and we discuss it in detail in the next section.

The local nematic tensor n ¼~t5~t is defined as the 2�2 symmetric matrix

with components n1;1 ¼ t2x , n1;2 ¼ txty, n2;1 ¼ txty, and n2;2 ¼ t2y . The

nematic tensor is calculated as the average hni of the local nematic tensor

over the ROI.

Because our aim is to extract the microtubule alignment at the subcellular

level without any a priori assumption on the ROI, we select the region

within a local circle of radius ε as depicted in Fig. 1 a. The center location

of the local ε-circle is randomly selected, and we approximate the cell sur-

face as a local plane with coordinates (x, y) around the ε-circle. Using the

eigenvalues ðn1 >n2Þ and the unit length eigenvectors (~e1 for n1,~e2 for n2)

of the nematic tensor hni for each ε-circle, we define the anisotropy vector

as~rhq~e1, q ¼ n1 � n2. The length and orientation of the anisotropy vector
correspond to the anisotropy and mean orientation of the microtubule align-

ment, respectively.

To take an example, we display the anisotropy vectors with ε ¼ 1 (mm)

for the two test cases, ordered and disordered CMT alignments, as the red

segments in Fig. 1, d and e. These ROIs (Fig. 1, d and e) are shown in Fig. 1

a. The anisotropy q in the ordered case is much larger than that of the disor-

dered case. The important addition in our method is how we determine the

scale ε: we consider the sampling error for the eigenvalue problem associ-

ated with the finite number of vectors~t in the local ε circle shown in Fig. 1 c,
Biophysical Journal 110, 1836–1844, April 26, 2016 1837
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FIGURE 1 Generalization of the nematic tensor

analysis. (a) Raw microscopy image of the CMT

intensity in a giant cell is shown. The local circle

of radius ε approximated locally by a plane with

coordinates (x, y) is depicted. The corresponding

local region for (d) and (e) are also shown. The co-

lor bar stands for the fluorescence intensity ranging

from 0 to 30,000 a.u. (b) Schematic illustration of

the concept is shown; if the intensity is unidirec-

tionally distributed, there must be a microtubule

bundle under the distribution. A vector t
!

along

the constant intensity line is also shown. (c) The

components of the vector t
!

of the ordered case

and disordered cases are shown. (d) Anisotropy

vector in the ordered case is shown. Blue vectors

are the vectors t
!
. (e) Anisotropy vector in the

disordered case is shown. (f) The error h versus

the scale ε is shown for several regions. The

different colors mean the randomly selected re-

gions. (g and h) The mean error as a function of

fixed scale εc and the mean scale as a function of

fixed error hc are shown. The mean values for

both cases are calculated from 104 different re-

gions, and the error bars represent the standard

error. To see this figure in color, go online.
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and the appropriate scale of ε is chosen by restricting the scale of the sam-

pling error. In our study, the bootstrap method (44) that is free from any a

priori assumption of noise model is used to estimate the sampling error. Us-

ing the bootstrapped distribution of ðtx; tyÞ, we calculate the bootstrapped

anisotropy qðBkÞ and the bootstrapped anisotropy vectors~rðBkÞ with k ranging
from 1 to the number of bootstrap trials. The deviation of the anisotropy

vectors is defined as jd~r j ðBkÞ ¼ ��~r �~rðBkÞ �� . The meaningful ‘‘error’’ is esti-

mated as the relative error h ¼ sðjd~r j ðBkÞ=qðBkÞÞ, which is the standard de-

viation of the distribution of bootstrapped relative errors jd~r j ðBkÞ=qðBkÞ (see
Appendix D for details). In Fig. 1 f, the relative error h is shown to decrease

as a function of scale ε in several regions because the sampling number

increases.

There is a trade-off to this method: if the error is fixed as hc (or scale εc),

the scale (or error) is distributed as in Fig. 1 f. Thus, depending on the pur-

pose, we can determine appropriate fixed error or fixed scale using the mean

value of hc (or εc) in Fig. 1 g (or Fig. 1 h). Because the typical scale of a

single microtubule bundle in our images is ~mm, we chose ε ¼ 1 mm (arti-

ficially large to see the structure). The mean error for εc ¼ 1 mm is

hhix0:222, and the corresponding scale for hεix1 mm is hc ¼ 0:155 in

the current example of a giant cell. In other words, the choice of constant

error description or constant scale description for the size of local ε circle

can be thought as different types of ‘‘microscopes’’ to see the structure. To

control accuracy, the error can be fixed, and to avoid losing spatial resolu-

tion, the scale can be fixed.

One of the biggest advantages of our method is the determination of the

local scale (or error) by controlling the error (or scale). Among previous

works (19,27–32,34–37), the traditional stereological techniques can pro-

vide the measure of accuracy in the calculation of the mean orientation

of the aligned structure (30–32). The NTA has several advantages when

compared with those techniques including its applicability to 3D images

and noise insensitivity as mentioned above. In addition, our method pro-

vides greater information of scale where the measure of accuracy in NTA

is more precise than one of the traditional stereological techniques (see
1838 Biophysical Journal 110, 1836–1844, April 26, 2016
the Appendix E). Error estimation with scale is essential when one con-

siders the correlation of the locally aligned structure. For example, suppose

one obtains some nonzero correlation coefficients in local regions, we need

to know whether this is true correlation or artifact resulting from sampling

error in the local regions.

Another advantage of our method is the option to distinguish different

contrasts in the image. To demonstrate this point, we generated artificial

line segments with different contrasts in Fig. S2 a in the Supporting

Material. The line segments were created to imitate microtubule bundle im-

ages with a width of 0.1 cm, so our focusing scale was εx0:1 cm. Fig. S2, b

and c, shows the corresponding normalized vectors~t0 ¼ ð�vI=vy; vI=vxÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvI=vxÞ2 þ ðvI=vyÞ2

q
and unnormalized vector ~t ¼ ð�vI=vy; vI=vxÞ,

respectively. Note that the unnormalized vectors assign different size of

vectors for regions with different intensity gradients. Similarly, we used

the unnormalized anisotropy q ¼ n1 � n2 instead of the normalized anisot-

ropy q0 ¼ ðn1 � n2Þ=ðn1 þ n2Þ to emphasize the actual strength of anisot-

ropy n1 � n2. If we use either the normalized vector~t0 or the normalized

anisotropy q0, the results are almost the same for different contrasts of image

as shown in Fig. S2, d-1 and d-2, and Fig. S2, e-1 and e-2, respectively.

To distinguish the different contrasts, the use of both unnormalized vector
~t and unnormalized anisotropy q ¼ n1 � n2 is required as shown in Fig. S2,

f-1 and f-2. Note that the results are not strongly influenced by the choice of

ε as we tested with ε ¼ 0:2; 0:3 cm.

To further test the reliability of our method, we validated the procedure

with another set of synthetic images with known alignments. The images

contain 20 line segments that are distributed with different blurring degrees

as shown in Fig. 2, a and b. The line segments are blurred with a Gaussian

filter to degrade the image. The matrix size of the Gaussian filter, m, is an

important blurring parameter because the degree of blurring depends

on how many pixels the filter changes, i.e., m � m. As the width of the

line segment is roughly estimated as m � 0.1 cm, the scale is fixed to

0.1 cm for all cases to see the limitation. The unit 1 cm here corresponds
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FIGURE 2 Artificial images including 20 line segments randomly

located in space that show (a) the original artificial image in the case of

the blurring parameter m ¼ 5; (b) the original artificial image in the case

of the blurring parameterm¼ 61; (c and d) the anisotropy vectors with fixed

scale; and (e and f) the anisotropy vectors with fixed error. To see this figure

in color, go online.

a b

c d

FIGURE 3 Validations and limitations of our method. (a) Definition of

the theoretical orientation qth and the orientation of the anisotropy vector

q are shown. (b) The deviation angle Dq ¼ jq� qth j is shown as a function
of the blurring parameter m. The accuracy of the anisotropy vector around

singular points (intersections, end points) gets worse. The error bars repre-

sent the standard error. (c) The anisotropy vectors are in good agreement in

the case of m ¼ 5. (d) The anisotropy vectors around singular points have

large deviation angles in the case of m ¼ 61. To see this figure in color,

go online.
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to ~10 mm in real physical scale because the imitated microtubule bundles

in the image are 0.1 cm thick. Fig. 2, c and d, and Fig. 2, e and f, show the

anisotropy vectors and calculated scale by red line segments and blue cir-

cles, respectively.

Next, we checked the consistency of the calculated anisotropy vectors

with the original image using the deviation angle Dq ¼ jqth � q j with the

theoretical orientation of the line segment qth and of the anisotropy vector

q depicted in Fig. 3 a, where only the case of constant scale is shown in

Fig. 3, a, c, and d. Fig. 3 d shows that the deviationDq is larger near singular

points (intersections and end points) of line segments, which implies

the quantification gets worse around such singular points. Surprisingly,

Fig. 3 b shows that the results of the deviation Dq of constant scale descrip-

tion and constant error description are almost the same, which implies that

the anisotropy vector is not strongly influenced by using ε-circles with scale

around 1 mm in our imaging conditions. Note that it may not be true with

other radii, so one should carefully check the sampling error in the images

under consideration. In addition, our method depends on the resolution of

the image, i.e., the blurring parameter m. The accuracy of the calculated

anisotropy vectors, except near the singular points, decreases as a function

of m, indicating that our method may not work well for extremely blurry

images. In other words, to secure the accuracy of hDq=ðp=2Þi ¼ 0:2 for
instance,m needs to be ~33, as shown in Fig. 3 b, which means that the blur-

ring line width should be less than 33 � 0.1 cm to achieve the accuracy of

0.2. In summary, the limitation of our method is that the quantification gets

worse around singular points in the alignment structure and with decreasing

resolution of the image.
RESULTS

We illustrate the advantages of our method compared with
previous methods (11) by applying it to different types of
cells. We emphasize that the novelty of the method resides
in the quantification of subcellular microtubule structure
with error estimation. For simplicity, we only demonstrate
the constant scale case because our focusing scale is ~1
mm to see the local microtubule alignment as discussed in
Materials and Methods. Fig. 4 b shows that our generalized
method provides a more detailed structure of microtubule
alignment when compared with the previously reported
NTA at the cellular level in Fig. 4 a. Note that the results
may depend on the choice of different scales or different er-
rors, therefore the scale or error should be chosen accord-
ingly, from the purpose of locality or accuracy.

Images sometimes contain high-intensity regions near the
anticlinal cell walls because of the accumulation of fluores-
cence along the vertical wall as viewed from the top. In our
calculation, we exclude a few layers of mesh points near the
anticlinal cell wall (~1 mm) to avoid taking such signal into
account. Nevertheless, we cannot always avoid such effects
Biophysical Journal 110, 1836–1844, April 26, 2016 1839



FIGURE 4 Comparison of NTA at the cellular level (a) and generalized

NTA at the subcellular level (b). The color bar stands for the fluorescence

intensity ranging from 0 to 30,000 a.u., and the red segments are calculated

anisotropy vectors. To see this figure in color, go online.
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of saturating fluorescence (see Fig. 4). In addition to the
anticlinal cell wall effect, one needs to be careful about po-
tential bias induced by cell surface curvature. Depending on
the curvature of the periclinal wall and the overall orienta-
tion of the sample, the optical axis of the microscope may
not always be perpendicular to the periclinal cell surface, re-
sulting in stronger signal intensities at tilted regions because
of local accumulation of fluorescence. For instance, if one
cell is slightly tilted, the signal is a bit stronger on the
side of the cell with the inclined wall relative to the optical
axis and weaker on the flatter part (see Fig. S3).

Figs. 5, 6, S4, and S5 show the quantifications for
different types of cells (giant cells, trichome (hair cell), sto-
mata (guard cell), pavement cell, and hypocotyl). Each
example is illustrated by four panels showing the raw
data, the anisotropy vectors, the color plot of orientation
of the anisotropy vectors, and the error in the calculation
of the anisotropy vectors.

The results on giant cells show some general properties of
our method. Fig. 5 b shows that the calculation of anisotropy
vectors are in good agreement with a visual inspection of the
raw data of Fig. 5 a. Because our method can distinguish
different contrasts of the image, the anisotropy q is high
for clear alignment (white arrows) and low for blurred re-
gions (black-outlined arrows) in Fig. 5, a and b. Note that
the blurred regions can reflect experimental noise or singu-
lar points (intersections or end points). We can also provide
the orientation q and the error h of the anisotropy vectors,
shown respectively in Fig. 5, c and d. One can see in
Fig. 5 d that, the smaller the anisotropy of the vector, the
larger the error. This is manifested in Fig. 5 e, which shows
that the anisotropy is negatively correlated with the error.
The orientation is shown to be independent of the error in
Fig. 5 f, which means that the calculation is not influenced
by a specific orientation.

Figs. 6, S4, and S5 show the anisotropy vectors for
trichome of early stage and stomata at mature stage, pave-
1840 Biophysical Journal 110, 1836–1844, April 26, 2016
ment cell, and hypocotyl cell, respectively. Figs. 6, b–f,
S4 b, and S5 b show that the anisotropy vectors are also
in good agreement with the raw data, and the white and
black-outlined arrows in some figures represent strong and
weak alignment, respectively. In addition, our quantification
can be helpful to understand the relationship between the tri-
chome’s growth and the microtubule behaviors as discussed
in (45,46). The transverse aligned structure of CMTs in
guard cells is well established (see (47,48)), and the
different anisotropy associated with different contrasts of
the image might explain different structures. Our method
is also applicable to pavement cells that are shaped like jig-
saw puzzles as shown in Fig. S4. Compared with the recent
studies investigating the microtubule behavior in specific
areas (12), our method provides more local information of
the CMT structure around lobes and necks. One can find
another example of hypocotyl in which the structure of mi-
crotubules is either a right- or left-handed spiral arranged
along the long axis of the hypocotyl cells as shown in
Fig. S5.
DISCUSSION

The identification of microtubule regulators raises a number
of important questions relating to their biochemical func-
tion in the cell and their role in morphogenesis. However
to go beyond a qualitative assessment, such work requires
the quantitative assessment of the microtubule defects in
the corresponding mutants. In all cases, the main difficulty
in connecting the images to the biological implications
is the quantification of the alignment structure at the subcel-
lular level. By providing detailed information about the
alignment structure, our method addresses this point. In
addition, our method allows us to discuss the relationship
between subcellular microtubule alignment and other cell
features, such as local curvature, local growth rate, or
direction.

Our method also provides additional information about
the sampling error in the calculation and the appropriate
scale to quantify alignment structures with desired error
values. The determination of scale based on error estima-
tion is meaningful not only for the accuracy of the calcula-
tion but also for the discussion of the correlation length of
microtubule alignment. This viewpoint of error estimation
can be incorporated into other stereological techniques in
handling inhomogeneous alignment structures and fixing
algorithmic parameters. The consideration of error in the
data enables us to distinguish the actual biological behavior
from artifacts in sampling or experimental procedure. One
prospect offered by this method is to precisely quantify
the correlation strength and correlation range of the micro-
tubule alignment (from the calculated anisotropy vectors),
which will be a measure of the microtubule coordination
at different scales.
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FIGURE 5 The results of anisotropy vectors for a giant cell. (a) Raw mi-

croscopy image of a sepal giant cell is shown. There are clear alignments

(around white arrows) and blurred alignments (around black-outlined ar-

rows). The color bars of the fluorescence intensity in this figure range

from 0 to 30,000 a.u. (b) The local anisotropy vectors are in good agreement

with (a). (c) Color plot of the orientation of the anisotropy is shown.

(d) Heat map of the error h is shown. The color bars of the error in this
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APPENDIX A: VISUALIZATION SOFTWARE:
MORPHOGRAPHX

We used a newly developed 3D imaging analysis software package

‘‘MorphoGraphX’’(MGX), which detects cell surface geometry and the

location of cells, performs cell lineage tracking, and so on (49–51). Using

MGX, we first detected the surface and created the mesh from the raw

confocal image as in Fig. S1 a, which is shown as small triangles on the sur-

face of the sepal in Fig. S1 b. The coordinates of the mesh points (the

vertices of the small triangles) are defined as (x, y, z). Note that some param-

eters were chosen in the meshing process, such as the degrees of blurring

the image and smoothing the surface. We selected the distance between

two neighboring mesh points as ~0.1 mm because this scale is small enough

compared with cell sizes. Then, we carefully assigned the cell label n to

each cell by comparing it with the original confocal image in Fig. S1 c.

Because we are interested in seeing the CMTs, i.e., the microtubules close

to the surface as shown in Fig. S1 d, we projected only the intensity within

the depth h to the surface depicted in Fig. S1 e. Thus, we have a five-value

data set, i.e., (x, y, z, n, I).
APPENDIX B: PLANT MATERIAL AND GROWTH
CONDITIONS

We used plants labeled with microtubule marker allowing for the visualiza-

tion of the microtubule network, and with membrane marker allowing for

the visualization of the plasma membrane to delimit each cell and facilitate

the segmentation. To visualize microtubules we used plants containing the

p35S::GFP-MBD (WS-4) construct as described previously (17). The

membrane reporter line pUQ10::LTi6B-Mcherry (Col-0) was provided by

Yvon Jaillais. Plants were grown on soil in a phytotron in short-day condi-

tions (8 h/16 h, light/dark periods) for 4 weeks and then transferred to long-

day conditions (16 h/8 h, light/dark periods).
APPENDIX C: IMAGING

To image sepals, 1 to 2 cm long main inflorescence stems were cut from the

plant. To access young buds, the first 10 to 15 flowers were dissected and the

stem was kept in an apex culture medium (49) supplemented with 40 nM

BAP. Then 24 h after dissection, the young buds were imaged with a SP8

Laser-Scanning Confocal Microscope (Leica) using a long-distance 25�
water-dipping objective (NA: 0.95). For pavement and hypocotyl cells

from the cotyledons, we used 6- to 10-day-old seedling mounted in 1%

agarose.
APPENDIX D: BOOTSTRAP METHOD

The bootstrap method is a simple procedure that is often called ‘‘random

drawing (sampling) with replacement.’’ In our case, the objective is to obtain

the error from the distribution of~t ¼ ðtxðiÞ; tyðiÞÞ, where I labels different

vectors along the constant intensity line in the ROI (Fig. 1). A merit of the

bootstrap method is that it is free from any assumption on the distribution

of ~t. In the first step, we make a ‘‘bootstrapped’’ distribution of

ðtxðiÞ; tyðiÞÞ, that is, ðtðB1Þ
x ðjÞ; tðB1Þ

y ðjÞÞ with j spanning 0;/;N where each

tðB1Þ
x ðjÞ and t

ðB1Þ
y ðjÞ are obtained by picking a random value of i and taking

the corresponding values of txðiÞ and tyðiÞ from the original set

ðtxðiÞ; tyðiÞÞ. Similarly, other bootstrapped distribution of ðtðB2Þ
x ðjÞ; tðB2Þ

y ðjÞÞ,
figure range from 0.00 to 0.40. (e) The error h in anisotropy is negatively

correlated with the anisotropy q. (f) The error in orientation is independent.

To see this figure in color, go online.
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FIGURE 6 The results of anisotropy vectors for different cell types.

Raw microscopy image of a young trichome (a) and of a stoma (e) are

shown. There are clear alignments (around white arrows) and blurred

alignments (around black-outlined arrows). The color bars of the fluo-

rescence intensity in this figure range from 0 to 30,000 a.u. (b and f)

The local anisotropy vectors are in good agreement with (a). (c and g)

Color plots of the orientation of the anisotropy are shown. (d and h)

Heat maps of the error h are shown. The color bars of the error

in this figure range from 0.00 to 0.40. To see this figure in color,

go online.

Tsugawa et al.
ðtðB3Þ
x ðjÞ; tðB3Þ

y ðjÞÞ,/, ðtðBMÞ
x ðjÞ; tðBMÞ

y ðjÞÞ can be generated. Because the num-

ber of bootstrap is chosen ranging from 102 to 104 in general, we

used M ¼ 103 in the current study. The result is not sensitive to the

value M if M is more than 103. Using the bootstrapped distributions,

we can calculate eigenvalues ðnðBkÞ
1 ; n

ðBkÞ
2 ; k ¼ 1;/;MÞ, eigenvectors

ð~eðBkÞ
1 ;~e

ðBkÞ
2 ; k ¼ 1;/;MÞ, and anisotropy vectors ~rðBkÞhqðBkÞ~eðBkÞ. We

define the deviation of the anisotropy vectors as jd~r j ðBkÞ ¼ ��~r �~rðBkÞ �� .
The relative error compared with the anisotropy qðBkÞ is defined by

jd~r j ðBkÞ=qðBkÞ. Then, the standard deviation sðjd~r j ðBkÞ=qðBkÞÞ of the distribu-
tion of relative error jd~r j ðBkÞ=qðBkÞ is estimated,which is called ‘‘error’’ in the

main text.
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APPENDIX E: COMPARISON WITH OTHER
STEREOLOGICAL TECHNIQUES

We compare our method with three well-known techniques in traditional

stereology: 1) mean intercept length (MIL) analysis, 2) line fraction tech-

niques (LFD), and 3) Fourier transform method (FTM). It has been

concluded that LFD is sensitive to anisotropy in the image andMIL is better

than LFD (32,33). One study (32) concluded that the FTM is superior

to MIL and LFD. Thus, we only provide in this article the comparison

between FTM and our method. Fig. S6 shows that the comparison

between FTM (Fig. S6 b) and NTA (Fig. S6 c) for the artificial image

Fig. S6 a. The artificial images include twenty lines with vertical mean

orientation <a> ¼ 90+ with different angle deviation Da, i.e., Da ¼ 5+
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(Fig. S6 a-1), Da ¼ 45+ (Fig. S6 a-2), and Da ¼ 90+ (Fig. S6 a-3). As the

FTM is based on the 2D Fourier transformation of the image, FTM has

several advantages, including the detection of all the frequency modes in

the image, the application of filtering, etc. Fig. S6 b shows that the mean

orientation can be detected by FTM. However, by definition, FTM is influ-

enced by noise at high frequencies in the image. One can see that the radial

power spectrum diagrams in the right panels of Fig. S6 b are very spiky and

sensitive to high-frequency modes. Moreover, there is an assumption of ho-

mogeneous wave function that results in the disability to detect inhomoge-

neous alignment structures. Also, one needs to make a subjective choice of

parameters such as circular filtering parameter in (31) or sector filtering

parameter in (30). On the other hand, the Fig. S6 c shows that both the

mean orientation and anisotropy of the image can be detected by NTA

because of the several advantages, including less sensitivity to noise, appli-

cability to inhomogeneous image, etc. Therefore, we concluded that the

NTA is more reliable because of noise insensitivity and requires less

parameters compared with FTM in the detection of anisotropy of the

alignment.
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Six figures are available at http://www.biophysj.org/biophysj/supplemental/
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