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Abstract

Cucurbit aphid-borne yellows virus (CABYV) is a polerovirus (Luteoviridae family) with a capsid composed of the major coat
protein and a minor component referred to as the readthrough protein (RT). Two forms of the RT were reported: a full-
length protein of 74 kDa detected in infected plants and a truncated form of 55 kDa (RT*) incorporated into virions. Both
forms were detected in CABYV-infected plants. To clarify the specific roles of each protein in the viral cycle, we generated by
deletion a polerovirus mutant able to synthesize only the RT* which is incorporated into the particle. This mutant was
unable to move systemically from inoculated leaves inferring that the C-terminal half of the RT is required for efficient long-
distance transport of CABYV. Among a collection of CABYV mutants bearing point mutations in the central domain of the
RT, we obtained a mutant impaired in the correct processing of the RT which does not produce the RT*. This mutant
accumulated very poorly in upper non-inoculated leaves, suggesting that the RT* has a functional role in long-distance
movement of CABYV. Taken together, these results infer that both RT proteins are required for an efficient CABYV
movement.
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Introduction

Cucurbit aphid-borne yellows virus (CABYV) is a member of the

Polerovirus genus in the Luteoviridae family [1]. Poleroviruses are

strictly transmitted by aphids in a circulative and non-propagative

manner [2]. In plants, polerovirus infection is limited to phloem

tissues: cell-to-cell movement occurs between vascular parenchy-

ma cells, companion cells and the enucleated sieve elements

whereas long-distance movement follows the sieve elements.

Because polerovirus particles were detected in plasmodesmata

connecting phloem cells [3–5], the virus is thought to move in the

form of virions and recent data confirmed that particles of Turnip

yellows virus (TuYV, Polerovirus genus) are essential for long-distance

movement [6]. Polerovirus have isometric particles of about

25 nm of diameter containing two structural proteins: the major

coat protein (CP) encoded by ORF3 and a minor component,

referred to as the readthrough (RT) protein, which is synthesized

after ribosomes bypass the ORF3 stop codon during translation.

The RT protein is incorporated into the capsid by its CP moiety,

with the RT domain protruding from the virion surface [7,8].

While the full-length RT protein of 74 kDa is readily detected in

infected plants, a C-terminal truncated form of the protein of

about 55 kDa, hereafter referred to as RT*, is only easily detected

when incorporated into virions [7,9–11]. The RT* protein was

observed in crude extracts of protoplasts infected with Barley yellow

dwarf virus (BYDV, Luteovirus genus, Luteoviridae family) suggesting

that the cleavage of the RT protein is not due to fortuitous

degradation but reflects a conserved, presumably biologically

significant processing event [9,11]. The identification of viral

proteins, or viral domains, involved in polerovirus movement has

been the subject of numerous studies. Poleroviruses encode a

movement protein (P4) that, in spite of having cellular and

biochemical characteristics of viral movement proteins [12–16],

cannot support virus movement outside phloem cells. Interesting-

ly, this protein was shown to be host-dependent, suggesting the

existence of a P4-independent transport of poleroviruses in some

plants [17,18]. The CP which is essential for particle formation is

also required for virus movement [17]. Conversely, the RT*

protein was found dispensable for BYDV and TuYV transport,

although virions devoid of RT* were greatly impaired in their

ability to invade plants [7,19,20]. The number of infection foci

along sieve elements was also reduced [5]. Apart from the RT*,

the non-structural C-terminal domain of the RT protein was also

shown to be involved in virus accumulation in plants using TuYV

deletion mutants [21]. Moreover, plant infection with RT-

engineered mutants of TuYV and Potato leafroll virus (PLRV,
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Polerovirus genus) unable to encapsidate the RT* suggested that the

complete RT protein cannot achieve in trans the transport function

carried by the incorporated RT* [21,22]. The complexity of the

polerovirus RT protein function in virus movement was recently

further illustrated by the fact that the PLRV RT protein could act

in trans on virions to retain them in the phloem where they are

available for aphid acquisition [20]. In addition to its complex role

in virus movement and phloem limitation, the RT protein is a key

factor in aphid transmission since it intervenes in virus transport

across the aphid gut cells, specifies intestinal tropism and interacts

with aphid endosymbionts [7,11,20–26].

A way to differentiate the involvement of each RT protein form

(full-length and truncated forms) in polerovirus transport through-

out the plant is to generate a polerovirus mutant able to synthesize

only the RT* protein in a form that retains its capability to be

incorporated into virions. Up to now, deletions in the RT protein

C-terminal moiety generated mutants unable to synthesize or to

anchor the RT protein into the particles [21,22]. Internal

sequences present at distance in the RT open reading frame were

shown to be required for the readthrough translation mechanism

and for the RT* packaging into virions [21,27].

CABYV is a polerovirus infecting cucurbits [28] and was used

as a model to decipher the role of the two RT proteins (full-length

and truncated versions) in viral long-distance transport. By

analyzing the movement of a set of CABYV mutants modified

either by deletion or point mutations in the RT sequence, we

showed that both RT proteins are essential for CABYV long-

distance movement. Based on these results, we propose a

hypothetical model where the free full-length RT protein would

act in trans on virions bearing the truncated RT protein (RT*).

Material and Methods

Generation of CABYV mutants
All point mutants were created by PCR mutagenesis using pCA-

WT as template [29]. The mutagenic primers were designed to

substitute successively a series of two to three amino acids for a set

of two or three alanine residues around the putative cleavage site

of the RT protein (Fig. 1A). The generated PCR products

bordered by the EagI and SalI restriction sites were introduced

back into the pCA-WT plasmid digested by the same enzymes

giving nine constructs referred to as pCA-PCS (Putative Cleavage

Site). Another mutant (PCS3+) was obtained that contains a

tryptophan in addition to three alanine substitutions. Finally,

vectors for agroinfection were constructed by replacing the AgeI-

SalI fragment of pBin35SCA-WT with the mutated AgeI-SalI

fragment from the pCA-PCS constructs. All PCS constructs

presented in Fig. 1A were obtained following this procedure except

for PCS4 which was produced using the QuikChange Lightning

Site-Directed Mutagenesis Kit (Agilent Technologies, France) to

introduce directly the mutations into pBin35SCA-WT [29]

following manufacturer’s instructions. In order to obtain CA-

BYV-RTDCter (Fig. 1B), two unique restriction sites were first

introduced into pCA-WT. A NheI site was placed right after the

CP stop codon (nt 4104) and a MluI site (nt 5481) 25 nucleotides

upstream of the RT protein stop codon (nucleotide positions refer

to NC 003688 accession). The resulting plasmid is referred to as

pCA-NM3 (Fig. S1). To produce CABYV-RTDCter, pCA-WT

was used as a template to amplify the N-terminal domain of ORF5

from nt 4098 to 4890 with primers containing NheI and MluI

restriction sites at either end. The resulting PCR product, cleaved

with NheI and MluI, was introduced into pCA-NM3 cut with the

same enzymes. Vectors for agroinfection corresponding to

CABYV-NM3 and CABYV-RTDCter were made as described

above for the PCS mutants. All the PCR-amplified fragments were

sequenced to verify the absence of additional mutations. Binary

plasmids bearing the CABYV mutated sequences were introduced

into Agrobacterium tumefaciens strain C58C1 for agro-infection [29].

Plant inoculation, virus detection by ELISA and virus
purification

A. tumefaciens harboring the mutant constructs were grown to an

optical density of 0.5 at 600 nm and agroinfiltrated to Montia

perfoliata or Cucumis sativus [29]. Agroinfiltrated plants were

analyzed 2 to 4 weeks post-inoculation by double-antibody

sandwich (DAS) enzyme-linked immunosorbent assay (ELISA)

[30] with a rabbit polyclonal antiserum raised against CABYV

(SEDIAG, France). Virions were purified from inoculated or

systemic leaves as previously described [31].

Western blotting and analysis of viral RNA progeny
Viral proteins present in total protein extracts of infected plants,

in phloem exudates collected from infected cucumbers [32] or in

purified virions, were detected by western blot using a CABYV

polyclonal antiserum [28], a CABYV-RT-Cter specific antiserum

[24] or a polyclonal antiserum raised against a synthetic peptide

corresponding to aa 155 to 177 of the CABYV-CP. Detection of

viral proteins was performed with the Lumi-Light Western

Blotting Substrate (Roche, France). The stability of the mutations

Figure 1. Schematic representation of CABYV mutants. A)
Genetic organization of CABYV RNA with the position of the encoded
structural proteins (CP and RT*) and the full-length RT protein (RT)
(arrows). The restriction sites AgeI, EagI and SalI used to obtain the PCS
mutants are shown. The wild-type amino acid sequence (amino acid
430 to 470) of the region on the CABYV RT protein targeted by alanine
scanning is shown below with the corresponding changes in the ten
PCS mutants. The underlined R residue represents the last C-terminal
amino acid identified by mass spectrometry on the CABYV-RT* protein
[34]. The C-terminal amino acid on RT* is tentatively positioned at
amino acid 461 (grey-shaded serine). B) Genetic map of CABYV-RTDCter

deletion mutant. NheI and MluI restriction sites originally introduced in
CABYV-NM3 to obtain CABYV-RTDCter mutant are positioned.
doi:10.1371/journal.pone.0093448.g001
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in the viral progeny following agroinfection was examined by RT-

PCR in two infected plants per construct after extraction of total

RNA using RNeasy Plant Mini kit (Qiagen, France). Reverse

transcription was primed using an oligonucleotide complementary

to CABYV nt 5004 to 4987, and a PCR fragment encompassing

the mutation was synthesized with an additional oligonucleotide

corresponding to nt 4652 to 4670. The PCR products were further

sequenced. To analyze CABYV-NM3 viral progeny, reverse

transcription was primed with two oligonucleotides, one down-

stream the NheI restriction site from nt 4800 to 4780, and the

second downstream the MluI restriction site from nt 5670 to 5653.

PCR products covering the CABYV sequence from nt 3822 to

4800 and from 4891 to 5670 were sequenced. To analyze the

presence of CABYV-RTDCter in systemic plant tissue, the

oligonucleotide corresponding to CABYV nt 5514 to 5501 was

used for cDNA synthesis and a PCR fragment encompassing the

deletion introduced in the RT sequence was amplified using an

oligonucleotide complementary to nt 4261 to 4278. To detect

CABYV-NM3 and CABYV-RTDCter in aphids, the reverse

transcription was primed with the oligonucleotide corresponding

to nt 3889 to 3869 on total RNA extracted from aphids following

the animal tissue protocol of the RNeasy Plant Mini kit (Qiagen,

France). A PCR fragment of 386 bp was amplified using the

additional oligonucleotide corresponding to nt 3503 to 3520.

Mass spectrometry
Mass spectrometry was conducted at the proteomic facility

hosted at the Institute of Molecular and Cellular Biology of

Strasbourg (France). Proteins were extracted from polyacrylamide

gels and samples were prepared as described by Hamrita et al. [33].

MALDI-TOF-MS and Nano LC-MS-MS analyses were per-

formed following the procedure given by Bencharki et al. [32].

Results

The CABYV RT* protein is present in phloem exudate
collected from infected cucumbers

The complete RT protein of poleroviruses (74 kDa theoretical

MW) was previously detected in total protein extracts prepared

from infected plants [21–24]. Conversely, the truncated version of

the protein (RT*) that represents the only form incorporated into

virions [7,10] was so far only reported in BYDV-infected

protoplasts [9,11]. The RT* protein lacks about 22 kDa of the

C-terminal domain of the RT protein. Absence of detection of the

RT* protein in polerovirus-infected plants may result from a lack

of sensitivity of the antibodies used for its detection, or from a

rapid degradation of the protein in its unassembled form. We took

advantage of the ability of CABYV to infect cucumber plants,

from which phloem exudate can be easily collected, to investigate

the presence of the RT* protein in sieve elements. Although a CP-

specific antiserum can potentially recognize both RT proteins,

detection of the complete RT by western blot was very weak (see

Fig. 2B). We therefore used a CABYV-polyclonal antiserum to

detect the RT* protein and a CABYV-RT-Cter antiserum which

recognizes unambiguously the RT protein. While the complete

CABYV-RT of apparent MW of 95 kDa was present in infected

C. sativus and M. perfoliata plants, no RT* could be detected in total

plant extracts (Fig. 3A). Conversely, a band of about 55 kDa was

specifically observed in phloem exudate collected from infected

cucumber plants (Fig. 3B) and could presumably correspond to the

RT* protein. The discrepancy between these results may arise

from virion enrichment during phloem exudate collection thus

enabling the detection of the incorporated RT* protein. Contrary

to the complete RT that was easily and reproducibly found in

phloem exudate sampled from infected plants, the 55 kDa product

was not always detected, neither at the same RT*/CP ratio in

phloem exudate collected from infected C. sativus. Similarly, virions

were not consistently observed by transmission electron micros-

copy in phloem exudate sampled from infected C. sativus (Fig. 3C).

This suggests that virions are unevenly distributed in sieve tubes

which may explain the difficulty to detect reproducibly the

incorporated RT* in phloem exudate extracts. On the other hand,

free full-length RT could be released into sieve elements where the

protein may migrate independently of virions. Distribution and

local accumulation of virions in sieve tubes may not reflect those of

the free complete RT protein.

Systemic movement of CABYV mutants bearing
mutations in the putative cleavage site of the RT protein

To address the biological functions of CABYV RT-derived

proteins in the virus life cycle, we aimed at engineering virus

mutants able to generate either the complete RT protein or the

RT* protein. The former one could be obtained by modifying the

RT protein processing. Therefore point mutations were intro-

duced around the putative cleavage site in the RT protein

sequence located approximately in its middle. The arginine at

position 440 in CABYV RT is the last C-terminal amino acid

detected by mass spectrometry on RT* protein [34] suggesting

that the RT protein cleavage must occur at any close position

downstream of it. Starting from this position, downstream amino

acid pairs or triplets were sequentially changed into two or three

alanine residues along a 24 amino acid stretch, leading to ten

CABYV mutants, referred to thereafter as PCS 1-8 mutant for

‘‘Potential Cleavage Site’’ mutant (Fig. 1A). Full-length viral

cDNAs, containing the mutated RT sequences, were transferred

into a binary vector and further transformed into A. tumefaciens for

agroinoculation of M. perfoliata.

Four weeks post-inoculation, the ability of the mutants to move

systemically was tested by ELISA on newly developed non-

inoculated leaves. This assay detected more specifically intact

virions than free structural proteins since disassembled CP

subunits, obtained by addition of SDS to whole virions, gave a

significantly lower absorbance than whole virions (Fig. S2). It

should be pointed out that CABYV accumulation in infected

plants, measured by ELISA, is often subject to important

variations between plants as revealed by the high standard

deviation values observed with the wild-type virus (Table 1). This

may reflect heterogeneous partitioning of CABYV in infected

plants, as already mentioned in the previous section. All ten

mutants were able to invade non-inoculated tissue (Table 1).

Two point mutants, PCS1 and PCS3+, showed a significant

reduction of infectivity (the percentage of plants infected with

PCS1 and PCS3+ is statistically different from wild-type-infected

plants, p-values = 0, Exact Fisher Test) and accumulated strikingly

less than the wild-type virus in systemic leaves (Table 1).

Furthermore, no CP or RT proteins could be detected in non-

inoculated leaves by western blot (Fig. 2A). However, the virus

titre within the infiltrated leaves was close to that observed with the

wild-type virus as determined by ELISA (p-values calculated with

Kruskal Wallis test: 0.677 for PCS1 and 0.173 for PCS3+), and by

western blot (nearly similar CP accumulation in the different

protein samples) indicating that virus multiplication of both

mutants was almost unaffected (Table 1; Fig. 2B). All other PCS

mutants accumulated in plants up to levels close to that of the wild-

type virus (Table 1).

As viruses with RNA genomes are subject to high mutation rates

during replication, we investigated the stability of the point

mutations introduced in the PCS mutants. Total RNA was

Two Forms of CABYV-RT Required for Virus Movement
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extracted from systemic leaves of two infected plants and the

cDNA encompassing the mutation site (from nt 4652 to 5004) was

amplified by RT-PCR and then sequenced. All modifications

introduced into the RT sequence were conserved in the progeny of

the corresponding PCS mutants. In the case of PCS1, the progeny

showed a synonymous mutation at nucleotide 4767 in one of the

two plants analyzed. A non-synonymous mutation also appeared

at position 4663 in PCS5 progeny in one of the two plants

Figure 2. RT protein synthesis by CABYV mutants and RT* incorporation into purified virions. A) Western blot analysis on proteins
extracted from non-infiltrated leaves of M. perfoliata inoculated with wild-type CABYV (WT), PCS1, PCS3+, NM3 and RTDCter mutants. The analysis was
performed on several plants for each mutant but one sample for NM3 and RTDCter or two samples for PCS1 and PCS3+ are shown. Two blots
corresponding to two independent experiments have been juxtaposed. The right panel is a fusion a lanes originating from the same blot. The blots
were incubated with a mixture of two antisera, one directed against CABYV virions and one against the C-terminal part of CABYV-RT protein. N.I.: non-
inoculated plant; the white triangle (ca. 60 kDa) indicates a cross reaction of the antibodies with plant proteins. B) Western blot analysis of proteins
extracted from infiltrated leaves of M. perfoliata inoculated with PCS1, PCS3+, RTDCter, NM3 or WT. Immunodetection was done with antibodies
directed against the CP. The right panel corresponds to a prolonged exposure of a blot from an independent experiment. Black circle indicates an
additional viral product of about 35 kDa present in PCS1 infected plants. Notice that because of the different antisera used, the cross reactions (white
triangles in Fig. 2A and Fig. 2B) are different. C) Western blot analysis of capsid proteins in CABYV mutant particles (1 mg) prepared from agroinfected
M. perfoliata. The whole blot was incubated with antibodies directed against CABYV-virions but the upper panel was overexposed. Black star in Fig.
2C: viral protein of 30 kDa present in PCS3+ purified particles; Positions of the molecular markers (in kDa) are indicated on the left. In brackets,
apparent molecular weight of the different forms of the RT proteins.
doi:10.1371/journal.pone.0093448.g002
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analyzed. This latter modification, that changed the cysteine

residue at position 386 on the RT sequence into a serine (66 amino

acids upstream the first mutation introduced in PCS5), had no

obvious effect on the infectivity of PCS5 since the virus mutant was

readily detected in non-inoculated leaves of M. perfoliata.

Systemic movement of a C-terminally truncated RT
CABYV mutant

To design a virus mutant able to synthesize solely a truncated

RT protein similar to that incorporated into viral particles, the

serine at position 461 was tentatively designated as the last amino

acid of the RT* protein (Fig. 1A). Therefore, the downstream 205

amino acids in the RT sequence were deleted from CABYV-NM3,

a full-length clone containing two unique restriction sites, NheI

and MluI, respectively downstream and upstream of the ORF3

and ORF5 stop codons (Fig. 1B and Fig. S1). Note that due to the

cloning strategy, this mutant referred to as CABYV-RTDCter

displays altered amino acids: two following the ORF3 stop codon

and three at the C-terminus of the protein (Fig. S1). M. perfoliata

plants were inoculated with this mutant and the corresponding

virus controls (CABYV-WT and CABYV-NM3) but CABYV-

RTDCter was never detected by ELISA in young non-infiltrated

leaves (Table 1), nor by Northern blot (data not shown). Although

CABYV-NM3 that generated CABYV-RTDCter accumulated in

M. perfoliata less than the wild-type virus, the percentage of infected

plants was high (87%), suggesting that the amino acid modifica-

tions introduced into CABYV-NM3 (Fig. S1) and present in

CABYV-RTDCter, did not affect virus infectivity but rather

reduced the virus titre (Table 1). The CABYV-RTDCter deficiency

in long distance movement was also noticed in two additional hosts

of CABYV, A. thaliana and C. sativus, where no accumulation was

detected by ELISA in non-inoculated leaves (Table S1). However,

CABYV-RTDCter was readily detectable by ELISA in agroinfil-

trated leaves of M. perfoliata (Table 1), and the CP accumulated at a

similar level compared to CABYV-NM3 as observed by western

blot (Fig. 2B). In order to test whether CABYV-RTDCter loading

into sieve tubes was impaired, the presence of the virus mutant in

sieve tubes was investigated by feeding non-viruliferous aphids for

48 h on agroinoculated C. sativus systemic leaves. As CABYV-

RTDCter particles contain both CP and RT* proteins required for

efficient virus acquisition into the hemolymph [25], longstanding

feeding of aphids in sieve tubes may concentrate virions in the

insect’s body and facilitate virus detection. Virus detection in

aphids could therefore confirm the presence of virus particles in

sieve tubes. CABYV-NM3 was detected by RT-PCR in a batch of

30 aphids fed on systemic leaves of plants agroinfected with this

virus, but no signal was found in the RNA samples prepared from

two batches of 30 aphids fed on the upper leaves of plants

agroinoculated with CABYV-RTDCter (Fig. S3). These results

suggest that the virus was not, or hardly, present in sieve tubes

presumably because the upstream step, i.e. the loading from

nucleated cells into sieve elements, is compromised in the absence

of the complete RT protein.

Accumulation of the mutated RT proteins in planta
The effect of the mutations introduced in the RT sequence on

its accumulation was investigated by western blot analysis on

protein extracts prepared from plants agroinoculated with the

different RT mutants. Both CP and full-length RT (95 kDa

apparent MW) proteins were detected in systemically infected

leaves of plants inoculated with CABYV-NM3 and the wild-type

virus (Fig. 2A) and in plants inoculated with the mutants PCS2,

PCS2-3, PCS3, PCS4, PCS5, PCS6, PCS7 and PCS8 (Fig. S4). In

contrast, neither of the CP or RT proteins could be detected in

systemic leaves of plants inoculated with PCS1, PCS3+ or

CABYV-RTDCter (Fig. 2A) which correlates with low or absence

(in the case of CABYV-RTDCter) of virus accumulation in

systemic tissue (Table 1). However, when the protein content

was investigated in infiltrated leaves, the major CP was readily

detected for all three mutants (Fig. 2B) and the complete RT

(apparent MW 95 kDa) could be observed in leaves infiltrated with

PCS3+ mutant only after a longer exposure of the blot (Fig. 3B,

right panel). This suggests that the PCS3+ RT protein accumu-

lated at a lower level compared to wild-type protein. Surprisingly,

Figure 3. Detection of CABYV proteins and virions in infected C. sativus and M. perfoliata. A) Immunodetection by western blot of CABYV
proteins in extracts prepared from infected C. sativus or M. perfoliata or from purified virus; B) Immunodetection by western blot of CABYV proteins in
phloem exudate collected from infected C. sativus. Two blots corresponding to two independent collections of phloem exudate are presented. For
(A) and (B), a CABYV polyclonal antiserum was used to detect the major coat protein (CP) and the RT* protein (lower panels) whereas a CABYV-RT-Cter

specific antiserum detected only the complete RT protein (upper panels). Positions of the molecular markers (in kDa) are indicated on the left. The
white triangles (ca. 60 kDa and 35 kDa) indicate major cross reactions of the antibodies with plant proteins. Inf.: infected plant; N.I.: non-infected
plant; Pur. Virus: Purified virus. C) Observation by transmission electron microscopy of virus-like particles from phloem exudate collected from
infected cucumber plants. The grids were coated with a CABYV-polyclonal antiserum before addition of phloem exudate. The bar corresponds to
50 nm.
doi:10.1371/journal.pone.0093448.g003
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no 95 kDa RT protein was detected in PCS1-inoculated leaves

(Fig. 2B), even after an overexposure of the blot (not shown)

suggesting that the mutations introduced in the RT sequence

might have affected either the readthrough translation mechanism

or the stability of the mutated RT protein. However, a minor band

of about 35 kDa was reproducibly present in the protein extracts

from plants infected by PCS1, but the identity of this protein has

not been further analyzed (Fig. 2B). Similarly, no RT protein was

observed in C. quinoa protoplasts infected with PCS1 transcripts

synthesized in vitro (data not shown). The C-terminally deleted RT

encoded by CABYV-RTDCter was also detected in agroinoculated

leaves and migrated with an apparent MW of ca. 57 kDa, slightly

above the theoretical 52 kDa MW (Fig. 2B). Taken together, these

results show that most of the mutations introduced in the potential

cleavage site of the RT (8 mutants out of 10) did not affect RT

protein synthesis, nor the viral infectious cycle. Conversely, both

PCS1 and CABYV-RTDCter mutants that produced no RT

protein or only a C-terminal deleted version respectively were

impaired in their ability to move systemically in infected plants.

Finally, PCS3+ that expressed lower levels of the full-length RT

protein also exhibited an inefficient long-distance movement.

RT protein cleavage and incorporation of the RT* protein
into virions

The ability of the mutated RT proteins to be correctly processed

and incorporated into viral particles was further addressed by

analyzing protein composition of purified virus particles prepared

from infected plants. We assumed that if the RT* protein was

properly processed by the mutant virus it would be packaged into

virions. The purified mutant viruses were prepared from systemic

leaves of M. perfoliata infected individually with the eight PCS

mutants that performed like the wild-type virus or from M.

perfoliata agroinoculated leaves for PCS1, PCS3+, and CABYV-

RTDCter whose accumulation in systemic leaves was not

detectable or too low to allow virion purification. The major CP

(ca. 24 kDa) was detected in all virus preparations (Fig. 2C lower

panel and Fig. S5). The RT* protein (apparent MW 55 kDa) was

present in the particles of all mutants except PCS1 (Fig. 2C and

Fig. S5). A longer blot exposure did not further allow RT*

detection (Fig. S5 right panel) what was predictable since no full-

length RT protein was detected in plants infected with this mutant

(Fig. 2A). In microscopy, PCS1 particles without the minor capsid

component exhibited an apparent structure similar to wild-type

virions (Fig. 4). This confirms that the RT* protein is dispensable

for virion formation and does not alter the global particle shape, as

previously reported for other members of the Luteoviridae family

[7,9,35]. An additional smaller band of ca. 30 kDa was

reproducibly detected in the purified particles of PCS3+ using

the antibodies directed against CABYV virions (Fig. 2C and Fig.

S5). In order to further characterize the 30 kDa viral protein

present in PCS3+ particles, a band of the same molecular weight

was excised from a gel loaded in parallel with proteins extracted

from PCS3+ virions. Mass spectrometry analysis identified

peptides covering 46.7% of the CP sequence and matching the

CP sequence up to the stop codon at position 200 (Fig. S6). This

suggests that the 30 kDa protein present in PC3+ virions

comprises the entire CP sequence. However, based on its apparent

MW (ca. 30 kDa), this CP-fusion protein is expected to contain

additional amino acids probably those that extend beyond the CP

stop codon (CP is 24 kDa). Although a peptide exhibiting a mass

of 1155.55 Da that could match to the positions 256-264 in the

RT sequence was detected by mass spectrometry (Fig. S6), it could

not be confirmed by Nano LC-MS-MS, because of too low

amounts of peptide. Failure to detect any peptide downstream the

CP stop codon may originate from the proline-rich sequence

downstream the CP stop codon which is known to impede trypsin

Table 1. Virus accumulation in M. perfoliata agro-inoculated with CABYV mutants.

Non-inoculated leavesa Inoculated leavesa

Virus No of inf. plants/totalb ELISAc No of inf. plants/total ELISA

PCS1 2/35 (6%) 0.2360.13 10/10 1.0960.15

PCS2 19/25 (76%) 1.1860.64 /

PCS2-3 6/12 (50%) 0.9960.37 /

PCS3 17/32 (53%) 1.7860.55 /

PCS3+ 2/28 (7%) 0.3060.01 10/10 0.9360.18

PCS4 21/25 (84%) 1.7560.93 /

PCS5 22/25 (88%) 1.1960.67 /

PCS6 23/25 (92%) 1.6060.85 /

PCS7 18/25 (72%) 0.8560.39 /

PCS8 19/25 (76%) 1.1160.63 /

CABYV-RTDCter 0/23 (0%) 0.1560.04d 10/10 1.0860.23

CABYV-NM3 20/23 (87%) 0.6560.21 10/10 1.0860.21

CABYV-WT 67/84 (80%) 1.3160.67 10/10 1.0660.23

Non-inoc. 0/11 (0%) 0.1260.02e 0/3 0.1260.00e

aNon-inoculated and inoculated leaves were tested by ELISA four or one week post-inoculation respectively.
bNumber of M. perfoliata plants infected/number of plants agroinoculated. In brackets, the percentage of infected plants. A plant is considered infected when the ELISA
value of the leaf extract is above the ELISA value of three non-infected plants + 3 times the standard deviation of these extracts.
cMean absorbance 6 standard error of infected plants at 405 nm after substrate incubation.
dMean absorbance 6 standard error of all inoculated (but non-infected) plants at 405 nm after substrate incubation.
eMean absorbance 6 standard error of non-inoculated plants at 405 nm after substrate incubation.
/: not tested.
doi:10.1371/journal.pone.0093448.t001
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cleavage [36]. Additional enzymes (chymotrypsin and Asp-N) were

used to digest the protein but mass spectrometry analysis of the

released products did not provide more information on the

protein. Therefore we cannot conclude whether the 30 kDa

protein present in PCS3+ purified particles is a CP post-

translational modification or a shorter version of the RT*.

Whatever the nature of this additional product anchored into

PCS3+ particles, the overall virion shape assessed by transmission

electron microscopy was indistinguishable from wild-type CABYV

particles (Fig. 4).

A high MW protein (ca. 90 kDa) was also present in all purified

virus samples, sometimes visible only after longer exposure of the

blot. (Fig. 2C and Fig. S5). This protein, referred to as P90, is

recognized by virus-targeted antibodies and was previously

identified as a plant glycosyl hydrolase protein by mass spectrom-

etry [34]. Identification of this protein was further confirmed by its

strong interaction with anti-P90 specific antibodies (Fig. S7A).

However, to definitively discard the presence of an unprocessed

RT protein in the purified PCS3+ mutant virions, the blot was

incubated with antibodies directed against the C-terminal part of

the RT protein. No protein of MW 95 kDa (apparent MW of the

full-length RT protein) was detected in purified virus extracts

confirming that no unprocessed RT protein is incorporated into

virus particles of PCS3+ (Fig. S7B).

In summary, the absence of 55 kDa RT* protein in purified

PCS3+ virus preparation strongly supports the fact that the correct

processing of the RT protein produced in infected plants is

affected by the mutation introduced in PCS3+.

Discussion

In addition to its major role in virus transmission, the minor

capsid component of poleroviruses, the RT protein, was suggested

to control virus loading into the phloem [5]. Two forms of the RT

are produced in plants: a 74 kDa full-length protein and a 55 kDa

C-terminal truncated version (RT*), the latter being the only

detectable species incorporated into virions [7,9–11]. In this paper,

we showed for the first time that both forms of the CABYV RT

protein can be detected in phloem exudate collected from infected

cucumber plants. To address the function of each RT protein

species in polerovirus life cycle, and in particular in long-distance

movement, we engineered CABYV mutants producing either only

the full-length RT or the truncated form. In addition, a series of

CABYV mutants affected in the potential cleavage site of the RT

protein (amino acids 440-463 in the RT sequence) was generated.

Our results showed that the mutations introduced in eight out of

the ten alanine substitutions virus mutants (PCS2, PCS2-3, PCS3,

PCS4, PCS5, PCS6, PCS7 and PCS8, see Fig. 1) did not affect

synthesis, processing of the RT and RT* incorporation into viral

particles. In addition, none of these mutants were strongly affected

in their ability to move systemically. In the case of PCS1 mutant,

no RT was detected in infected plant extracts, and we suspect that

the five nucleotide change introduced in the PCS1 RT sequence

(Fig. S8) may have affected a sequence required for the

translational readthrough mechanism [1,21,27]. An alternative

hypothesis for the absence of RT protein in PCS1-infected plants

could be protein instability due to the mutation.

A particularly interesting observation was made with PCS3+
mutant as it produces a full-length mutated RT protein that could

be detected in infected plants in lower amounts but was likely

improperly processed. The RT* could never be detected in PCS3+
particles, although another CP-containing product of about

30 kDa was reproducibly assembled into virions. This 30 kDa

protein could represent an RT-processed product released after

cleavage at an incorrect site exposed on the PCS3+ mutated RT

protein. It is noteworthy that the mutation introduced in PCS3+
spans the alanine substitutions introduced in PCS2, PCS2-3 and

PCS3 (amino acids 443-447). Taken individually, these substitu-

tions did not modify the RT processing, suggesting that the effect

observed with PSC3+ may be related to the combination of the

individual mutations or to the introduction of a bulky aromatic

tryptophan at position 444 (Fig. 1). This latter modification is likely

to impose a strong structural constraint to the RT protein

conformation of PCS3+ that may mask or change the cleavage site

of the protein. These considerations led us to propose a cleavage

model controlled by the structural context around the cleavage site

of the RT protein rather than the sequence per se. Implication of

the local secondary structure of the cleavage site, and not just the

sequence per se, has been suggested to play a role in the processing

of the polyproteins of Sesbania mosaic virus (Sobemovirus genus) and of

the P3-6K1 protein of Plum pox virus (Potyviridae family) [37,38].

The PCS3+ mutant inefficiency to move to systemic tissues

shows that the full-length RT protein produced by the PCS3+
mutant cannot complement the absence of RT* incorporation.

However, as the RT protein produced by PCS3+ contains a 4

amino acid change, we cannot completely discard the hypothesis

that the mutation per se is deleterious for its function in virus long-

distance movement. Previous data showed that the PLRV RT

protein was able, but only to some extent, to act in trans on the

movement of viral particles without RT* [20], while no such in

trans action of the full-length RT was reported for TuYV [21].

Finally, the very poor infectivity of PCS1 mutant, whose particles

are only composed of the CP, supports the hypothesis that some

inefficient virus movement, independent of the RT protein, can

take place for viruses devoid of RT* [5]. This result correlates with

the poor ability of CABYV mutants, in which the entire ORF5

sequence was deleted, to invade systemic leaves (our unpublished

results).

A second valuable CABYV mutant we generated is CABYV-

RTDCter which produces a C-terminally deleted RT that is

incorporated into virions (Fig. 2B and Fig. 2C). This mutant

Figure 4. Viral particles of CABYV-WT, PCS1, PCS3+, CABYV-NM3 and CABYV-RTDCter observed by transmission electron
microscopy (TEM). A CABYV polyclonal antiserum was used to capture virus particles on the grids before TEM. Bars correspond to 50 nm.
doi:10.1371/journal.pone.0093448.g004
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represents to our knowledge the first example of an engineered

member of the Luteoviridae family able to synthesize solely an RT-

truncated protein resembling the RT* and to package it into

particles. Although CABYV-RTDCter produces virions displaying

physical and biological properties similar to the wild-type virus

(shape, size, virions protein composition; see Fig. 3C and Fig. 4),

this mutant was unable to reach upper leaves. By using aphids as

virus ‘‘concentrators’’ of phloem exudate and by assessing the

presence of the virus in the aphids by RT-PCR, we were unable to

find CABYV-RTDCter mutant in the sieve elements, suggesting

that it was incapable to invade this plant compartment. In absence

of the full-length RT, the RT* packaged into particles seems

therefore unable to fulfill the entire transport function required for

systemic transport of CABYV. These data strongly support a

model whereby long-distance movement requires both the

incorporated RT* and the entire RT. The absolute requirement

of the C-terminal domain of the CABYV RT protein for long-

distance movement reminds the case of Pea enation mosaic virus-1

(PEMV-1, genus Enamovirus, Luteoviridae family) that lacks the

homologous C-terminal part of the RT protein and is unable to

move systemically in the absence of the helper umbravirus PEMV-

2 [39,40].

To explain the requirement of both RT proteins for CABYV

systemic movement, direct or indirect interactions between these

two proteins can be proposed. Evidence for interactions between

PLRV RT* proteins has recently been provided by Chavez et al.

[41]. Based on the assumption that such interactions could also

take place for CABYV, we propose a model setting the basis for its

systemic transport that could eventually be extended to all

members of the Luteoviridae family (Fig. 5). As already reported

for PLRV [41], the C-terminal part of the RT protein of CABYV

is predicted to be highly disordered using the disorder prediction

algorithms IUPred [42] and PONDR [43] (Fig. S9). We can

therefore assume that the RT protein may adopt different

conformations in plant cells and that only a fraction of the RT

population is cleaved and incorporated into particles. Incomplete

cleavage of the RT would leave a pool of free RT proteins able to

act in trans on virions. The free RT proteins could bridge the gap

between viral particles and some cellular elements mediating virus

transport into sieve tubes (e.g. plasmodesmata or microtubules)

(Fig. 5). Only viral particles able to incorporate the RT* will be

efficiently loaded into the sieve tubes from where they can be

acquired by aphids. How the free RT protein also enters the sieve

tubes and whether it is thereafter acquired by aphids and involved

in aphid transmission, as suggested for BYDV [11], remains an

open question. In parallel to this efficient systemic transport of

wild-type CABYV virions in the sieve tubes, virus particles lacking

the RT* might also follow an alternative route independent of the

RT that remains to be explored.

In order to support the model presented in Fig. 5, it would be

interesting to complement the deficiency in long-distance transport

of CABYV mutants by inoculating transgenic plants expressing

either the full-length RT, or the C-terminal domain of the protein.

Several other additional aspects of polerovirus transport will also

need to be addressed in the future like the identification of the

protease (viral or cellular) responsible for RT protein cleavage and

Figure 5. Hypothetical model for the mode of action of the RT proteins in CABYV movement. Because of the intrinsic disorder of the C-
terminal part of the RT protein, the pool of RT proteins (in black) may adopt different conformations in infected cells. A fraction of them could be
processed to give RT* proteins (in grey) and further incorporated into virions. In the case of CABYV, these virions decorated with the RT* protein
cannot move systemically without the assistance of the complete RT protein (1). The free RT protein could bind to the RT* proteins on the surface of
virions, or could interact with plant components involved in virus transport (on the figure only plasmodesmata are presented) to promote efficient
virus transport into sieve elements (2). Virions devoid of RT* proteins could follow another transport pathway independent of the RT protein leading
to inefficient systemic transport (3). CC: companion cells; PPC: phloem parenchyma cells.
doi:10.1371/journal.pone.0093448.g005
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regulation of the processing. Indeed, this process is crucial to

release a defined ratio of RT* versus RT proteins, two essential

viral determinants governing major steps in polerovirus propaga-

tion, i.e. movement within plants via the phloem and between

plants via vector transmission.

Supporting Information

Figure S1 Schematic representation of CABYV-NM3
used to obtain CABYV-RTDCter. The unique NheI and MluI

restriction sites introduced in CABYV-NM3 are indicated and the

position of the deletion in the RT protein sequence (cross-hatched

lines) of CABYV-RTDCter is shown. Nucleotide modifications

introduced in CABYV-NM3 and CABYV-RTDCter genomes are

shown together with the corresponding amino acid changes. *:

ORF3 stop codon; ¤: ORF5 stop codon. Amino acids are

indicated by single code letters, those in bold are mutated. The

numbers refer to amino acid positions on the RT protein

sequence.

(TIF)

Figure S2 Specificity of the serum used in ELISA.

Detection of untreated or SDS-denatured virions by ELISA.

Wild-type CABYV virions were treated with 1% or 5% SDS and

incubated 10 min at 65uC. After elimination of the SDS by

filtration through a filter device Centricon (Millipore) with a cut-

off of 3 kDa, samples were used for the ELISA test. Absorbance at

405 nm was measured 30 min after addition of substrate buffer.

Citrate buffer 1X, used to resuspend purified virus, served as a

negative control (OD = 0.12).

(TIF)

Figure S3 Assessment of the presence of CABYV-
RTDCter in sieve elements of C. sativus by RT-PCR. 30

aphids fed on systemic leaves of C. sativus agroinoculated with

CABYV-NM3 (one batch) or CABYV-RTDCter (two batches of

aphids collected from different plants) were pooled before total

RNA extraction. RT-PCR was designed to amplify a 386 bp

fragment in the CP sequence. Ribosomal protein-like 7 amplifi-

cation (bottom panel) served as loading control. Non-inoc.: aphids

fed on non-inoculated C. sativus.

(TIF)

Figure S4 CP and RT synthesis by CABYV mutants in
non-infiltrated leaves. Western blot analysis on proteins

extracted from non-infiltrated leaves of M. perfoliata inoculated

with eight of the CABYV-PCS mutants. The analysis was

performed on several plants for each mutant but only one sample

per mutant is presented in the figure. The middle panel was

incubated with an antiserum directed against CABYV virions

whereas antibodies directed against the C-terminal part of

CABYV-RT protein were used for the upper panel. Bottom panel

is stained with Coomassie blue. WT: wild-type; N.I.: non-

inoculated plant.

(TIF)

Figure S5 CP and RT* incorporation into CABYV-PCS
mutants particles. Western blot analysis of capsid proteins in

CABYV mutant particles (1 mg) prepared from agroinfected M.

perfoliata. The whole blot was incubated with antibodies directed

against CABYV-virions. The panel on the right is a longer

exposure of the blot. Black star: viral protein of 30 kDa present in

PCS3+ purified particles; Black circle: cross reactions of the

antibodies with a plant protein observed in all virus preparations

but sometimes after a longer exposure of the blot. WT: wild-type

virus. Positions of the molecular markers (in kDa) are indicated on

the left.

(TIF)

Figure S6 MALDI-TOF analysis of the structural viral
protein of 30 kDa detected in PCS3+ virus particles.
Peptides identified by MALDI-TOF by peptide mass fingerprint

are shown in black on the CABYV-WT RT protein sequence. The

CP stop codon is indicated by an asterisk and the last amino acid

identified on the RT* protein of CABYV (R residue) is underlined.

The trypsic peptide (256-264) that could not be confirmed by

NanoLC-MS/MS is italicized in black.

(TIF)

Figure S7 Western blot analysis of protein contents of
purified mutant viruses. A) Immunodetection using antibod-

ies directed against the P90 protein, a plant protein of 90 kDa

reproducibly present in virus purified preparations prepared from

infected M. perfoliata. B) Immunodetection using antibodies

directed against the C-terminal part of CABYV-RT protein.

Positions of molecular markers (in kDa) are indicated on the left.

The name of the different mutant is indicated on the top. WT:

wild-type virus; N.I.: non-infected plant tissue; Inf.: infected plant

extract.

(TIF)

Figure S8 Nucleotide changes (in bold) introduced in
the CABYV genome to obtain the PCS1 mutant. Numbers

referred to as nucleotide position on CABYV genome. The amino

acids targeted in the PCS1 mutant are indicated.

(TIF)

Figure S9 Prediction of disordered domains of CABYV
ORF3 (A) and ORF5 (B) encoded proteins using the
IUPred program. Position of the deletion in the RT protein

introduced in CABYV-DRTCter is indicated by a solid line. The

amino acid positions in the CP and RT protein sequences are

indicated. RTD: readthrough domain.

(TIF)

Table S1 Virus accumulation in C. sativus or in A.
thaliana agroinoculated with CABYV mutants.
(TIF)
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