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RESEARCH ARTICLE

Frataxin Is Localized to Both the Chloroplast
and Mitochondrion and Is Involved in
Chloroplast Fe-S Protein Function in
Arabidopsis
Valeria R. Turowski1, Cindy Aknin2, Maria V. Maliandi3, Celeste Buchensky1,
Laura Leaden1, Diego A. Peralta1, Maria V. Busi1, Alejandro Araya4, Diego F. Gomez-
Casati1*

1 Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario,
Suipacha 531, 2000, Rosario, Argentina, 2 UMR5234 Microbiologie Fondamentale et Pathogénicité, Centre
National de la Recherche Scientifique and Université Bordeaux-Segalen, 146 rue Léo Saignat, 33076,
Bordeaux cedex, France, 3 Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de
Chascomús (IIB-INTECH) CONICET/UNSAM, Camino de Circunvaación Km 6, 7130, Chascomús,
Argentina, 4 Centre National de la Recherche Scientifique & UMR 1332 –Biologie du Fruit et Pathologie,
Institute National de la Recherche Agronomique (INRA) Bordeaux Aquitaine, 71 avenue Edouard Bourlaux,
33882, Villenave D’Ornon, France

* gomezcasati@cefobi-conicet.gov.ar

Abstract
Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial

heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elu-

cidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH,

using confocal microscopy, and found a novel dual localization for this protein. We demon-

strate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it

may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite

reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH defi-

cient plants. Our results indicate that frataxin deficiency alters the normal functioning of

chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron trans-

port chain in this organelle.

Introduction
Frataxin is a ubiquitous protein that is present in most organisms, from bacteria and fungi,
mammals, and plants. In eukaryotes, frataxin has been described as a nuclear-encoded mito-
chondrial protein, but it is functional also in amitochondriate organisms [1, 2]. Frataxin defi-
ciency is associated with the Friedreich’s ataxia (FRDA) phenotype, a cardio- and neuro-
degenerative disease in humans [3, 4]. The structure of frataxin has been conserved throughout
evolution, suggesting that it could have the same function in all organisms [5–7]. In general, all
frataxin orthologs are able to bind iron, implicating them in such diverse physiological roles as:
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(i) iron homeostasis [4]; (ii) respiration and energy conversion [8]; (iii) regulator of Fe-S cluster
formation [9]; (iv) biogenesis of Fe-S proteins [10–12]; (v) iron chaperone and storage [13, 14];
(vi) heme metabolism [15, 16] and (vii) REDOX control, ferroxidase activity and protection
against oxidative damage associated with NO production [7, 17–21]. Thus, experimental evi-
dence suggests that in eukaryotes, the frataxin protein plays a role in several processes associ-
ated with mitochondrial energy metabolism and Fe homeostasis.

Several studies have shown that a frataxin deficiency results in the over-accumulation of Fe
in the mitochondrion and reduced activity in several Fe-S and heme proteins, associated with a
decrease in ATP levels and impaired mitochondrial function [8, 10, 11, 22–24]. The association
of frataxin with some proteins related to the Fe-S cluster biosynthetic machinery implies an
important role for frataxin in this process [25].

Fe-S clusters are ubiquitous inorganic cofactors found in a large number of proteins
involved in various physiological processes such as electron transfer, accumulation of Fe, Fe
homeostasis, photosynthesis, catalysis, nucleic acid metabolism, and gene regulation [26](and
references therein). The production of Fe-S groups is carried out by complex enzymatic
machinery that incorporates iron and uses cysteine as a source of sulfur. The Fe-S groups are
assembled while associated with scaffold proteins and are then inserted into specific apopro-
teins [27].

Three different types of Fe-S cluster biosynthetic systems have been described: (i) the Nitro-
gen Fixation (NIF) system required for the biogenesis of nitrogenase in azothropic bacteria [28,
29]; (ii) the Iron-Sulfur Cluster (ISC) system, a ubiquitous mechanism for the maturation of
Fe-S proteins found in some bacteria and mitochondria [30]; and (iii) the Sulfur Utilization
Factor (SUF) found in many bacteria, archaea, and plant chloroplasts. It has been proposed
that this third system is closely related to the formation of Fe-S groups under conditions of oxi-
dative stress and/or iron deficiency [26, 31–34]. In addition, a fourth “incomplete” system in
eukaryotic cells, the Cytosolic Iron-sulfur protein Assembly system (CIA) was recently
described. To date, little is known about the CIA system, but it is thought that it depends on
some components from the mitochondria and the ISC system [27, 35]. All three Fe-S biosyn-
thetic systems, excepting the CIA, have in common the participation of a cysteine desulfurase
that provides the sulfur moiety from cysteine and a Fe-S scaffold protein for Fe-S cluster
assembly.

A large number of Fe-S proteins have been identified in all plant cellular compartments.
Moreover, several Arabidopsis genes have been characterized, revealing that the plastids, mito-
chondria and the cytosol have their own, albeit not entirely independent, Fe-S assembly
machinery [35]. Based on the evolutionary origin of the genes associated with this function in
different plant organelles,, it has been proposed that the chloroplast SUF machinery for the
synthesis of Fe-S proteins is derived from cyanobacteria, while mitochondria use an ISC system
that originated in the proteobacteria [35, 36].

In this sense, the genome of Arabidopsis encodes two isoforms of cysteine desulfurase, one
belonging to the chloroplast SUF (AtNfs2), and the other to the mitochondrial ISC system
(AtNfs1) [35]. In addition, the Arabidopsis genome contains genes for the scaffold proteins
that participate in Fe-S synthesis in the mitochondria or chloroplasts; however Arabidopsis has
only one gene for frataxin (AtFH) which plays a critical role in the biogenesis and maturation
of Fe-S clusters and hemeproteins in mitochondria [16, 23, 37, 38]. Frataxin has been reported
to interact with different proteins involved in the Fe-S biosynthetic pathway, such as Nfs1,
modifying its catalytic activity [39, 40] [38]. In addition, functional interactions have also been
reported between frataxin and Isu1, Isd11, and also with other mitochondrial proteins such as
HSC20 and succinate dehydrogenase subunits [39, 41–44], showing the importance of frataxin
in all stages of Fe-S cluster biogenesis performed by the ISC system. Our study shows for the
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first time clear evidence that frataxin is localized to both mitochondria and chloroplasts, and
highlights its physiological relevance to chloroplast functions in Arabidopsis.

Materials and Methods

Plant material and growth conditions
Arabidopsis thaliana ecotype Columbia (Col-0) was used as the wild-type line. Two indepen-
dent transgenic lines expressing the AtFH fragment in antisense orientation under the control
of the cauliflower mosaic virus 35S (CaMV35S) promoter were used as frataxin deficient lines,
as-AtFH-1 and as-AtFH-2 [16]. The transgenic line CaMV35S-u-ATP9, expressing an unedited
ATP9 gene, and showing impaired mitochondrial function, was used as control of NIR activity
measurements [45]. Transgenic AtFH-GFP plants were constructed by transformation with
the pZP212 vector [46] containing the coding sequence of the AtFH gene (564 bp) fused to the
enhanced green fluorescence protein (GFP) ORF [47]. Transgenic as-AtFH lines and
AtFH-GFP plants were selected on MS agar medium containing either 20 μg/ml hygromycin
or 50 μg/ml kanamycin, respectively. After 14 days, plants were transferred to soil and grown
in a greenhouse at 25°C under fluorescent lamps (Grolux, Sylvania, Danvers, MA, USA and
Cool White, Philips, Amsterdam, The Netherlands) with an intensity of 150 μmol.m-2.s-1 using
a 16 h light ⁄ 8 h dark photoperiod.

Production of AtFH-GFP protoplasts and confocal microscopy
Protoplasts were prepared from young leaves of 3-week-old Arabidopsis plants essentially as
described [48]. Leaves were cut into 1 mm strips with sharp razor blades and placed in 24-well
plates containing 500 μl of 1.5% cellulase (Sigma) and 0.4% driselase (Sigma) in 20 mMMES
buffer, pH 5.7, containing 0.4 M mannitol, 20 mM KCl, 10 mM CaCl2 and 1% w/v BSA. Cell
wall digestion was performed at 25°C for approximately 3 h with constant agitation (60 rpm),
and the protoplasts were collected by centrifugation and washed in the same buffer without
enzymes. Protoplasts were treated with 0.1 μMMitoTracker Orange (Invitrogen) for 15 min
and washed three times with MS medium. Protoplasts were embedded by mixing 1 volume of
1% low melting Sea Plaque GTG agarose (FMC BioProducts) with 1 volume of protoplast sus-
pension. A drop of this mixture was placed on microscope slide and overlaid with a coverslip.
Images were acquired with a Leica TCS SP5 confocal microscope (Leica Microsystems, Wet-
zlar, Germany). The transmission micrographs of non-fluorescent protoplast structures were
acquired using the manufacturer’s filter settings. GFP fluorescence was excited with an argon
laser (488 nm) and detected at 510 nm. Mitochondria were identified by the fluorescence of
MitoTracker excited at 543 nm with a green helium neon laser and detected at 576 nm. Chloro-
phyll auto fluorescence (red) was detected at 650 nm when excited at 488 nm with the argon
laser.

Isolation of chloroplasts and mitochondria
Chloroplasts were purified as previously described with some modifications [49]. About 100 g
of leaves from 5- to 6-week old Arabidopsis thaliana plants (as-AtFH-1 and -2, and u-ATP9
lines) were excised and homogenized in 50 ml of cold extraction buffer (50 mMHEPES, pH 8;
330 mM Sorbitol, 2 mM EDTA, 1 mMMgCl2, 5 mM ascorbic acid, 0.05% (w/v) BSA, 2 mM
PMSF) using an Omni Mixer (Omni International, Kennesaw, GA, USA). The homogenate
was then clarified by filtration and centrifuged for 5 min at 2,500 x g at 4°C. The pellet was
gently suspended in 3 ml of HEPES/sorbitol buffer (50 mMHEPES, pH 8, 330 mM sorbitol),
layered onto a base of 3 ml of HEPES/Sorbitol buffer containing 35% w/v Percoll, and
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centrifuged at 2,500 x g for 10 min. at 4°C. This procedure was repeated four times. The chloro-
plast suspension was frozen in liquid nitrogen and stored at -80°C until use. Highly purified
mitochondria from A. thaliana flowers were isolated as previously described [23]. Under these
conditions, the mitochondrial fraction is devoid of cytoplasmic and plastid contamination.
Mitochondria were recovered in a buffer containing 300 mMmannitol and 10 mM K2HPO4

(pH 7.4).

Chlorophyll fluorescence parameters
Chlorophyll fluorescence was measured using conditions adapted fromMaxwell and Johnson
[50]. Seedlings were germinated on MS medium either with hygromycin at 20 μg/ml (for as-
AtFH-1 and -2 plants) or without antibiotics (wt plants), and then transferred to soil. After
seven weeks chlorophyll fluorescence was measured in vivo using a fluorometer (OS-500 pulse
amplitude modulated, Qubit Systems). Leaves were dark-adapted for 15 min and the measur-
ing beam was then turned on and minimal fluorescence (F0) was measured. Further, leaves
were exposed to a saturating flash (3,000 μmol m–2 s–1) to determine maximal fluorescence
(Fm). An actinic light to drive photosynthesis (100 μmol m–2 s–1) was then applied. After
about 3 min., another saturating light flash allowed the maximum fluorescence in the light
(F´m) to be measured. The level of fluorescence immediately before the saturating flash is
termed Ft. Once instantaneous fluorescence had returned to the level of F0, the (F´0) was
calculated.

The Quantum yield of PSII was calculated as ϕPSII = (F´m–F´t)/F´m; the Maximum Quan-
tum yield of PSII was calculated as Fv/Fm = (Fm–F0) / Fm; the Photochemical Quenching was
calculated as qP = (F´m-Ft) / (F´m-F´0) and the Non Photochemical Quenching was calcu-
lated as NPQ = (Fm-F’m) / F’m.

Quantitative RT-PCR assay
Total RNA was isolated from leaves using the TRIzol reagent (Invitrogen). RNA integrity was
checked on a 1% (w/v) agarose gel, and the concentration was determined by absorbance at
260 nm. cDNA was synthesized using random hexamer primers. The conditions used were
those described in the Access RT-PCR system first strand protocol (Promega). Quantitative
real time PCR was performed as previously described using a MiniOpticon2 apparatus (Bio-
Rad) [51]. Amplification was initiated with a 2-min denaturation step at 94°C. The protocol
consisted of 40 cycles at 96°C for 10 s, 60°C for 15 s, and 72°C for 1 min, followed by 10 min
extension at 72°C. Fluorescence detection was performed at the end of each annealing step for
1 s. Melting curves for each PCR were determined by measuring the decrease in fluorescence
with increasing temperature (from 65–98°C). The actin2 gene (At3g18780) transcript was used
as an internal reference, and relative quantification was performed using the 2-ΔΔCt method
[52].

Protein extraction and western-blot analysis
The chloroplast or mitochondrial suspensions were disrupted by sonication (25% amplitude
for 1 min) and centrifuged for 10 min at 7,000 x g at 4°C. The protein content of the superna-
tant was measured according to Bradford [53] using bovine serum albumin as protein
standard. Ten to thirty micrograms of the protein extract was layered onto a 15% SDS poly-
acrylamide gel and electrophoresed for 1 h at 35 mA. Ferredoxin (Fd) was detected using a
polyclonal anti-pea Fd antibody kindly provided by Dr. Nestor Carrillo (National University of
Rosario), NAD9 was detected using a polyclonal antibody against the wheat NAD9 subunit
kindly provided by Dr. Daniel Gonzalez (National University of Litoral), and ADPGlc PPase

Dual Localization of Arabidopsis Frataxin

PLOS ONE | DOI:10.1371/journal.pone.0141443 October 30, 2015 4 / 18



was detected using anti-ADPGlc PPase from spinach leaf [54]. AtFH was detected using affin-
ity-purified antibodies raised against recombinant AtFH [55]. The relative abundance of indi-
vidual protein bands was quantified using the Gel Pro Analyzer program 4.0 (Media
Cybernetics, Silver Spring, MD, USA).

Additional methods
The chlorophyll content of isolated chloroplasts was quantified according to the method of
Arnon [56]. Chloroplastic iron was quantified by the ferrozine method following an initial
treatment with acid to release complexed iron [19, 57]. NIR activity was determined in isolated
chloroplasts based on the method described by Takahashi et al. [58]. AtFH-Fe or BSA-Fe were
obtained by preincubation of 3 μM solutions of AtFH or BSA with 30 μM Fe2SO4 for 10 min at
30°C in 50 mM potassium phosphate, 1 mM DTT, pH 7.5. All determinations were performed
at least in triplicate, and the average values ± SD are reported. The significance of differences
was determined using Student’s t-test. Statistically different values (P< 0.05) are shown with
an asterisk in the tables and figures.

Results

AtFH localizes to the chloroplasts and mitochondria
In order to predict the subcellular location of Arabidopsis frataxin (AtFH), in silico analyses
were performed (Table 1). A higher probability that frataxin is targeted to mitochondria was
found using programs based on different algorithms [59–62]. Moreover, it was possible to pre-
dict that AtFH could be imported into chloroplasts with a significant score as well. In addition,
predictions using the ATP2 program, which specifically evaluates the probability of dual target-
ing, agreed that AtFH is likely localized to both the mitochondria and chloroplasts (Table 1).

In order to test these predictions, we constructed Arabidopsis thaliana transgenic plants car-
rying the coding sequence of the AtFH gene fused to the green fluorescent protein (AtFH-GFP;
see Materials and Methods) under control of the constitutive CaMV 35S promoter. Following
plant transformation, GFP fluorescence was examined in leaf protoplasts via confocal
microscopy. AtFH-GFP was found to be associated with mitochondria as indicated by
the overlapping of GFP fluorescence with the Mitotracker staining (Fig 1A, 1B and 1D).

Table 1. Predicted subcellular localization of AtFH (At4g03240).

PREDICTOR LOCALIZATION SCORE

TargetPa Mitochondria 0.858

Chloroplast 0.177

MitoProtb Mitochondria 0.998

ChloroPc Chloroplast 0.507

GTP_ ppd Mitochondria 0.695

Chloroplast 0.587

GTP_refd Chloroplast 0.683

Mitochondria 0.548

ATP2d Dual 0.759

a TargetP 1.1 Server (http://www.cbs.dtu.dk/services/TargetP)
b MitoProt II–v1.101 (http://ihg.gsf.de/ihg/mitoprot.html)
c ChloroP 1.1 Server (http://www.cbs.dtu.dk/services/ChloroP/)
d GTP—Green Targeting Predictor & ATP2—Ambiguous Targeting Predictor 2 (http://www.plantco.de/gtp).

doi:10.1371/journal.pone.0141443.t001
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Interestingly, a significant accumulation of AtFH-GFP was detected in the chloroplast com-
partment as observed by the overlapping of the green GFP fluorescence with chlorophyll auto
fluorescence (Fig 1B, 1C and 1E). In order to evaluate the localization of AtFH, the presence of
the protein in chloroplasts and mitochondria was also confirmed by immunoblotting using
immunopurified anti-AtFH antibodies. The absence of the NAD9 mitochondrial protein in
chloroplastic preparations, and the absence of chloroplastic ADPGlc PPase subunits in mito-
chondria, were used as controls to asses the purity of chloroplasts and mitochondria, respec-
tively (Fig 2).

Physiological effects of altered AtFH expression in chloroplasts
Previously, we established that frataxin deficiency results in severe changes in mitochondrial
function in Arabidopsis [23] as previously shown in other eukaryotes [8, 11, 12]. To determine
whether frataxin has a role in chloroplast functions as suggested by the ability of the AtFH N-
terminal signal sequence to target chloroplasts, we quantified the chlorophyll and total Fe con-
tent of isolated chloroplasts from frataxin deficient as-AtFH-1 and as-AtFH-2 plants. The total
chlorophyll content decreased between 20 and 30%, with a significant decrease of ~30% in
chlorophyll b (Fig 3A). In contrast, the total Fe content increased ~40% in as-AtFH chloro-
plasts with respect to the wt controls (Fig 3B). Since these results suggest a possible alteration
of chloroplast function, we decided to investigate the photosynthetic capacity in frataxin defi-
cient plants. For this purpose, chlorophyll fluorescence parameters were compared in leaves
of as-AtFH and wt plants using light conditions adapted fromMaxwell et al. (2000) [50]. The

Fig 1. Subcellular localization of AtFH. The plasmid pZP212 containing the coding sequence of AtFH-GFP was introduced into Arabidopsis thaliana Col-0
plants by the floral dip method. Protoplasts were isolated from the resulting transgenic plants and analyzed by confocal microscopy. (A) Mitotracker staining
showing mitochondria (excitation 543 nm/emission 576 nm); (B) GFP fluorescence (excitation 488 nm/emission 510 nm); (C) Chlorophyll autofluorescence
(excitation 488 nm/emission 650 nm); (D) Overlay of A and B showing coincidence of GFP localization and Mitotracker (yellow); (E) Overlay of B and C
showing the coincidence of GFP localization and chlorophyll autofluorescence (yellow); (F) Phase contrast image of the protoplast analyzed.

doi:10.1371/journal.pone.0141443.g001
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Fv/Fm ratios, an indicator of the plant photosynthetic performance (intactness), were similar;
however, small but significant differences were found for the Quantum yield of PSII (ϕ PSII),
which indirectly estimates the flux of electrons out of PSII, and the Photochemical quenching
(qP), which reflects the ratio of open PSII reaction centers after electron transfer to PSI
(Table 2). Both parameters show a slight reduction of ~10–13% when comparing frataxin-defi-
cient to wt control leaves. In addition, an important decrease of ~39–43% in the non-photo-
chemical quenching (NPQ), which is related to the dissipation of excess excitation energy as
heat, was found in as-AtFH plants (Table 2). Taken together, these data indicate that frataxin
deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chloro-
phyll, and the photosynthetic electron transport chain in this organelle.

AtFH deficiency affects ferredoxin levels and nitrite reductase activity in
chloroplasts
Several independent reports have linked frataxin to iron sulfur cluster assembly [10, 23, 63–
65]. Moreover, we found that the activity of some mitochondrial Fe-S proteins was affected in
frataxin deficient plants [23]. To investigate whether a similar effect occurs in chloroplasts, we
determined the mRNA levels for the genes encoding the chloroplast Fe–S proteins nitrite
reductase (NIR) and ferredoxin (Fd) in as-AtFH and wt plants using qRT-PCR. While NIR
mRNA levels showed an increase of ~1.5 to 1.8-fold in as-AtFH lines compared to wt plants,
no significant differences were observed for FdmRNA (Fig 4A). Furthermore, to determine
whether the Fd and NIR transcript levels observed in as-AtFH plants have an influence on pro-
tein accumulation or function, we analyzed (i) ferredoxin levels by western blot analysis using
a polyclonal antibody raised against pea Fd, and (ii) the activity of NIR, which is an Fe-S
enzyme involved in the second step of nitrate assimilation in plants (see Materials and

Fig 2. Analysis of the presence of AtFH in isolated chloroplasts andmitochondria from A. thaliana by western blot in wt and as-AtFH-1 plants.
AtFH was detected using anti-AtFH antibodies. Anti-ADPGlc PPase and anti-NAD9 antibodies were used as controls to asses the purity of chloroplasts and
mitochondria, respectively.

doi:10.1371/journal.pone.0141443.g002
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Fig 3. Quantification of chlorophyll and iron contents. (A) Quantification of chlorophyll a, b and total chlorophyll in wt (black bars), as-AtFH-1 (grey bars),
and as-AtFH-2 (white bars) plants. (B) Analysis of total iron content in wt and as-AtFH plants. Asterisks indicate a statistically different result from the control
value (P < 0.05). Values are the mean ± standard deviation of at least four independent replicates.

doi:10.1371/journal.pone.0141443.g003
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Methods). The results showed a reduction in Fd levels of ~55% and 40% in as-AtFH-1 and as-
AtFH-2 plants, respectively, compared to wt plants (Fig 4B and 4C). A similar result was found

Fig 4. Analysis of chloroplastic Fe-S genes and proteins. (A) qRT-PCR analysis of genes encoding chloroplastic Fe-S proteins. NIR: nitrite reductase
(AT2g15620.1), Fd1: ferredoxin 1 (At1g10960), Fd2: ferredoxin 2 (At1g60950). RNA was extracted from leaves of wt (black bars), as-AtFH-1 (grey bars) and
as-AtFH-2 (white bars) plants. Asterisks indicate a statistically different result from the control value (P < 0.05). Bars represent mean values (error
bars ± standard deviation) of three independent experiments. The relative expression levels of the transcripts are shown as fold-changes with respect to
actin2mRNA levels. (B) Western blot analysis of total Fd levels in chloroplasts of wt and as-AtFH plants using a specific anti-Fd IgG. Ponceau staining of
Rubisco large subunit is shown as a loading control. (C) Quantification of Fd signals from B in wt and as-AtFH plants.

doi:10.1371/journal.pone.0141443.g004

Table 2. Photosynthetic parameters in as-AtFH and wt leaves.

line Fv/Fm ϕ PSII qP NPQ

wt 0.795 ± 0.035 0.688 ± 0.036 0.809 ± 0.034 0.316 ± 0.048

as-AtFH-1 0.789 ± 0.029 0.617 ± 0.029* 0.729 ± 0.044* 0.194 ± 0.058*

as-AtFH-2 0.775 ± 0.042 0.597 ± 0.024* 0.713 ± 0.027* 0.183 ± 0.043*

Fv/Fm, Maximum quantum yield of PSII; ϕ PSII, Quantum yield of PSII; qP, Photochemical quenching; NPQ, Non-photochemical quenching. Values are

the mean ± standard deviation of at least three leaves from 10 individual plants.

Asterisks (*) indicate statistically different results (P < 0.05).

doi:10.1371/journal.pone.0141443.t002
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for NIR showing a 25–30% decrease in enzyme activity in as-AtFH lines compared to wt plants
(see Fig 5). Taken together, these results suggest that the decrease in Fd levels and NIR activity
occurs mainly at the posttranslational level, possibly because AtFH may be required for both
the normal turnover and/or functionality of these chloroplast Fe-S proteins.

Frataxin is required for full NIR activity in chloroplasts
One explanation for the effect of frataxin deficiency on NIR activity could be the alteration in
the Fe-S cofactor. Therefore, we analyzed NIR activity from the wt and both as-AtFH lines
after incubating chloroplast extracts with the recombinant AtFH pre-equilibrated with Fe2+

[55]. Chloroplast extracts incubated with BSA-Fe or Fe alone were used as the control (Fig 5).
The NIR activity was fully recovered after incubating the extracts with AtFH-Fe. By contrast,
NIR activity was not recovered, and a decrease in activity was observed in wt and as-AtFH lines
when BSA-Fe, or Fe alone, was added to chloroplast extracts. This inhibitory effect is probably
due to the production of free radicals by iron when it is not complexed with frataxin. In addi-
tion, the isolated chloroplasts of u-ATP9 plants having impaired mitochondrial function [48,
54] showed similar levels of NIR catalytic activity compared to wt chloroplasts, suggesting that
the decrease of NIR activity observed in the as-AtFH plants is specific (see S1 Fig).

Fig 5. Determination of NIR activity.NIR activity was assayed in extracts of isolated chloroplasts with no additions (control) or in the presence of AtFH-Fe,
BSA-Fe or Fe alone, in wt (black bars), as-AtFH-1 (grey bars) and as-AtFH-2 (white bars) plants. The asterisk indicates values statistically different from the
control (P < 0.05). Columns represent mean values (error bars ± standard deviation) of at least three independent experiments.

doi:10.1371/journal.pone.0141443.g005
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Discussion
Consistent with the mitochondrial localization of frataxin, changes in expression and/or defi-
ciency of this protein are associated with mitochondrial dysfunction and iron metabolism dis-
orders [1, 4]. In humans and yeast, the N-terminal region of the protein directs its import into
mitochondria, followed by two proteolytic cleavages carried out by a mitochondrial processing
peptidase (MPP) [66, 67]. However, frataxin is not exclusively located in this organelle, since
the presence of a functional extra-mitochondrial frataxin pool able to interact and modulate
the activity of cytosolic aconitase/iron regulatory protein-1 (IRP1) has been reported [68].
Moreover, frataxin interacts with IscU1, a cytoplasmic isoform of the Fe-S cluster biosynthetic
machinery, suggesting a role for frataxin in the biogenesis of Fe-S clusters outside of the mito-
chondrion [25].

In Arabidopsis, we have previously described the crucial role of frataxin in mitochondria,
where it is able to modulate the activity of Fe–S proteins, take part in stress responses, and par-
ticipate in heme synthesis [16, 23, 37]. Despite these advances, the function of this protein in
plants has not been completely elucidated [27], possibly because AtFH could be functioning in
other cellular compartments. Defining the subcellular localization of a protein is the starting
point towards understanding its metabolic function [69, 70]. Lan et al [71] have reported the
presence of AtFH in the Arabidopsis root proteome; however, there is no evidence for the pres-
ence of frataxin in plant organelles from proteomic data. Other proteins involved in Fe-S clus-
ter biosynthesis in mitochondria (such as AtHscB, AtSufE1, and AtIsu2 and 3) or chloroplasts
(such as AtSufE2 and CplscA) were not found in any available proteome, probably due to low
expression levels, and their presence in organelles was demonstrated by experiments using
GFP fusions [72–76].

This study is the first to examine the cellular location of Arabidopsis frataxin using in vivo
methods, and we found that the protein is targeted to both mitochondria and chloroplasts
(Figs 1 and 2). Although the mitochondrial targeting of AtFH was expected from the phyloge-
netic distribution of frataxin [1, 77], its localization to the chloroplast had not been previously
reported. The dual localization of proteins into energetic organelles in plants that fulfill analo-
gous functions, such as mitochondria and chloroplasts, is not unusual [78, 79]. More than 100
proteins have been described that are localized in mitochondria and chloroplasts and are
involved in crucial cellular functions such as protein synthesis, DNA and RNAmetabolism,
protein fate, stress, detoxification, and energy metabolism [78, 80]. We present here evidence
that AtFH is targeted to both mitochondria and chloroplasts, consistent with its putative role
as iron donor for Fe-S cluster formation, which occurs in both compartments.

The presence of frataxin homologues in proteobacterial genomes, despite the absence of
orthologs in gram-positive bacteria, led to the inference that this protein is targeted to the mito-
chondrion in eukaryotes due to the origin of this organelle. Moreover, the co-occurrence of fra-
taxin together with other proteins related to Fe-S cluster assembly suggests that it has a role as
an iron donor in the eukaryotic mitochondrial ISC system [1, 77]. Thus, the unexpected find-
ing of a structural frataxin homolog in Gram positive bacteria was surprising [81]. The frataxin
homologue from Bacillus subtilis participates in the biosynthesis of heme and Fe-S groups,
although in the latter it is associated with the SUF system [81, 82]. In this sense it is possible to
suggest that, regardless of its phylogenetic origin, frataxin is an iron donor acting on the same
metabolic pathways. Therefore, our results indicate that, even with an evolutionary history of
frataxin that is linked to the mitochondrion, AtFH is localized to both mitochondria and chlo-
roplasts, where it has similar functions.

Chloroplasts possess SUF-type machinery for the synthesis of their own Fe-S proteins, and
this is different than the mitochondrial ISC system [35, 36]. In chloroplasts, Fe-S clusters play a
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key role in photosynthetic electron transport as well as in nitrogen and sulfur assimilation [83].
Thus, we hypothesized that AtFH could be involved in the metabolism of Fe-S clusters in chlo-
roplasts and/or participate in the coordination of the SUF and ISC systems. If this is indeed the
case, AtFH would play a role as a modulator of the two types of Fe-S cluster biosynthesis sys-
tems, regulating the activity of proteins involved in the pathways. Previously, we found that fra-
taxin deficiency affects the expression of some genes involved in tetrapyrrole synthesis [16].
Since tetrapyrroles participate in the common pathway for chlorophyll and heme synthesis, it
is possible that the observed reduction in photosynthetic pigments (Fig 3A) is due to changes
in the synthesis of tetrapyrrole precursor metabolites. Alternatively, AtFH deficiency may
affect the activity of chlorophyll a oxygenase, a Rieske 2Fe-2S cluster-containing enzyme that
catalyzes the interconversion of chlorophyll a to b [84].

To investigate these possibilities, we first analyzed the chlorophyll and iron contents in chlo-
roplasts of the as-AtFH lines and wt plants. As previously reported, frataxin deficiency is corre-
lated with an increase in mitochondrial iron content [4, 19]. An analogous result was found for
total Fe content in frataxin-deficient Arabidopsis plants (Fig 3B). The higher iron content in
chloroplasts of as-AtFH lines highlights the role of frataxin in maintaining the homeostasis of
this metal ion in the cell. Moreover, AtFH deficient plants showed altered photosynthetic
capacity which was not related to variations in the composition of the PSII reaction centers,
since no differences in the Fm/Fv parameter were observed between as-AtFH and wt plants.
An AtFH deficiency would shift the redox state of the electron acceptors from the PSII with a
consequent decrease in the rate of electron transport. Hence, impaired re-oxidation of the plas-
toquinone pool leads to a lower efficiency of photosystem II. Similar findings were obtained
from Arabidopsis plants lacking the chloroplastic proteins Nfu2 or AtNfs2 in which minor val-
ues ofФPSII and qP correlated with lower amounts of iron-sulfur proteins associated with PSI
[85, 86]. On the other hand, it is well established that chlorophyll b is the most abundant pig-
ment in the light harvesting complex II (LHCII) that is involved in the dissipation of excess
light energy as heat [87, 88]. The lower levels of non-photochemical quenching (energy dissi-
pated as heat) in as-AtFH plants could be due to the reduced amount of chlorophyll b (Fig 3A
and Table 2).

It has been reported that frataxin deficiency causes a decrease in the activities of several
mitochondrial Fe-S proteins [11, 23, 64, 65]. If frataxin plays a similar role in chloroplasts, then
an analogous behavior should be observed in some plastid Fe-S proteins. This is the case for
NIR, a chloroplast Fe-S containing protein. Interestingly, while an increase in NIR mRNA lev-
els was detected, the NIR catalytic activity was reduced in frataxin deficient plants (Figs 4 and
5); however, no reduction of NIR activity was observed in u-ATP9 line showing dysfunctional
mitochondria. These results suggest that frataxin deficiency may be related to the Fe–S cluster
assembly in NIR. In the case of ferredoxin (Fd), the major iron-containing protein in photo-
synthetic organisms that is central to reductive metabolism in the chloroplast, a 40–55% reduc-
tion in protein abundance was found in AtFH deficient plants. It is assumed that the reduction
in Fd may occur by protein degradation related to an inability to form the Fd holo-form. Anal-
ogous observations have been reported for plants deficient in chloroplastic cysteine desulfur-
ase, which is responsible for sulfur delivery for Fe-S cluster synthesis [86].

An important result from our study is the full recovery of NIR activity observed after addi-
tion of iron-complexed AtFH to chloroplast extracts. This response may be interpreted as an
effect of AtFH on the Fe-S cluster assembly to form the active NIR holo-protein. Similar results
were previously described for aconitase, where human frataxin participates in the conversion
of the inactive 3Fe-4S enzyme to the active 4Fe-4S form [14]. These results fully support the
notion that frataxin is involved in Fe-S cluster biogenesis and promotes enzyme reactivation.
Interestingly, control experiments show that the addition of Fe alone or combined with BSA
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results in a reduction of NIR activity that can be assumed to result from the production of free
radicals by iron. The fact that inhibition was prevented in the presence of AtFH is a strong
argument supporting the protective role of frataxin and its participation as an iron chaperone.
Taken together, these results suggest that plant frataxin, in addition to restoring NIR activity,
also plays an important role in protecting chloroplasts against oxidative damage.

In summary, the results presented here imply a novel role for frataxin in plant chloroplasts.
We demonstrate that AtFH is targeted to both the mitochondria and chloroplasts, where it
may play a role in maintaining the correct structure of Fe-S clusters and/or in maintaining
their proper redox state to ensure the correct functioning of chloroplast iron sulfur proteins.

Supporting Information
S1 Fig. Determination of NIR activity. Determination of NIR activity in extracts of isolated
chloroplasts with no additions (control) or in the presence of AtFH-Fe, BSA-Fe or Fe alone, in
wt (white bars) or u-ATP9 plants (black bars). Columns represent mean values (error
bars ± SD) of at least three independent experiments.
(TIF)
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