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Abstract

Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of
regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which
are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the
utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs)
and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two
quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak
Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by
a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped
detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from
Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share .91% genome-
wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV
isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of
virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both
genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that
these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the
potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such
techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine
stations.
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Introduction

When attempting to prevent the spread of plant diseases,

comprehensive inventories of viral diversity are fundamental both

for effective quarantine and sanitation efforts, and to ensure that

plant materials within biological resource centres (BRCs) can be

safely distributed [1,2]. Detection of pathogens is one of the most

critical quarantine and BRC operations. Ideally, the tools used for

this purpose must be both sensitive enough to accurately detect the

presence of even extremely low amounts of pathogen nucleic acids

or proteins, and provide sufficient specific information to identify

the genetic variants/strains of whatever pathogens are present.

The major challenge of using classical nucleic acid sequence-

informed detection tools such as polymerase chain reaction (PCR)

or Southern hybridisation assays, is that despite being highly

sensitive, these techniques are generally either species or, at best,

genus-specific. In addition, such tools lack the capacity to detect,

let alone identify, pathogens that are unknown, poorly character-

ized or highly variable. Although it might be argued that the most

economically important pathogens tend to be well characterized

and that it is therefore not a serious issue that many of the more

obscure pathogens go undetected, it is becoming better appreci-

ated that the ‘‘importance’’ of any particular pathogenic microbe

is very difficult to define. Specifically, the environmental and
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economic impacts of a particular pathogen can vary widely with

varying climatic and ecological conditions and there are large

numbers of microbes that are presently not classified as pathogens

(or at least which are not noticeably pathogenic to humans or to

domesticated plants and animals), which will eventually emerge as

important future pathogens [3]. Also, since non-domesticated

plant and animal species and countless numbers of microbes which

contribute to natural terrestrial ecosystems [4–6] can also

potentially be threatened by exotic pathogens, the unconstrained

global dissemination of apparently harmless fungi, viruses and

bacteria could have serious environmental and economic impacts.

Whereas ‘‘sequence-dependent’’ microbial detection methods,

which are generally based on PCR or nucleic acid hybridisation,

can only be used to target known pathogens, sequence-indepen-

dent next generation sequencing (NGS) based approaches can

potentially provide an ideal platform for identifying almost all

known and unknown microbes present in any particular host

organism [5,7–9]. Coupled with innovative sample processing

procedures, ‘‘metagenomics’’ applications of NGS [10] have

already enabled the identification of novel pathogens through

the rapid and comprehensive characterization of microbial strains

and isolates within environmental and host tissue samples [9,11].

In addition to numerous applications in the study of animal

infecting viruses, NGS-based metagenomics approaches have also

been used to detect plant infecting viruses [12]. Three main classes

of nucleic-acids have been targeted by such analyses: (1) virion-

associated nucleic acids (VANA) purified from viral particles

[13,14]; (2) double-stranded RNAs (dsRNA) [15]; and (3) virus-

derived small interfering RNAs (siRNAs) [16]. Large numbers of

both known and new plant and fungus infecting DNA and RNA

viruses and viroids have been detected using these approaches

[12,17–21].

A major shortcoming of these metagenomic approaches is,

however, that they remain technically cumbersome and too

expensive for routine diagnostic applications on collections of

eukaryotic hosts - even if barcoded primers are used to bulk-

sequence pooled samples from multiple sources [15]. Although

prohibitive for high throughput diagnostics, the costs of NGS in

the context of viral diversity research are often offset by the vast

volumes of useful data that can be generated on viral population

dynamics, co-infections, mutation frequencies and genetic recom-

bination [22–24].

Here we describe the application of siRNA- and VANA-

targeted NGS approaches to the analyses of two Egyptian

sugarcane plants maintained for a number of years at the CIRAD

Sugarcane Quarantine Station in Montpellier, France. These

plants were both known to be infected with Sugarcane streak
Egypt Virus (SSEV; Family Geminiviridae, Genus Mastrevirus)
and were maintained for use as positive controls during the

application of diagnostic tools for SSEV detection in sugarcane

plants passing through the quarantine station. Using the siRNA-

and VANA-targeted NGS approaches, we discovered and

characterized a novel highly divergent mastrevirus from these

two plants. This novel virus was also identified in other sugarcane

plants originating from Sudan that exhibited white spots on the

base of their leaf blades that become fused laterally, so as to appear

as chlorotic stripes. Accordingly, we have proposed naming this

virus Sugarcane white streak Virus (SWSV). In addition, we

present a detailed analysis of siRNAs derived from the SWSV and

SSEV variants infecting the two analysed sugarcane plants.

Materials and Methods

Plant material and sugarcane quarantine DNAs collection
Leaves presenting typical symptoms of sugarcane streak disease

were sampled from two sugarcane plants that had previously been

found to be infected with Sugarcane streak Egypt virus (SSEV)

and had been kept in a quarantine greenhouse at the CIRAD

Sugarcane Quarantine Station, in Montpellier, France. The two

sugarcane plants, VARX and USDA (which was initially

maintained at USDA-APHIS Plant Germplasm Quarantine

before being transferred to CIRAD in 2007), were both initially

collected in Egypt during two independent sampling surveys in the

late 1990s [25,26]. These sampling surveys were both carried out

on experimental stations and commercial lands in close collabo-

ration with Egyptian authorities (Sugar Crop Research Institute

(SCRI), Dr Abdel Wahab I. Allam (Director of SCRI) regarding

VARX; and Agricultural Genetic Engineering Research Institute,

Dr N.A. Abdallah, and Dr M.A. Madkour regarding USDA). In

addition, leaves from six sugarcane plants originating from Sudan

(B0065, B0067, B0069, D0002, D0003 and D0005, Table S1) and

maintained at the CIRAD Sugarcane Quarantine Station were

also used (Material Transfer Agreements between CIRAD and

Kenana Sugar Co. Ltd). DNAs from these six plants were

extracted using the DNeasy Plant Mini Kit (Qiagen). In addition,

DNA was extracted from an additional 18 frozen leaf samples (2

20uC), including 17 samples originating from Sudanese sugarcane

plants, which had passed through the Montpellier Quarantine

station between 2000 and 2009 and one which had been obtained

from a sugarcane seedling grown from sugarcane true seeds [fuzz]

developed in Guadeloupe from a biparental cross involving plants

H70-6957 and B86-049 using the DNeasy Plant Mini Kit (Table

S1).

VANA extraction from viral particles, cDNA amplification
and sequencing

One gram of leaf material from the VARX and USDA plants

were ground in Hanks’ buffered salt solution (HBSS) (1:10) with

four ceramic beads (MP Biomedicals, USA) using a tissue

homogeniser (MP biomedicals, USA). The homogenised plant

extracts were centrifuged at 3,2006g for 5 min and 6 ml of the

supernatants were further centrifuged at 8,2286g for 3 min. The

resulting supernatants were then filtered through a 0.45 mm sterile

syringe filter. The filtrate was then centrifuged at 148,0006g for

2.5 hrs at 4uC to concentrate viral particles. The resulting pellet

was resuspended overnight at 4uC in 200 ml of HBSS. Non-

encapsidated nucleic acids were eliminated by adding 15 U of

bovine pancreas DNase I (Euromedex) and 1.9 U of bovine

pancreas RNase A (Euromedex, France) followed by incubation at

37uC for 90 min. Total nucleic acids were finally extracted from

virions using a NucleoSpin 96 Virus Core Kit (Macherey-Nagel,

Germany) following the manufacturer’s protocol. The amplifica-

tion of extracted nucleic acids was performed as described by

Victoria et al. [14] and aimed at detecting both RNA and DNA

viruses. Reverse transcriptase priming and amplification of nucleic

acids were used for detecting RNA viruses. A Klenow Fragment

step was included in the protocol in order to detect DNA viruses as

demonstrated by Froussard [27]. Briefly, viral cDNA synthesis was

performed by incubation of 10 ml of extracted viral nucleic acids

with 100 pmol of primer DoDec (59-CCT TCG GAT CCT CCN

NNN NNN NNN NN-39) at 85uC for 2 min. The mixture was

immediately placed on ice. Subsequently, 10 mM dithiothreitol,

1 mM of each deoxynucloside triphosphate (dNTP), 4 ml of 56
Superscript buffer, and 5 U of SuperScript III (Invitrogen, USA)

were added to the mixture (final volume of 20 ml), which was then
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incubated at 25uC for 10 min, followed by 42uC incubation for

60 min and 70uC incubation for 5 min before being placed on ice

for 2 min. cDNAs were purified using the QiaQuick PCR cleanup

kit (Qiagen). Priming and extension was then performed using

Large (Klenow) Fragment DNA polymerase (Promega). First,

20 ml of cDNA in the presence of 4.8 mM of primer DoDec were

heated to 95uC for 2 min and then cooled to 4uC. 2.5 U of

Klenow Fragment, 10X Klenow reaction buffer and 0.4 mM of

each dNTP (final volume of 25 ml) were added. The mixture was

incubated at 37uC for 60 min followed by 75uC enzyme heat

inactivation for 10 min. PCR amplification was carried out using

5 ml of the reaction described above in a 20 ml reaction containing

2 mM primer (LinkerMid50 primer for VARX: 59-ATC GTA

GCA GCC TTC GGA TCC TCC-39 and LinkerMid52 primer

for USDA: 59-ATG TGT CTA GCC TTC GGA TCC TCC-39),

and 10 ml of HotStarTaq Plus Master Mix Kit (Qiagen). The

following cycling conditions were used: one cycle of 95uC
for 5 min, five cycles of 95uC for 1 min, 50uC for 1 min, 72uC
for 1.5 min, 35 cycles of 95uC for 30 sec, 50uC for 30 sec, 72uC for

1.5 min +2 sec at each cycle. An additional final extension for

10 min at 72uC was then performed. DNA products were pooled

(VARX and USDA products and 94 additional products obtained

from other quarantine samples), cleaned up using the Wizard SV

Gel and PCR Clean-Up System (Promega) and sequenced on 1/

8th of a 454 pyrosequencing plate using GS FLX Titanium

reagents (Beckman Coulter Cogenics, USA).

siRNA extraction and sequencing
The nucleic acid extraction and sequencing approach of Kreuze

et al. [16] was used with slight modifications. Total RNAs were

extracted from 100mg of VARX fresh leaf material using Trizol

(Invitrogen) following the manufacturer’s instructions. Small RNA

libraries were directly generated from total RNAs. Small RNAs

ligated with 39 and 59 adapters were reverse transcribed and PCR

amplified (30 sec at 98uC; [10 sec at 98uC, 30 sec at 60uC, 15 sec

at 72uC] 613 cycles; 10 min at 72uC) to create cDNA libraries

selectively enriched in fragments having adapter molecules at both

ends. The last step was an acrylamide gel purification of the 140–

150 nt amplified cDNA constructs (corresponding to cDNA inserts

from siRNAs +120 nt from the adapters). Small RNA libraries

were checked for quality and quantified using a 2100 Bioanalyzer

(Agilent). The library was then sequenced on one lane of a HiSeq

Illumina as single-end 50 base reads.

Sequence assembly
Analyses of reads produced by either Illumina (siRNA

sequencing) or 454 GS FLX Titanium (Amplified-VANA

sequencing) were performed using CLC Genomics Workbench

5.15. De novo assemblies of contigs were performed with a

minimal contig size set at 100 bp and 200 bp for Illumina and 454

GS FLX Titanium reads, respectively. A posteriori mapping of

reads against the complete genomes of SWSV (once the full

genome had been cloned and sequenced) or SSEV or against parts

of these genomes were also performed using CLC Genomics

Workbench 5.15. Primary sequence outputs have been deposited

in the sequence read archive of GenBank (accession numbers:

VANA_USDA dataset: SRR1207274; VANA_VARX dataset:

SRR1207275; siRNA_VARX dataset: SRR1207277).

SWSV genome amplification, cloning and sequencing
Two partially overlapping SWSV specific PCR primer pairs

were designed so as to avoid any potential cross-hybridization to

63 representative species of the family Geminiviridae, including

SSEV. These two primer pairs (pair1: SWSV_F1 forward primer

59-GCT GAA ACC TAT GGC AAA GA-39 and SWSV-R1

reverse primer 59-AGC CTC TCT ACA TCC TTT GC-39; and

pair2 ECORI-1F forward primer 59-GAA TTC CCA GAG CGT

GGT A-39 and ECORI-2R reverse primer 59-GAG TTG AAT

TCC GGT ACC AAG GAC-39) were complementary to

sequences within the rep gene of SWSV. Total DNAs from the

two sugarcane plants described above (VARX and USDA) were

extracted using the DNeasy Plant Mini Kit (Qiagen) and screened

for SWSV using the two pairs of primers and GoTaq Hot Start

Master Mix (Promega) following the manufacturer’s protocol.

Amplification conditions consisted of an initial denaturation at

95uC for 2 min, 35 cycles at 94uC for 10 sec, 55uC for 30 sec,

68uC for 3 min, and a final extension step at 68uC for 10 min.

Amplification products of ,2.8 Kbp were gel purified, ligated to

pGEM-T (Promega) and sequenced by standard Sanger sequenc-

ing using a primer walking approach.

Reverse transcriptase priming and amplification of nucleic acids

were carried out in order to detect the intron of the rep gene. Total

RNAs from VARX were extracted using the RNeasy Plant Mini

Kit (Qiagen). DNase treatment of extracted RNAs was carried out

using RQ1 RNase-Free DNase (Promega) following the manufac-

turer’s protocol. Viral cDNA synthesis was performed by

incubation of 1 ml of DNase treated RNAs with 15 ml of RNase

free water, 0.6 mM of each primers (SWSV_F2: 59-ACC ATG

TGC TGC CAG TAA TT-39 and ECORI-2R: 59-GAG TTG

AAT TCC GGT ACC AAG GAC-39), and 0.4 mM of mixed

deoxynucloside triphosphate (dNTPs), 5 ml of 5X Qiagen OneStep

RT-PCR Buffer and 1 ml of Qiagen OneStep RT-PCR Enzyme

Mix. Tubes were first placed at 50uC for 30 min for cDNA

synthesis. PCR amplification was then carried out using the

following cycling conditions: One cycle of 95uC for 15 min, 35

cycles of 94uC for 1 min, 55uC for 1 min, 72uC for 1 min. An

additional final extension for 10 min at 72uC was then performed.

Amplification products were gel purified, ligated to pGEM-T

(Promega) and sequenced by standard Sanger sequencing.

PCR detection tests
DNAs extracted from 17 sugarcane plants originating from

Sudan kept at 220uC or six freshly extracted from plants

maintained at the CIRAD Sugarcane Quarantine Station were

screened for SWSV. DNA extracted from one sugarcane seedling

grown from true seeds (fuzz) was also screened for SWSV. PCR

amplification was carried out using the two pairs of primers

described above (SWSV_F1 and SWSV_R1; ECORI-1F and

ECORI-2R) using GoTaq Hot Start Master Mix (Promega)

following the manufacturer’s protocol. Amplification products of

,2.8 Kbp were gel purified, ligated to pGEM-T (Promega) and

sequenced as described above. Plants infected with SWSV were

also screened for all known sugarcane-infecting mastreviruses:Su-
garcane streak Egypt Virus, Sugarcane streak virus, Maize streak
virus, Sugarcane streak Reunion virus, Eragrostis streak virus and

Saccharum streak virus. PCR amplification was carried out using

1 ml of DNA template in a 25 ml reaction containing 0.2 mM of

each broad spectrum primer (SSV_1732F: 59-CAR TCV ACR

TTR TTY TGC CAG TA-39 and SSV_2176R: 59-GAR TAC

CTY TCH ATG MTH CAG A-39) and GoTaq Hot Start Master

Mix (Promega) following the manufacturer’s protocol. The

following cycling conditions were used: One cycle of 95uC for

2 min, 35 cycles of 94uC for 1 min, 53uC for 1 min, 72uC for

1 min. An additional final extension for 10 min at 72uC was then

performed.

Viral Metagenomics in a Plant Quarantine Context
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Sequence analyses
Six complete genomes of the novel mastrevirus were recovered

from plants VARX, USDA, A0037, B0069, D0005 and E0144

(Table S1) and were aligned with the genomes of representative

mastreviruses using MUSCLE (with default settings) [28].

Similarly, the predicted replication associated protein (Rep) and

capsid protein (CP) amino acid sequences encoded by the viruses

within the full-genome dataset were also aligned using MUSCLE.

Maximum likelihood phylogenetic trees were inferred for the full

genomes (TN93+G+I nucleotide substitution model chosen as the

best-fit using jModelTest [29]), Rep (WAG+G+F amino acid

substitution model chosen as the best-fit using ProtTest [30]) and

CP (rtREV+G+F amino acid substitution model chosen as the

best-fit using ProtTest) datasets with PHYML [31]. Approximate

likelihood ratio tests (aLRT) were used to infer relative supports for

branches (with branches having ,80% support being collapsed).

All pairwise identity analysis of the full genome nucleotide

sequences, capsid protein (CP) amino acid sequences, replication

associated protein (Rep) amino acid sequences and movement

protein (MP) amino acid sequences were carried out using the

MUSCLE-based pairwise alignment and identity calculation

approach implemented in SDT v1.0 [32]. The full genome

sequence alignment of representative mastrevirus genome se-

quences together with SWSV was used to detect evidence of

recombination in SWSV using RDP 4.24 with default settings

[33]. Sequences are deposited in GenBank under accession

numbers (SWSV-A [SD-VARX-2013] - KJ187746; SWSV-A

[SD -USDA-2013] - KJ187745; SWSV-B [SD -B0069-2013] –

KJ210622; SWSV-B [SD -D0005-2013] - KJ187747; SWSV-B

[SD -E0144-2013] - KJ187748 and SWSV-C [SD -A0037-2013] -

KJ187749).

Test for associations between siRNAs and SWSV/SSEV
genomic and transcript secondary structures

The SWSV/SSEV full genome sequences and predicted

unspliced complementary and virion strand transcripts were

separately folded using Nucleic Acid Secondary Structure

Predictor [34], with the sequence conformation set as circular

DNA, at a temperature of 25uC. NASP generates a list of all

secondary structures detectable within given DNA or RNA

sequences and through simulations it demarcates a set of structures

referred to as a ‘‘high confidence structure set’’ (HCSS), that

confers a higher degree of thermodynamic stability (lower free

energy) to the sequences than what would be expected to be

achievable by randomly generated sequences with the same base

composition (with a p, = 0.05).

Given the genomic coordinates of pairing nucleotides within the

HCSS, we investigated whether there was any significant trend for

more reads (looking both at all reads collectively and at the 21 nt,

22 nt, 23 nt and 24 nt long reads separately) occurring within

secondary structures predicted to occur within (i) the full genomes,

(ii) the virion-strand transcripts and (iii) the complementary-strand

transcripts. The reads were mapped to the secondary structures

and we counted how many nucleotides were located at paired and

unpaired sites. While Kolmogorov-Smirnov tests (implemented in

R; www.r-project.org) were used to determine whether the

distribution of reads between paired and unpaired sites were

different, Wilcoxon rank-sum tests (also implemented in R, www.r-

project.org) indicated whether there were significantly more reads

at paired sites compared to unpaired sites and vice versa. Whereas

the Kolmogorov-Smirnov tests were used to indicate whether any

associations existed between siRNA locations and base pairing

within nucleic acid secondary structures, the Wilcoxon rank-sum

tests were used to determine whether detected associations were

positive (siRNAs tended to occur at structured sites) or negative

(siRNAs tended to occur outside of structured sites).

Results

454-based sequencing of VANA from the VARX and
USDA sugarcane samples

This approach was used in an attempt to detect both RNA and

DNA viruses that may be present in the two sugarcane plants [27].

A total of 2612 and 1635 reads were respectively obtained from

the VARX and USDA plants following length and quality

filtering. One hundred and eight and 18 contigs were produced

by de novo assembly from the VARX- and USDA-derived reads,

respectively. Two contigs from the VARX plant (2706 nt and

412 nt) and two from the USDA plant (2706 nt and 649 nt),

encoded proteins with between 91 and 100% sequence identity

with previously described SSEV proteins (Table1). BLASTx

analysis revealed that an additional two contigs from the VARX

plant (2122 and 127 nt) and three contigs from the USDA plant

(1836, 196 and 312 nt) were homologous with known mastre-

viruses but were nevertheless only distantly related to mastrevirus

sequences currently deposited in GenBank (Table1).

A posteriori mapping of VANA 454 reads obtained from the

VARX and USDA plants against the complete SWSV genome

(see below), revealed that 23.9% (625/2612) and 16.1% (264/

1635) of the total reads were derived from this genome and that

these yielded complete genome coverage at an average depth of

81X and 29X, respectively. Interestingly, a ,120 nt long region of

very low coverage (,4X) was identified, which mapped to the

large intergenic region (LIR) of the SWSV genome (Figure 1).

A mapping analysis performed with the genome of SSEV

indicated that the corresponding values were 53.5% of reads

(1398/2612, 159X average coverage depth) and 75% of reads

(1227/1635, 138X coverage) for the VARX and USDA plants,

respectively (Figure S1).

siRNA Illumina sequencing from the VARX sugarcane
plant

A total of 15,275,640 raw reads were generated from the

VARX sugarcane sample, which were then filtered down to

3,945,108 high quality reads in the 21 to 24 nt size range of

siRNAs. From these reads, 226 contigs were obtained by de novo
assembly, six of which showed significant degrees of similarity to

mastreviruses based on BLASTx [35] searches (Table2). Of these

six contigs, two (contigs #121 and #176) had a high degree of

identity to SSEV while the remaining four were more distantly

related to known mastreviruses. Three of these four contigs

(contigs #44, #86 and #101) apparently corresponded with a

mastrevirus capsid protein (CP) gene and the other one (contigs

#79) with a movement protein (MP) gene, while the cumulative

contig length of 761 bp corresponded to slightly more than a

quarter of a typical mastrevirus genome (Table2).

Following the cloning and sequencing of the full genome of the

new mastrevirus (SWSV; see below) it was determined that 0.59%

of the Illumina reads obtained from the VARX plant could be

mapped to this genome (Figure 1) to generate contigs that covered

96.3% of the genome at an average depth of 185X with only seven

gaps of between three and 40 nucleotides. These gaps were located

within the large intergenic region (three gaps) and within the

probable replication associated protein (Rep) gene (four gaps;

Figure 1) encoded by the C1 ORF. It is noteworthy that the

,120 nt long region of very low coverage (,4X) identified using

the VANA approach mapped to the same part of the LIR region

of the SWSV genome that remained uncovered during the
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Illumina-based siRNA sequencing (Figure 1). As has been

previously observed for other viruses, genome coverage was highly

heterogeneous (Figure 1). However, a clear general trend could be

observed, with the region corresponding to the virion sense V1

and V2 ORFs (encoding CP and MP proteins, respectively),

showing an average coverage depth of ,436X and the comple-

mentary sense C1 ORF showing an average coverage of only

,38X. Coverage of the non-coding large and small intergenic

regions and the presumed C1 ORF intron were even lower at

17.5X and 6.8X, respectively.

It is also noteworthy that besides differences in coverage depth,

these various genomic regions of SWSV also showed differences in

the siRNA size classes that they yielded. While there was an

enrichment of the 21 and 22 nt siRNA size classes amongst the

total siRNA reads mapping to the V1 and V2 ORFs, there was a

depletion of the 21 nt siRNA size classes and an enrichment of the

24 nt size class amongst total siRNA reads mapping to the C1

ORF (Figure 2). The LIR and, to a lesser extent, the SIR showed a

pattern similar to the C1 ORF region (data not shown). The C1

intron, however, had an extreme over-representation of the 24 nt

size class with the other size classes being either nearly (22 nt) or

totally (21 and 23 nt) absent (Figure 2).

Since the VARX plant was also infected with SSEV, a similar

analysis of SSEV-derived siRNAs was performed. Mapping

against the genome of SSEV (NC_001868) demonstrated that

0.17% of total reads (6572) were derived from it and that these

reads covered 98.6% of the SSEV genome at an average depth of

55X, leaving only 4 gaps of between 5 and 15 nucleotides (Figure

S1). Although showing some high degrees of local heterogeneity,

genome coverage of SSEV was less biased when comparing the

different genomic regions. Nevertheless a similar trend to that

associated with SWSV was observed with a higher depth of

coverage for the virion sense V1–V2 ORFs (76.5X) than for both

the complementary sense C1 ORF (37.6X) and the non-coding

regions (46X). Also, as for SWSV, the 21–22 nt siRNA size classes

were enriched amongst those mapping to the virion sense ORFs

and the 24 nt, siRNA size class was enriched amongst those

mapping to the complementary sense C1 ORF (Figure S1).

However, unlike for SWSV, no strong siRNA size-class biases

were observed for the non-coding regions (data not shown).

By collectively using the Illumina siRNA reads and the 454

VANA reads it was possible to assemble a single genome of the

novel mastrevirus from both the VARX and USDA plants.

SWSV

Associations between siRNAs and SWSV/SSEV genomic
and transcript secondary structures

It has been previously determined that nucleic acid structures

can have an appreciable impact on both the distribution of siRNA

targets [36,37], and the operational efficiency of small RNA

mediated anti-viral and anti-viroid defences [37,38]. We detected

strong evidence for the presence of ssDNA secondary structures in

both the SWSV (30 high confidence structure set (HCSS)

identified) and SSEV (29 HCSS structures identified) genomes

(Table 3). The distributions of the HCSS structural elements were,

however, different in the predicted virion and complementary

strand transcripts of the two viruses, with only two HCCS

structures detected in the SWSV complementary strand transcript

and none being detected in the SSEV virion strand transcript (so

that this particular transcript was not analysed further).

We detected a strong association between the absence of

predicted secondary structures within the ssDNA SWSV genome

and increased frequencies of corresponding 22, 23 and 24 nt long

siRNAs (p-values ,0.008; Table 3). Curiously, we found a
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different association when considering the predicted SWSV RNA

transcripts with 21 nt siRNA reads displaying a strong tendency to

correspond with nucleotide sites that were predicted to be base

paired in both the virion and complementary strand transcripts (p-

values ,2.49610-6) and the 22, 23 and 24 siRNA size classes

displaying a similar tendency with respect to the virion strand

transcript (p-values ,6.07610-13).

Similar to SWSV, for the SSEV full genome there was an

association between the absence of ssDNA structural elements and

increased frequencies of 22 nt siRNAs. Also similar to SWSV the

22, 23 and 24 nt long siRNAs display a significant tendency to

correspond with transcript nucleotides that are base-paired within

secondary structural elements.

A novel sugarcane-infecting mastrevirus originating from
the Nile region

The complete genome of SWSV, as recovered from the VARX

and USDA plants, is most similar to that of Wheat dwarf India
virus (WDIV, Accession number NC_017828), with which it

shares 61% genome-wide identity. Whereas the Rep and MP

amino acid sequences of SWSV are also most similar to those of

WDIV (54.4% and 44.8% identity, respectively), the CP is most

similar to that of Panicum streak virus (PanSV, NC_001647,

51.4–53.9%). Based on the 78% species demarcation threshold set

by the Geminivirus study group of the ICTV [32], it is clear that

the novel mastrevirus should be considered a new species within

the genus Mastrevirus of the Family Geminiviridae (Figure S2).

This is further confirmed by phylogenetic analyses performed on

both the full genome (Figure 3) and on the amino acid sequences

of its encoded proteins (Figure 4). The new virus clearly clusters

with mastreviruses on a branch that is not closely associated with

any other species classified within this genus. Whereas the CP of

SWSV clusters within the virus clade including the various African

streak viruses, Australasian striate mosaic viruses, Digitaria streak
virus (DSV) and WDIV, the Reps cluster with the African streak

viruses and WDIV (Figure 4).

SWSV was not detected in sugarcane seedlings derived from

sugarcane true seeds under sterile insect-proof conditions, in

agreement with the fact that seed transmission of geminiviruses has

not so far been reported. The novel mastrevirus was, however,

detected in five sugarcane plants originating from Sudan (A0037,

B0065, B0069, D0005 and E0144) out of the 23 screened (Table

S1).

Complete SWSV genomes from four sugarcane plants (A0037,

B0069, D0005 and E0144) were cloned and sequenced. The

genomes of these isolates have .91% genome-wide identity with

those recovered from the VARX and USDA sugarcane plants.

Phylogenetic analyses of the full genomes (Figure 3) and of the

amino acid sequences that they likely encode (Figure 4) confirmed

that the isolates obtained from the Sudanese sugarcane plants also

belong to the SWSV species. The six isolates can be further

classified into 3 strains, SWSV-A (VARX, USDA), -B (B0069,

D0005, E0144) and -C (A0037) (Figure S3) based on the proposed

classification of mastrevirus strains outlined by Muhire et al. [32].

Using primers that allow the amplification of all sugarcane-

infecting mastreviruses, including Sugarcane streak Egypt Virus,

Sugarcane streak virus, Maize streak virus, Sugarcane streak

Reunion virus, Eragrostis streak virus and Saccharum streak virus,

the five sugarcane plants originating from Sudan were shown to be

free of co-infection with other known mastreviruses. Three of them

are still maintained at the CIRAD sugarcane quarantine station

(B0065, B0069 and D0005) and exhibit white spots on the base of

their leaf blades, around the blade joint where the two wedge

shaped areas called ‘‘dewlaps’’ are located (Figure S4). These spots

can become fused laterally, so as to appear as chlorotic stripes

(Figure S4). It is noteworthy that the SWSV infected D0005 plant

displayed very little evidence of these spots (only one leaf out of

eight exhibited tiny white spots that resembled thrip damage) and

it is therefore very likely that SWSV infections could escape visual

inspection (Figure S4). Given that three of the infected sugarcane

varieties exhibited mild foliar symptoms, i.e. white spots on the

base of their leaf blades that become fused laterally, so as to appear

as chlorotic stripes, we propose naming the new species Sugarcane

white streak Virus.

Genome analysis of SWSV
The SWSV genomes recovered from the various sugarcane

plants were between 2828 and 2836 nt and are, in almost all

Figure 1. SWSV genome coverage following NGS. The genomic organization of SWSV is schematically shown above the graph. While relative
degrees of coverage achieved after a posteriori mapping of reads produced by Illumina-based siRNA sequencing against the SWSV genome is
indicated in green, the coverage achieved after mapping reads produced by 454 GS FLX Titanium-based VANA sequencing is indicated in blue.
doi:10.1371/journal.pone.0102945.g001
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respects, very similar to those of all other previously described

mastreviruses. The one exceptional feature of the SWSV genomes

is that in case of the VARX and USDA isolates alternative splicing

of complementary sense transcripts likely results in the expression

of both a standard Rep (which is predicted to be 396 amino acids

long), and a rather unusual RepA of 418 amino acids long. This is

the only known occurrence in any geminivirus of a RepA that is

larger than Rep.

Given the uniqueness of this apparent genome organisation in

the USDA and VARX isolates the correct identification of the

intron within the complementary sense transcript was verified.

RT-PCR reactions targeting the complementary sense transcript

clearly indicated the presence of a mixture of spliced and non-

spliced complementary sense mRNA transcripts, and confirmed

that the correct locations of the acceptor and donor sites of the

66 nt long SWSV intron had been identified (Figure S5).

Analysis of recombination
All the SWSV genome sequences determined here share

evidence of the same ancestral recombination event in the short

intergenic region - corresponding to genomic coordinates 1419–

1468 in the USDA isolate (p = 3.821610-7 for the GENECONV,

MAXCHI and RDP methods implemented in RDP4.24).

Corresponding coordinates are known to be very common sites

of recombination in mastreviruses [39] and the fragment that they

delimit in SWSV has apparently been derived from something

resembling an African streak virus.

Discussion

We have performed NGS-based analyses of both siRNA and

VANA isolated from sugarcane plants originating from Egypt.

Both sequence-independent NGS approaches revealed the pres-

ence of a novel mastrevirus, SWSV, which had so far escaped

routine quarantine detection assays, possibly because it was

present in mixed infection with SSEV. The procedures used for

the discovery of SWSV pave the way towards the application of

NGS-based quarantine detection procedures. Such procedures

would likely be hierarchical with a first stage sequence-indepen-

dent NGS step followed by sequence-dependent secondary assays.

Whereas the first step would be to identify novel viruses within a

single plant (perhaps one displaying apparent disease symptoms),

the second step would be to use sequence dependent approaches to

both confirm the presence of any novel virus(es) identified in the

original host, and identify the presence of this(ese) virus(es) in

larger plant collections. A major strength of such an approach is

that it would also yield complete genome sequences.

The present study also confirms that both VANA [13] and

siRNA [16] can be successfully targeted by metagenomics

approaches for the discovery and characterization of plant-

infecting DNA viruses. The VANA-based 454 pyrosequencing

approach has several advantages as it initially combines reverse-

transcriptase priming and a Klenow Fragment step, which

potentially enables the detection of both RNA and DNA viruses.

Additionally, up to 96-tagged amplified DNAs (cDNA and DNAs

amplified using the Klenow Fragment step) can be pooled and

sequenced in multiplex format [15] making this approach very

useful for routine diagnostic screening of plants within BRCs and

quarantine stations. However, validation using plants infected or

co-infected with RNA and DNA viruses needs to be carried out in

order to determine the sensitivity and specificity levels of this 454-

based VANA sequencing approach.

Virus-derived siRNAs naturally accumulate in virus-infected

plants as a consequence of the action of Dicer enzymes as part of
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the RNA silencing-based plant antiviral defences [40]. Adopting a

metagenomic approach and randomly sequencing these siRNAs is

therefore an extremely powerful way to discover and characterise

previously unknown plant viruses and viroids [16,41]. In addition

to providing evidence for the presence of the two mastreviruses co-

infecting the VARX sugarcane plant, this approach provided

information on the interaction of the plant antiviral silencing

machinery and these two viruses. Although these aspects have

been studied previously in geminiviruses in the Begomovirus genus

(Blevins et al., 2006; Akbergenov et al., 2006; Rodrı́guez-Negrete

et al., 2009; Yang et al., 2011; Aregger et al., 2012), very little

comparable information has previously been available for

mastreviruses.

The siRNA distributions observed here for SWSV and SSEV,

perhaps unsurprisingly, seem to largely parallel those previously

reported for begomoviruses. In particular, the differences in size

classes observed between different genome regions suggest that

mastreviruses are subject both to transcriptional gene silencing,

based on 24 nt long siRNAs produced through the action of

DCL3, and to post-transcriptional gene silencing (PTGS) medi-

ated by the 21–22 nt long siRNAs produced through the action of

the antiviral Dicers DCL4 and DCL2 (Rodrı́guez-Negrete et al.,

2009; Aregger et al., 2012). The action of the former mechanism is

particularly evident in the siRNAs mapping to the SWSV intron

but is also, to a lesser extent, evident in the siRNAs mapping to

both the non-coding regions and the complementary sense ORFs

of SWSV and SSEV. On the other hand, the 21–22 nt siRNA size

classes associated with PTGS are particularly evident in the

siRNAs mapping to the two virion sense ORFs which are known

to be more actively transcribed in mastreviruses than their

complementary sense counterparts [42].

For both SWSV and SSEV we detected a significant association

between the frequencies of siRNAs and the presence/absence of

predicted secondary structures within both the single stranded

DNA (ssDNA) genomes of these viruses and their predicted single

stranded RNA (ssRNA) complementary and virion strand

transcripts. However, whereas significantly more siRNAs corre-

sponded with unstructured regions of the ssDNA genome, for the

transcripts significantly more siRNAs corresponded with struc-

tured regions of ssRNA. It is plausible that base-paired nucleotides

within transcript RNA molecules are protected from siRNA

binding and that the secondary structures evident both in

transcripts produced by SWSV, SSEV and in mastrevirus

genomes in general [43] may represent an evolutionary adaptation

for viral persistence. In mammalian RNA viruses there is an

association between degrees of genomic secondary structure and

infection duration with viruses having highly structured genomes

tending to cause chronic infections and viruses with unstructured

genomes tending to cause acute infections [44,45].

In both analysed Egyptian sugarcane accessions, VARX and

USDA, SWSV was found to be present in co-infections with

SSEV. Both sugarcane plants were independently collected in

Egypt which suggests that SWSV infection of Egyptian sugarcane

plants may not be a rare phenomenon. SWSV was also detected in

SSEV-free plants that originated from Sudan. It is noteworthy that

one of the Sudanese plants from which SWSV was isolated,

E0144, was initially grown in Sudan in 1992 before being

transferred to Barbados in 1998 and subsequently sent back to the

CIRAD Sugarcane Quarantine Station in 2009 (unpublished data,

CIRAD Sugarcane Quarantine Station). Assuming that SWSV

did not infect this plant in Barbados between 1998 and 2009, it is

plausible that SWSV was present along the Nile basin at least from

the late 1980s. Interestingly, as a consequence of indel polymor-

phisms in the 66 nt long SWSV intron, the Egyptian SWSV

isolates VARX and USDA have a highly unusual genome

organization and likely express a RepA protein that, while having

Figure 2. Size distribution of sequenced siRNAs obtained from the VARX plant. The histograms represent the numbers of siRNA reads in
each size class. (A) The size distributions of total reads, (B) The size distributions of reads mapping to the rep gene C-sense intronic region of SWSV, (C)
The size distributions of reads mapping to the V1–V2 ORFs region of SWSV and (D) The size distributions of reads mapping to the C1 ORF region of
SWSV.
doi:10.1371/journal.pone.0102945.g002
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the same N- and C-terminus sequences as Rep, is 22 amino acids

longer than Rep.

The recent discoveries of SWSV and other highly divergent

mastreviruses [46,47] suggest that this geminivirus genus likely

encompasses a far greater diversity and has a greater global

distribution than has been previously appreciated. The SWSV

isolate from the Sudanese sugarcane plant that had been

propagated in Barbados represents only the third instance of

discovery of mastreviruses in the New World [16,48], and suggests

that there may have been other undetected recent introductions of

mastreviruses to the Americas. Although insect transmission of

mastreviruses in the New World remains to be reported, it is

noteworthy that one of the three mastrevirus species that has so far

been detected in the Americas was isolated from a dragonfly which

had possibly eaten a plant feeding insect that was carrying the

virus [48]. The presence of SWSV in Barbados offers an

opportunity to investigate possible natural transmission of the

virus by screening sugarcane planted near the SWSV infected

Figure 3. Maximum-likelihood phylogenetic tree of 63 virus isolates representing each known mastrevirus species (including major
strains) and the 6 SWSV isolates determined in this study. Tree branches are coloured according to the geographical origins of the viruses.
Branches marked with filled and open circles respectively have .95% and 80–94% approximate likelihood ratio test support; branches having ,80%
support were collapsed. The phylogenetic tree is rooted using the full genome sequence of Dicot-infecting mastreviruses.
doi:10.1371/journal.pone.0102945.g003
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E0144 accessions. Phylogenetic analyses of any SWSV genomes

sampled from such plants should reveal their likely recent

transmission histories.

Given the relatively high degrees of sequence divergence

observed between the different SWSV isolates described here

(,9%), it is plausible that the natural geographical range of SWSV

is broader than just the Nile basin. Also, the global dissemination

of sugarcane cuttings, the absence of SWSV diagnostic tools, and

the fact that SWSV induces, at least in one case, extremely mild

symptoms in sugarcane imply that SWSV may have already been

unknowingly distributed throughout the sugarcane growing

regions of the world. The failure of established sugarcane

quarantine diagnostics in this regard provides a dramatic example

of how potentially pathogenic viruses can evade the screening

procedures of quarantine facilities and may spread worldwide

through international plant material exchanges. In this regard the

situation with SWSV might closely match that of Sugarcane yellow
leaf virus (SCYLV), which remained unnoticed for at least 30

years during its spread throughout the world [49]. In order to

accurately determine the potential economic impacts of the

dissemination of SWSV, additional studies assessing the pathoge-

nicity of this virus are certainly warranted.

Our study stresses both the potential advantages of NGS-based

virus metagenomic screening in a plant quarantine setting, and the

need to better assess viral diversity within plants that are destined

for exotic habitats. It indicates that a combination of sequence-

independent NGS-based partial viral genome sequencing coupled

with sequence-dependent Sanger-based full genome cloning and

sequencing is likely to reduce the number of non-intercepted virus

pathogens passing through plant quarantine stations, while at the

same time alerting authorities to the presence and potential spread

of viruses with unknown pathogenic potentials.

Figure 4. Maximum-likelihood phylogenetic tree of Rep (A) and CP (B) proteins. Tree branches are coloured according to the geographical
origins of the viruses. Branches marked with filled and open circles are respectively have .95% and 80–94% approximate likelihood ratio test
support; branches having ,80% support were collapsed.
doi:10.1371/journal.pone.0102945.g004
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Supporting Information

Figure S1 (A) Genome coverages obtained after a posteriori
mapping against the complete genome of SSEV of reads produced

by Illumina (siRNA sequencing). The genomic organization of

SSEV is schematically shown at the top of the figure. (B) Size

distribution of sequenced siRNAs obtained from the VARX plant

mapping on the V1–V2 ORFs region of SSEV. Histograms

represent the number of siRNA reads in each size class. and (C)

Size distribution reads mapping on C1–C2 ORFs region of SSEV.

(TIF)

Figure S2 Two-dimensional genome-wide percentage
pairwise nucleotide identity plot of monocot-infecting
mastreviruses including the six novel SWSV isolates
from this study.
(TIF)

Figure S3 (A) Maximum-likelihood phylogenetic tree of six

SWSV isolates. The six isolates can be classified into 3 strains,

SWSV-A (VARX, USDA), -B (B0069, D0005, E0144) and -C

(A0037). (B) Genome-wide pairwise nucleotide similarity score

matrix, the 94% strain demarcation threshold set by the

Geminivirus study group of the ICTV (Muhire et al. 2013) is

indicated (green coloured below 94% and pink-red coloured above

94%).

(TIF)

Figure S4 Symptoms caused by SWSV on B0065, B0069
and D0005 plants.
(TIF)

Figure S5 Reverse transcriptase priming and amplifi-
cation of nucleic acids were carried out in order to
detect the rep gene C-sense intronic region. (A) Agarose gel

detection of presence of a mixture of spliced and non-spliced

complementary sense mRNA transcripts. 1: 1 Kb ladder; 2:

Reverse transcriptase priming and amplification of nucleic acids

without DNase treatment of extracted RNAs; 3: Reverse

transcriptase priming and amplification of nucleic acids with

DNase treatment of extracted RNAs. (B) 66 nt long SWSV intron

nucleotidic sequence and splice donor and acceptor sites. The

sequence of the intron (in lower case) and its flanking exons (upper

case) are shown. The 59 (donor) and 39 (acceptor) splice sites are

underlined (lower case).

(TIF)

Table S1 List of the sugarcane varieties from the
CIRAD Sugarcane Quarantine Station (SQS) that were
screened for the presence of all known sugarcane-
infecting mastreviruses and SWSV.
(DOC)
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The authors are grateful to Sébastien Theil for depositing NGS datasets in

GenBank.

Author Contributions

Conceived and designed the experiments: TC DF PR. Performed the

experiments: BM CJ SG GF JHD EF PB. Analyzed the data: TC DF BM

DPM AV PR. Wrote the paper: TC DPM AV PR.

References

1. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, et al. (2004)

Emerging infectious diseases of plants: pathogen pollution, climate change and

agrotechnology drivers. Trends Ecol Evol 19: 535–544.

2. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, et al. (2008) Global trends

in emerging infectious diseases. Nature 451: 990–993.

3. Jones RAC (2009) Plant virus emergence and evolution: Origins, new encounter

scenarios, factors driving emergence, effects of changing world conditions, and

prospects for control. Virus Research 141: 113–130.

4. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev

Microbiol 9: 99–108.

5. Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics.

Curr Opin Virol 1: 1–9.

6. van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen

majority: soil microbes as drivers of plant diversity and productivity in terrestrial

ecosystems. Ecol Lett 11: 296–310.

7. Li L, Delwart E (2011) From orphan virus to pathogen: the path to the clinical

lab. Curr Opin Virol 1: 282–288.

8. Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in

virus discovery. Curr Opin Virol 2: 63–67.

9. Willner D, Hugenholtz P (2013) From deep sequencing to viral tagging: recent

advances in viral metagenomics. Bioessays 35: 436–442.

10. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory

procedures to generate viral metagenomes. NatProtoc 4: 470–483.

11. Lipkin WI (2010) Microbe hunting. Microbiol Mol Biol Rev 74: 363–377.

12. Roy A, Shao J, Hartung JS, Schneider W, Brlansky RH (2013) A case study on

discovery of novel Citrus Leprosis virus cytoplasmic type 2 utilizing small RNA

libraries by Next Generation Sequencing andbioinformatic analyses. Journal of

Data Mining in Genomics & Proteomics 4: 1000129.

13. Melcher U, Muthukumar V, Wiley GB, Min BE, Palmer MW, et al. (2008)

Evidence for novel viruses by analysis of nucleic acids in virus-like particle

fractions from Ambrosia psilostachya. Journal of Virological Methods 152: 49–

55.

14. Victoria JG, Kapoor A, Dupuis K, Schnurr DP, Delwart EL (2008) Rapid

identification of known and new RNA viruses from animal tissues. PLoS Pathog

4: e1000163.

15. Roossinck MJ, Saha P, Wiley G, Quan J, White J, et al. (2010) Ecogenomics:

using massively parallel pyrosequencing to understand virus ecology. Mol Ecol

19 81–88.

16. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, et al. (2009) Complete

viral genome sequence and discovery of novel viruses by deep sequencing of

small RNAs: a generic method for diagnosis, discovery and sequencing of

viruses. Virology 388: 1–7.

17. Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing

analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a

multiple virus infection that includes a novel virus. Virology 387: 395–401.

18. Kraberger S, Stainton D, Dayaram A, Zawar-Reza P, Gomez C, et al. (2013)

Discovery of Sclerotinia sclerotiorum Hypovirulence-Associated Virus-1 in

Urban River Sediments of Heathcote and Styx Rivers in Christchurch City,

New Zealand. Genome Announc 1.

19. Li R, Gao S, Hernandez AG, Wechter WP, Fei Z, et al. (2012) Deep sequencing

of small RNAs in tomato for virus and viroid identification and strain

differentiation. PLoS One 7: e37127.

20. Martinez G, Donaire L, Llave C, Pallas V, Gomez G (2010) High-throughput

sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and

phloem. Mol Plant Pathol 11: 347–359.

21. Sikorski A, Massaro M, Kraberger S, Young LM, Smalley D, et al. (2013) Novel

myco-like DNA viruses discovered in the faecal matter of various animals. Virus

Res 177: 209–216.

22. Borucki MK, Chen-Harris H, Lao V, Vanier G, Wadford DA, et al. (2013)

Ultra-Deep Sequencing of Intra-host Rabies Virus Populations during Cross-

species Transmission. PLoS Negl Trop Dis 7: e2555.

23. Simmons HE, Dunham JP, Stack JC, Dickins BJ, Pagan I, et al. (2012) Deep

sequencing reveals persistence of intra- and inter-host genetic diversity in natural

and greenhouse populations of zucchini yellow mosaic virus. J Gen Virol 93:

1831–1840.

24. Wang H, Xie J, Shreeve TG, Ma J, Pallett DW, et al. (2013) Sequence

recombination and conservation of Varroa destructor virus-1 and deformed

wing virus in field collected honey bees (Apis mellifera). PLoS One 8: e74508.

25. Bigarre L, Salah M, Granier M, Frutos R, Thouvenel J, et al. (1999) Nucleotide

sequence evidence for three distinct sugarcane streak mastreviruses. Arch Virol

144: 2331–2344.

26. Shamloul AM, Abdallah NA, Madkour MA, Hadidi A (2001) Sensitive detection

of the Egyptian species of sugarcane streak virus by PCR-probe capture

hybridization (PCR-ELISA) and its complete nucleotide sequence. J Virol

Methods 92: 45–54.

27. Froussard P (1993) rPCR: a powerful tool for random amplification of whole

RNA sequences. PCR Methods Appl 2: 185–190.

28. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics 5: 113.

29. Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology

and Evolution 25: 1253–1256.

30. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of

protein evolution. Bioinformatics 21: 2104–2105.

Viral Metagenomics in a Plant Quarantine Context

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102945



31. Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum

likelihood phylogenies with PhyML. Methods Mol Biol 537: 113–137.
32. Muhire B, Martin DP, Brown JK, Navas-Castillo J, Moriones E, et al. (2013) A

genome-wide pairwise-identity-based proposal for the classification of viruses in

the genus Mastrevirus (family Geminiviridae). Archives of Virology 158: 1411–
1424.

33. Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. (2010) RDP3: a
flexible and fast computer program for analyzing recombination. Bioinformatics

26: 2462–2463.

34. Semegni JY, Wamalwa M, Gaujoux R, Harkins GW, Gray A, et al. (2011)
NASP: a parallel program for identifying evolutionarily conserved nucleic acid

secondary structures from nucleotide sequence alignments. Bioinformatics 27:
2443–2445.

35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local
Alignment Search Tool. Journal of Molecular Biology 215: 403–410.

36. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, et al. (2009)

Deep-sequencing of plant viral small RNAs reveals effective and widespread
targeting of viral genomes. Virology 392: 203–214.

37. Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, et al. (2007) A structured viroid
RNA serves as a substrate for dicer-like cleavage to produce biologically active

small RNAs but is resistant to RNA-induced silencing complex-mediated

degradation. J Virol 81: 2980–2994.
38. Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B (2005) HIV-1 can

escape from RNA interference by evolving an alternative structure in its RNA
genome. Nucleic Acids Res 33: 796–804.

39. Varsani A, Monjane AL, Donaldson L, Oluwafemi S, Zinga I, et al. (2009)
Comparative analysis of Panicum streak virus and Maize streak virus diversity,

recombination patterns and phylogeography. Virol J 6: 194.

40. Voinnet O (2005) Induction and suppression of RNA silencing: insights from
viral infections. Nat Rev Genet 6: 206–220.

41. Kashif M, Pietila S, Artola K, Jones RAC, Tugume AK, et al. (2012) Detection

of Viruses in Sweetpotato from Honduras and Guatemala Augmented by Deep-

Sequencing of Small-RNAs. Plant Disease 96: 1430–1437.

42. Morris-Krsinich BA, Mullineaux PM, Donson J, Boulton MI, Markham PG, et

al. (1985) Bidirectional transcription of maize streak virus DNA and

identification of the coat protein gene. Nucleic Acids Res 13: 7237–7256.

43. Muhire BM, Golden M, Murrell B, Lefeuvre P, Lett JM, et al. (2013) Evidence

of pervasive biologically functional secondary-structures within the genomes of

eukaryotic single-stranded DNA viruses. J Virol.

44. Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P (2008) Bioinformatic

and physical characterizations of genome-scale ordered RNA structure in

mammalian RNA viruses. J Virol 82: 11824–11836.

45. Simmonds P, Tuplin A, Evans DJ (2004) Detection of genome-scale ordered

RNA structure (GORS) in genomes of positive-stranded RNA viruses:

Implications for virus evolution and host persistence. RNA 10: 1337–1351.

46. Kraberger S, Harkins GW, Kumari SG, Thomas JE, Schwinghamer MW, et al.

(2013) Evidence that dicot-infecting mastreviruses are particularly prone to inter-

species recombination and have likely been circulating in Australia for longer

than in Africa and the Middle East. Virology 444: 282–291.

47. Kraberger S, Thomas JE, Geering AD, Dayaram A, Stainton D, et al. (2012)

Australian monocot-infecting mastrevirus diversity rivals that in Africa. Virus

Res 169: 127–136.

48. Rosario K, Padilla-Rodriguez M, Kraberger S, Stainton D, Martin DP, et al.

(2013) Discovery of a novel mastrevirus and alphasatellite-like circular DNA in

dragonflies (Epiprocta) from Puerto Rico. Virus Res 171: 231–237.

49. Komor E, ElSayed A, Lehrer AT (2010) Sugarcane yellow leaf virus

introduction and spread in Hawaiian sugarcane industry: Retrospective

epidemiological study of an unnoticed, mostly asymptomatic plant disease.

European Journal of Plant Pathology 127: 207–217.

Viral Metagenomics in a Plant Quarantine Context

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e102945


