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Abstract

Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions
of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks
in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly
matching sequence segments within an individual genome or between the genomes of related species. These have been
observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models
consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed
in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mu-
tational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing
statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie

genome evolution.

Key words: genome evolution, sequence similarities, segmental duplication, comparative genomics.

Introduction

Genomes evolve in time involving many biological processes
that change the heritable information. Although single nucle-
otide exchanges represent quantitatively the major force,
gene duplications and segmental duplications also play a
key role in genome evolution (Ohno 1970), especially for in-
novation purposes. Such DNA duplications in a genome are
known for more than 40 years and remain being intensively
studied, see for instance Assis and Bachtrog (2013) and
Baker et al. (2013). The length of the duplicated sequence
segments can range from a few base pairs (for DNA replica-
tion slippage), over hundreds of bases (for insertions of
repetitive elements or RNA-based duplications), to tens of
kilo base pair (for segmental duplications, see Bailey and
Eichler 2006 for a review on this topic) or even encompass
the whole genome (in the case of a whole-genome
duplication).

In this article, we study statistical properties of sequence
similarities in a single genome or between two genomes and
the different effects of the above-mentioned processes on
such similarities. Although segmental duplications generate
self-similarities in a single genome, single nucleotide substitu-
tions as well as short insertions and deletions destroy these
similarities. The interplay of these processes gives rise to
interesting statistical properties as shown below. These prop-
erties also prevail after genomes split due to a speciation
event. Although in this case segmental duplications do not
generate similarities any more, the decay of similarities

between genomes features interesting properties due to
selective constraints. In regions where selective constraints
are important, they slow down the divergence process and
maintain similarities between genomes over a longer period
of time. Most notably, ultraconserved elements (UCE), which
almost do not evolve in time, have been found in many eu-
karyotic genomes (Bejerano et al. 2004; Reneker et al. 2012).

For our analysis of sequence similarities, we focus on the
duplication of DNA segments and mutations. Mutations in-
clude single nucleotide substitutions, short insertions, and
short deletions. We disregard the so-called repetitive ele-
ments, which are small genomic sequences of length ranging
from 300 bp to several kilo base pair, able to duplicate them-
selves many times. They cover a high percentage of many
eukaryotic genomes (roughly 50% of the human genome
and up to 90% of the maize genome, but only 1.5% of the
yeast genome). As they possess their own duplication dynam-
ics, which have already been carefully studied (Cordaux and
Batzer 2009), we do not analyze them in this study. For this
reason, we analyze eukaryotic genomes where repetitive ele-
ments have been masked using the RepeatMasker program
(Smit et al. 1996).

As a tool to quantitatively study sequence similarities, we
focus on the length distribution of exact matches (segments
with an identical sequence) which are maximal, that is, they
cannot be extended on either side. Such a match length dis-
tribution (MLD) can be obtained for either a self-alignment
(by aligning a genome to itself) or for a comparative
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alignment (by aligning two different genomes to retrieve all
maximal exact matches) and will be denoted by m in the
following. Namely, m(r) is the number of exact matches of
length r.

The distribution for a self-alignment of a random sequence
or for a comparative alignment of two random sequences of
length L with the same proportion of the four bases A, C, G,
and T follows a geometric distribution

a2 (= )Y 0

where p is the probability that two nucleotides match by
chance and r is the match length. This probability varies
with the proportion of each nucleotides in a sequence and
is equal to 1/4 if all nucleotides are equally probable. As in a
sequence of length L >> r, there are approximately L seg-
ments of length r, the number of expected matches scales
as L° In the case where p=1/4, we expect less than one
match longer than 30bp in a random genome of 1Gbp,
and about 30 matches of length r = 27. In all the distributions,
we analyze the following: These so-called random matches
always dominate the distribution for small lengths. In this
article, we study the behavior observed for longer lengths.
In the following, we will refer to this part of the distribu-
tion—matches longer than 25 bp, that are not expected to
appear in a random sequence—as the tail of the distribution.

Analyzing this distribution for the self-alignment of eukary-
otic genomes, an enrichment of long matches has been ob-
served relative to the theoretical distribution m;q (Gao and
Miller 2011). For small matches (smaller than r =~ 25), the
observed distribution follows the theoretical distribution mjq
characterized by an exponential decay, in agreement with
equation (1). But fascinatingly, the MLD m exhibits a power
law tail. Namely, the number of long matches of length r
scales as

m(r)~r* 2)

with an exponent o >~ —3. We reproduce this result for the
human genome in figure 1A.

Recently, a simple evolutionary neutral model of genome
evolution has been proposed by Massip and Arndt (2013).
This model includes only random segmental duplications and
point mutations and has been demonstrated to generically
generate the same statistical property, that is, the power law
distribution with exponent o« = —3.

However, this model does not explain all observed statis-
tical properties of similarities within and between genomes,
since not all of its assumptions are satisfied in the biological
context leading to qualitatively different distributions. For
instance, we find that the self-alignment of only the retro-
duplicated part (see Results) of a single genome results in an
o = —4 power law distribution of the MLD (fig. 5). Such a
distribution cannot be explained using the previously sug-
gested model, which would always result in an o = —3
power law.

Moreover, by comparing the genomes of two distinct spe-
cies, it was observed that genomes of even evolutionary

distant species share many exact matches. Depending on
the elapsed time since the divergence of the two species,
the length distribution of these maximal exact matches ex-
hibits a different behavior. The MLD computed from two
closely related species (say, human and chimpanzee) follows
an exponential distribution, while the MLD computed for
more distantly related species (say human and mouse) ex-
hibits an &« = —4 power law, see figure 1B and C for an ex-
ample (Salerno et al. 2006, Gao and Miller 2014). Here, we
always refer to the comparison of the human genome against
other genomes. Note, however, that we obtained similar re-
sults when comparing other pairs of species (for instance,
mouse and dog or chimp and rat) at comparable evolutionary
distances from each other (see supplementary fig. S5,
Supplementary Material online, for some examples).

The previous model ignores that certain genomic regions
are conserved and, therefore, does not predict the existence of
long sequence matches between genomes of evolutionary
distant species. In this study, we extend this model of
genome evolution and focus on the consequences of different
duplication mechanisms and of sequence conservation due
to selective constraints on sequence similarities. In the next
section, we show analytically and numerically that different
biological processes can account for the described power laws
with exponent & = —4 as well as the exponential distribu-
tion observed for closely related species.

Results

In this section, we analytically calculate the MLDs for different
evolutionary processes, and compare them with the distribu-
tion observed in real genomes. Let us first focus on the evo-
lutionary fate of one duplicated sequence segment of length K
under neutral evolution. The duplication generates two iden-
tical DNA segments which then evolve independently from
each other. In principle, one or both duplicated sequences
can duplicate again, giving rise to a branching process where
each sequence segment plays the role of a species in a phy-
logenetic tree. In our framework, the leaves of the tree rep-
resent paralogous DNA segments, which share a common
ancestor. Any two leaves are separated by some evolutionary
time from each other. This dimensionless evolutionary time
between a pair of leaves, t, is defined as

T= Z ,LL,‘T,', (3)

where the sum runs over all the branches along the evolu-
tionary path between the two leaves and T; and p; are the
length (in real time) of the branch i and the mutation rate
(which includes single nucleotide substitutions, short inser-
tions, and deletions) along the branch, respectively (fig. 2).

The number of identical sequence matches of length r for a
pair of sequences of length K separated by a distance 7 is well
described by a random stick-breaking process. Such a process
is expected to lead to an exponential tail in the MLD. Indeed,
the exact formula is given by

m(r, T) = [27: + (K — r)] exp(—1tr) (4)
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Fic. 1. The MLD computed for several genomic alignments involving different species. In all four panels, the red dotted line represent the expected
distribution obtained when computing the same experiment on random iid sequences of the same length and the same nucleotide frequencies as the
studied species. For small lengths (smaller than 20 bp), MLDs are consistent with these expectations, and we therefore do not show this part in this
figure. The dashed line represents power law functions proportional to 1/r> (black) and 1/r* (red), where r is the match length. All empirical data are
represented using logarithmic binning to reduce the sampling noise, see Newman (2005) for a discussion on this subject. (A) The self-alignment of the
repeat-masked version of the human genome. (B) The comparative alignment of the human and the chimpanzee genomes, both repeat-masked
genomes. (C) The comparative alignment of the human and the mouse repeat-masked genomes. (D) The comparative alignment of the human and the

fruitfly repeat-masked genomes.

for 1 < r < K (see detailed derivation in Ziff and McGrady
1985; Massip and Arndt 2013). Therefore, for a given genome,
the match length statistics is obtained by integrating over all
pairs of duplicated segments

o0

m(r) = /m(r, T)N(7)d7, (5)

where N(7) is the number of pairs of duplicated sequence
segments separated by an evolutionary time t.
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In the limit of an infinitely long genome, rare random
duplications of sequence segments and the random mutation
process yield that N(7) is constant. These simple assumptions
have been shown to give rise to an MLD, m, which exhibits a
power law distribution r* with o = —3 (Massip and Arndt
2013, Ben-Naim and Krapivsky 2000).

In the following, we relax the above assumptions and cal-
culate N(7) and the resulting MLD, m, for different and bio-
logically more relevant evolutionary scenarios. We start with a
scenario where a particular sequence segment and its
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Fic. 2. An example of a rooted Yule tree of height T with five leaves. The
pairwise evolutionary distance between two leaves (green path) is
denoted by 7. The horizontal dimension is meaningless.

duplicated offspring duplicate again with a fixed duplication
rate. Such a branching process gives rise to a Yule tree (Yule
1925) and we compute the distribution of pairwise distances
N(7) for such trees. A second scenario is meant to represent
the retroduplication of an evolutionary well-conserved gene,
which gave rise to many pseudogenes during evolution.
The resulting tree is clearly different from a Yule tree and
the MLD exhibits another power law behavior. We further
analyze what happens to the MLD for a comparative align-
ment of two species that evolve away from their common
ancestor.

Random Segmental Duplication—Yule Trees

We first study the process that gives rise to segmental dupli-
cations of DNA segments. According to this process, a seg-
ment of length K of the genome duplicates again and again
with a constant duplication rate per base pair A, such that the
duplication rate per segment is AK. Each of the resulting seg-
ments then have the same duplication rate. The mutation
rate i is the same all over the genome. According to this
process, one particular segment at time t =0 gives rise to a
family of segments. The evolutionary history of such a family
can be well described by a Yule tree (fig. 2), and its size grows
exponentially in time.

To calculate the theoretical MLD in this Yule tree scenario,
we have to compute the distribution of pairwise distances
N(7). Let us focus on the case where we start from one
ancestral sequence segment, as exemplified in figure 2. One
can derive N(7) in this case using the following simple argu-
ments. Pairs of leaves, separated by an evolutionary time in
the interval [t, T + dt], have branched at the time interval
[T—1/ur) —dt/(2u), T — 7/(21)]. The average number
of branching points in this interval is given by the average
number of segments at this time, e*KI"=7/)] times the du-
plication rate, AK, times the length of the interval, dt/(21).
This results in AKe*<IT=7/@1)]dt /(241). The average number
of observed pairs from a branching point in this time interval
is given by K7/ Multiplying the last two factors

on obtains the average density of pairs separated by an evo-
lutionary time t:

N(Ty -,—) — AjeAKTeAKr/(Z/L) (6)
2

for0 < t < 2uT and zero otherwise. For a detailed and more
general derivation of this and other quantities on Yule trees,
see Sheinman M, Massip F, Arndt PF, unpublished data
(http://arxiv.org/abs/1407.7821, last accessed July 29, 2014).

Substituting equation (6) in equation (5), one finally
obtains for the MLD in the limit rTu>1 and
AK/(2u) L r < K:

mr) = ————~r—". 7)
n

Interestingly, in this case, the MLD follows the same power
law distribution with @ = —3 as in the above-mentioned
article by Massip and Arndt (2013). In that study, duplications
are supposed to occur at random positions and to involve a
small fraction of the genome. For this reason, duplications
of segments which have already been duplicated are ex-
tremely rare, and thus, neglected. In contrast, the so-called
Yule model we analyzed in this section takes into account the
case where duplicates duplicate again. As shown in the sup-
plementary data, Supplementary Material online, assuming
that any segment of the genome can be duplicated, equation
(7) becomes

: ®)

which is identical to the result obtained by Massip and Arndt
(2013). One can derive the value of the longest exact match
rmax €xpected in the neutral case as a function of the pre-
factor A = AK/ 1,

Fmax 2~ (AL)'? ©)

if (AL)"? < K and rmax = K otherwise.

Note that using the MLD alone, one cannot distinguish
between the two scenarios, in which either all sequence seg-
ments duplicate randomly or only a subset of sequences du-
plicate presumably many times. As the mutation rate is an
effective rate subsuming effects of nucleotide exchanges as
well as insertion and deletions of short random DNA seg-
ments, we also cannot infer the relative contributions of each
of these processes.

In figure 1A, one can see that these two hypotheses are in
good agreement with empirical data from a human genome
self-alignment. In supplementary figure S1B, Supplementary
Material online, we demonstrate that equation (7) is also
consistent with numerical simulation of a branching duplica-
tion process.

Retroduplications Generate a Different Pairwise
Distance Statistic

Segmental duplication is not the only biological process
that produces duplications in eukaryotic genomes.
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Retroduplication is a well-known biological mechanism
which consists of the retrotranscription of an mRNA mole-
cule into the genome. For this reason, retroduplication will
solely duplicate transcribed segments of the genome. Besides,
this mechanism generates partial duplicates which do not
include introns. As retroduplicants also do not contain regu-
latory elements and promoters, they mostly produce
nonfunctional copies, highly similar to the concatenated
exons of the functional gene, commonly known as processed
pseudogenes (Vanin 1985). Various functions have been
found for such pseudogenes, see for instance Kaessmann
et al. (2009) or Okamura and Nakai (2008), even though
they often result in evolutionary dead ends.

To study the relationship between the sequences resulting
from such process, we studied the large family of 113 pro-
cessed pseudogenes of the ribosomal protein RPL21 in the
human genome. We present the resulting distance matrix
and a compatible phylogenetic tree in figure 3 (see
Materials and Methods). In contrast to the previous scenario
which generates Yule trees, our results on RPL21 suggest that
all these pseudogenes were actually generated by retrotran-
scription of a single functional gene.

Following this mechanism, a gene of length K duplicates
with rate AK, while its duplicates (processed, nontranscribed
pseudogenes) do not duplicate. Since the evolutionary pres-
sure on the pseudogenes is expected to be much weaker (if
any), we assume that the gene and its pseudogenes exhibit
different effective mutation rates. This results in a tree similar
to the one shown in figure 4.

The evolutionary time that separates two leaves on such a
tree is a sum of three times: The evolutionary time elapsed
after the first retroduplication event, the evolutionary time
elapsed after the second retroduplication event, and the evo-
lutionary time elapsed in the source gene between the two
retroduplications (see the green path of the tree in fig. 4).
Defining w as the mutation rate of a pseudogene and i as

Fic. 3. Distance matrix of 113 processed pseudogenes of the RPL21
gene and their phylogenetic tree. The rows and the columns of the
distance matrix are sorted with respect to their average. The resulting
order is used to constrain the topology of the phylogenetic tree (see
Materials and Methods for details).
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the mutation rate of the source gene, the evolutionary time
separating two retroduplicants is given by

'E:/,L(T—T1)+,LL(T—T2)+MS|T1 —T2|, (10)

where T, and T, are the times at the first and second retro-
duplications, respectively.

Assuming that T, and T, are uniformly distributed be-
tween 0 and T, the density of pseudogene pairs separated
by an evolutionary time t after time T is given by

A2K?
N(t) =
212
1
T for0<t<(4+auT
T+a st=(0+au an
—1
] a(T—ZMT) for (1+a)uT <t <2uT,

where a = 115/ and is assumed to be smaller than one, see
supplementary data, Supplementary Material online, for cal-
culation details. This is a continuous piecewise linear function,
which vanishes for =0, namely N(t = 0) = 0. It increases
linearly with 7 for small values of t, reaches a maximum at
7 = (1 4+ a)uT, and then decreases linearly with 7, vanishing
for T > 2uT. Such a qualitative trend can be observed in the
data for RPL21 pseudogenes shown in figure 3: The number of
entries in the distance matrix with small distances is small and
increases with the distance, reaches a maximum around 0.12,
and then decreases for higher distances.

Substituting equation (11) in equation (5), one obtains in
the limit of rTix > 1and 0 < r < K the following distribu-
tion for the tail of the MLD:

33 1,
mr) =———=—~r 7, 12
O =G i (12
that is, a power law with exponent @ = —4. Below we will see

that such a power law is generic for distributions of pairs with
N(t =0) =0.

VT b

Fic. 4. An example of the rooted tree of a pseudogene family (filled
circles) stemming from one gene (open circle). The gene evolves much
slower than its pseudogenes and the pseudogenes do not retrodupli-
cate. The evolutionary distance between two leaves (green path) is the
sum of the evolutionary distance covered by each pseudogene since its
retroduplication event and the evolutionary distance covered by the
gene between the two retroduplication events. All circles represent
contemporary sequence segments.
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This result also suggests that the self-alignment of pro-
cessed pseudogenes (retroduplicants) is expected to generate
an MLD distributed as a power law with exponent « = —4.
Indeed, that is what we observe. We concatenated all the
annotated processed pseudogenes of the human genome
to construct the so-called human “processed pseudogenome”
(see Materials and Methods for more details). The MLD com-
puted from this processed pseudogenome shows a good
agreement with our prediction of equation (12) (fig. 5). The
deviation of the power law in the very tip of the MLD can be
either explained by subsequent segmental duplication of ret-
roduplicated loci or by selective constrains on the retrodupli-
cants making them more conserved than expected by our
neutral model.

Conserved Elements Give Rise to Long Matches in
Comparative Alignments of Different Species

As mentioned in the Introduction, one also observes a power
law distribution of exact matches between diverged species,
as presented in figure 1C (see also Salerno et al. 2006). In
principle, an RNA-based duplication model described in the
previous section could explain the &« = —4 power law tail in
the MLD of a comparative alignment, if the very same genes
are conserved and retroduplicate in both genomes. However,
when we compared the two processed pseudogenomes of
human and mouse, we found only few exactly conserved
sequences and no match longer than 100 bp. Indeed, the
sequences of human and mouse homologous genes that
have been shown to give rise to many processed pseudogenes,
as for instance the RPL21 gene, have already accumulated
several independent mutations in the two genomes. For

this reason, this process is not responsible for the « = —4
10° T
: + uman pseudogenome
— + -——-- 3
+ o
» L r
2107° o+
S %,
£ N +'EI:E_
5 : :I-\
4 _| g 4~
10 S ThN
c Ty~
L : RN
— | B 4 ~
o . ++ S
s -I:hq}\
510°% S,
N T,
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10°® 5N
I I I I I I I
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match length

Fic. 5. The MLD computed from the self-alignment of the human
processed pseudogenome. The total length of this genome is
L =6,433,368 bp. The red dotted line represents the expected distribu-
tion for random sequences, and the red and black dashed lines repre-
sent power laws with exponent @ = —4 and « = —3, respectively.

power law observed for the human-mouse comparative
MLD.

To definitely rule out the idea that the « = —4 power law
observed in the comparative alignment was linked to any
duplication mechanism—either RNA or DNA mediated—
we filtered out all matches obtained in the human-mouse
alignment that were not unique in both genomes (see
Materials and Methods for details). Doing so, we filtered
out approximately one-third of the matches, but surprisingly,
the resulting MLD still exhibits a power law with exponent
a = —4 (see supplementary fig. S3, Supplementary Material
online). From this experiment, it follows that the orthologous
matches are dominant in the human-mouse MLD, and that
the power law in this MLD is not the result of any continuous
duplication process. This observation leads us to an extension
of our model that we present below and for which all matches
are unique. In the following, we discuss the properties
of comparative alignments and, using a very general set
of assumptions, derive the @ = —4 power law. We start by
describing the MLD just after speciation and then explain
how it changes as the divergence between the species gets
higher.

Shortly after a speciation event, the genomes of the two
resulting species, denoted by A and B, are almost identical. An
alignment of the two genomes will show many long and exact
matches, which are either orthologs (along the main diagonal
of the alignment grid) or paralogs (off diagonal matches on
the alignment grid). The latter are the reminiscences of seg-
mental duplication in the genome of the common ancestor
of A and B and are quantitatively less important than ortho-
logous matches (see previous paragraph). The MLD obtained
when comparing these two genomes has always an exponen-
tial tail, which stems from orthologous matches. For short
evolutionary times, we can assume that mutations happen
at random positions along the two genomes and, therefore,
the MLD is qualitatively described by the stick breaking model
where the initial stick length K is now the length of the
alignable orthologous part of the two genomes. The tail of
such an MLD is therefore exponentially distributed and is
given by

m(r, 7) = [27 + (K — r)] exp(—1r). (13)

Indeed, an exponential distribution is also observed in
empirical data, for instance for a human—chimp comparison
(see fig. 1B and Gao and Miller (2014)).

As the divergence increases, the mean length of an ob-
served match decreases fast with time. For this reason, this
process alone would not lead to matches of long size in an
alignment of genomes of highly divergent species, as, for in-
stance, human and mouse. As the divergence between
human and mouse is of the order of 25%, apart from the
random matches, we expect only one match of length 72 bp,
for aligned genomes of lengths of the order of 1 Gbp (see eq.
13). However, when comparing human and mouse, we obtain
820 exact matches of length 72 bp. Moreover, the MLD ob-
served for human—mouse alignment exhibits a fat tail, shaped
as a power law with an exponent o = —4 (fig. 1C).
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This distribution stems from many very well-conserved re-
gions between human and mouse (we obtain more than
6 x 10> exact matches longer than 25 bp, all together they
span more than 22 Mbp). Such a power law with an exponent
o = —4 has also been observed when comparing other ge-
nomes (see supplementary fig. S5, Supplementary Material
online).

If we assume that such a high degree of conservation is the
consequence of some biological functionality, it follows that
there are regions that evolve at their own (slow) speed, that is,
with a lower mutation rate (fig. 6). As each such region can
play a different role in the two considered genomes, the mu-
tation rate may be different for the same region in the two
different genomes. This leads us to hypothesize that the evo-
lutionary distances between orthologous regions is not con-
stant, but is drawn from some distribution. In the following,
we demonstrate that this assumption leads to a qualitative
change in the shape of the MLD.

The evolutionary distance between a pair of orthologous
sequences is given by

T =Ta + T3, (14)

where T4 is the evolutionary distance from a region in A to its
orthologous region in the last common ancestor of A and B,
likewise for 75 (see fig. 6 for an illustration). For a given evo-
lutionary distance, 7, the two distances, T4 and 7, can take
different values, still satisfying equation (14). The number of
sequence regions separated by the evolutionary distance 7 is
therefore given by

T

N(t) = /NA(t — 7)Np(s)dTs (15)

0
where Na(7) is the number of sequences in species A sepa-
rated by the evolutionary distance t from its orthologous

sequence in the last common ancestor of A and B, likewise
for Ng(7) (fig. 6).

= e

Fic. 6. An example of the evolution of two divergent genomes.
Different regions of the two species A and B evolve with different
rates. The evolutionary distance separating two orthologous regions i
(green path) is the sum of the evolutionary distance covered by this
genomic region in both species since their split.
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In general, following equations (4) and (5), the MLD is
given by

o0

m(r) = / [2'5 + (K — r)] exp(—tr) N(t)dt. (16)

0

Matches of long length correspond to sequences at small
evolutionary distances, . Thus, the distribution m for long
length is controlled by the integration over small values of T in
equation (16). For such small values of t, the function N(t) in
the integrand of equation (16) can be expanded in a Taylor
series around 7 =0:

dN(7)
dr

N(t) = N(t = 0) + T+ 0(7).  (17)

=0

Equation (15) implies that N(t = 0) always vanishes, such
that the next term, N'(0)t = NA(0)N3(0)7 linear in 7, be-
comes dominant (see supplementary data, Supplementary
Material online). In this case, substituting equation (17) in
equation (16) in the regime 1 < r < K results (after integra-
tion) in

__dN(7)
Codt |, 1

6K —2r 1
r

m(r)

in agreement with the observed MLD between human
and mouse (fig. 1C). It follows that the MLD exhibits an
o= —4 power law unless the first derivative
dN(7)/dt|,_o = Na(0)Ng(0) also vanishes.

Note that a distribution of mutation rates is essential for
such a power law to appear. If the mutation rate is not dis-
tributed—that is, all regions of the genome have the same
mutation rate—then Na(7) (resp. Np(7)) is zero for all values
of T # utand thus N(t) = 0 forall T # 2ut. In this case, the
Taylor expansion (17) is not valid and, following equation
(16), the MLD is a simple exponential distribution and no
power law behavior is expected. In sum, the power law tail
with @ = —4 in comparative alignment of the genomes in-
dicates that the mutation rate is correlated along any well-
conserved DNA region and the distribution of mutation rate
is smooth for well-conserved regions and does not vanish at
zero.

As mentioned above, in the comparative alignment of any
two species, the orthologous sequences (in the diagonal of
the alignment grid) are dominating the MLD. One can artifi-
cially remove the diagonal part from the alignment. In this
case, the remaining paralogous (off-diagonal) DNA segments
are expected to exhibit an &« = —3 power for closely related
species, because in this case the comparative alignment is
similar to the self-alignment of one of the species. However,
as the divergence between the two species increases, the
o = —3 power law is expected to cross over to the
o = —4 power law, similarly to the MLD of orthologous se-
quences, as discussed above. Such a trend was observed
recently in Gao and Miller (2014), where off-diagonal
alignments were performed for pairs of species of different
divergence times.
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As shown above, the fact that N(t = 0) = 0 in a compar-
ative alignment and the condition dN(7)/dzt|,—, 7 O result
in the « = —4 power law tail for a comparative MLD of
distantly related genomes. This condition is indicative for
heterogeneity of regional mutation rates along the two ge-
nomes. This assumption is quite general and can be fulfilled
by a wide range of models (Nei and Kumar 2000). Therefore,
the observation of the MLD alone does not allow to decide
which of these models describes the actual biological mech-
anisms responsible for the mutation rate variation.

In order to illustrate our results, we simulated a model that
belongs to this class where dN(7)/dt|,—, # 0. For these sim-
ulations, we let a synthetic genome evolve according to two
simple processes, point mutation and segmental duplication.
The genomes are divided into small regions of length M, and
for each region, we draw a different mutation rate from an
exponential distribution with mean 1. We chose the expo-
nential distribution as it is the distribution with minimum
information if only the average mutation rate is known. We
model both the evolution of one sequence according to this
model and the independent evolution of two sequences shar-
ing a common ancestor for various divergence time denoted
by t; (for details of the simulations, see Materials and
Methods). In figure 7, we present the MLD computed from
simulated sequences for self-alignment (equivalent to diver-
gence time t; = 0) and for different divergence times
t; = 0.01, t; = 0.2, and t; = 2. Qualitatively, these simula-
tions exhibit the same behavior as the self-alignment of the
human genome, the comparison of human genome with the
chimpanzee genome, the comparison of human genome with
the mouse genome, and the comparison of human genome
with the fruitfly genome, respectively (see also fig. 1 for a
comparison).

Note that the mutation rate in this model is constant over
small regions of length of the order of the longest expected
match (in the simulations we present M = 1,000). In the ex-
treme case where the mutation rate is independently chosen
for each base pair, that is, with regions of length M =1, we
loose this property and shift directly from an exponential
distribution for closely related species to no match for dis-
tantly related genomes.

Discussion

In this article, we have shown that only certain evolutionary
scenarios are able to account for various empirical power law
behaviors in the MLDs of a self-alignment of whole genomes,
of processed pseudogenomes, and of the comparative align-
ment of two distantly related genomes. The basic (and nec-
essary) ingredients for these scenarios are point mutations,
duplications, as well as a heterogeneity of mutation rates.
Such a heterogeneity reflects the existence of neutrally evolv-
ing regions and conserved parts of the genomes, as for in-
stance UCE. For illustrative purposes, we also developed an in
silico model of such an evolution and are able to reproduce
the empirically observed properties of MLDs in genomes.
The exponent of the power law tail of the MLD is deter-
mined by the distribution of pairwise evolutionary distances,
N(t)—the number of segments that are at an evolutionary

distance equal to t from each other—for small values of 7.
Above we demonstrate that this function has different shapes
for various evolutionary scenarios (see fig. 8 for a summary).
The behavior of N(t) for small values of 7 is of particular
importance: If N(t = 0) is greater than zero, the MLD exhibits
an o = —3 power law tail. In the genomic context, this con-
dition implies that segmental duplications occur continu-
ously and therefore homologous pairs of sequences that
have not diverged yet exist. However, if N(t = 0) is zero
and if the first derivative dN(t)/dt|,—, is not zero, we
expect a power law with exponent &« = —4. In the genomic
context, the first condition indicates that all homologous se-
quences have already diverged, and the second one implies
that the number of closely related homologous pairs increases
linearly with their divergence.

Interestingly, the MLD obtained from the human (or
mouse) self-alignment agrees well with an o = —3 power
law, indicating that over all processes generating self-similar-
ities in the human (and mouse) genome, the dominant
mechanism is the segmental duplication of random se-
quences of the genome. This observation also implies that
random segmental duplications occurred continuously and
with a constant rate in the history of these species, and is an
ongoing process. If other processes—as for instance retrodu-
plication, whole genome duplication, or burst of segmental
duplication—did occur in these genomes, their contribution
to the statistical properties of those genomes is negligible
compared with random segmental duplications. Note that
one cannot judge whether duplicated sequences are prone
to duplicate again or not from the knowledge of the MLD
alone. In the first case, the duplicated sequences follow a
branching process and the Yule framework developed in
this article should be used. Otherwise the simple random
duplication model introduced by Massip and Arndt (2013)
can be used. However, it has been observed that exact
matches occurring several times (i.e, more than twice) in
the human genome are quite common (Sindi et al. 2008).
This observation could be accounted for in the Yule frame-
work, but not with the simple random duplication model
where exact matches with more than two occurrences are
rare.

Interestingly, we find that the value of the prefactor
A = KA/ in equation (8), in genomes exhibiting an
a = —3 power law tail, is of the order of 1. Given that the
length of these genomes, L, is of the order of 1 Gbp and that
the typical size of a segmental duplication, K, is of the order of
10 kbp, the length of the longest expected exact match is
rmax == 1000 bp. In a random sequence of the same length,
the value of r,,,x would only be about 30 bp. Note that the
value of r;,, is not very sensitive to the value of A and L. For
instance, in a genome where A = 0.1, the value of r;,,,, would
just change 2-fold, resulting in rp, 2 500.

In contrast to whole-genome self-alignments, we find that
if we just concentrate on the human processed pseudogen-
ome, we obtain an & = —4 power law tail. This is due to the
different insertion dynamics of processed pseudogenes and
the fact that for such a dynamics N(7) vanishes for small 7.
The observed @ = —4 power law MLD for self-alignment of
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Fic. 7. The MLD computed for simulated sequences with various divergence times. In all panels, the red dotted line represents the theoretical
distribution obtained when computing the same experiment on random iid sequences with the same length and the same nucleotide frequencies than
the simulated sequences. For small lengths, MLDs are consistent with these expectations. The dashed lines represent power law functions proportional
to 1/r3 (black) and 1/r* (red), where r is the match length. All empirical data are represented using logarithmic binning to reduce the sampling noise.
Each plot shows the probability distribution obtained for 10% sequences of length 10° bp. For all simulations, the duplication rate per base pair
A = 1073, the length of a duplication K = 1,000 bp, and the length of a mutating region M = 1,000 bp. (A) The self-alignment of the common ancestor
after t; = 0. The comparative alignment of two sequences with divergence time t; = 0.01 (B), t; = 0.2 (C), and t; = 5 (D).

the whole rabbit genome (see supplementary fig. S2C, 15). We therefore do not expect that the MLD exhibits a
Supplementary Material online) could therefore also be due power law tail with an exponent &« = —3. However, we do
to a higher rate of retroduplication in this particular genome. expect to observe a power law tail with an exponent @ = —4
However, many other scenarios can in principle lead to these if the condition dN(7)/dt|,_, > 0 is fulfilled. And indeed,
properties of N(7) and therefore to an &« = —4 power law, as the MLD for comparative alignment of human and mouse
for instance the silencing of the segmental duplication pro- genomes (as well as for many other pairs) exhibits an « = —4
cess in recent evolution of a genome, and further analyses power law tail. In the text above, we further argue that con-
would have to be conducted to decide which one is respon- tinuous duplication processes in the two genomes after their
sible for this behavior in the rabbit genome. split cannot account for the observed power law tail in the

The understanding of MLDs of comparative alignments MLD. In general, a power law tail can be accounted for by
requires a different reasoning. Due to the evolutionary assuming distribution of mutation rates along the
setup, N(7 = 0) always vanishes (see figs. 6 and 8 and eq. genomes, as we have shown analytically and numerically.
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random duplications
Yule dynamics
retroduplication
comparative analysis

N(t)

T

Fic. 8. A schematic plot of the functions N(t) for four different dy-
namical models of sequence evolution. As explained in the text, differ-
ent ways of analyzing genomic data (either performing a self-alignment
or aligning two genomes) or focusing on distinct compartments (e.g,
retro-duplicated pseudogenes) lead to different distributions of pairwise
distances between duplicated sequence segments. Only the behavior of
N(7) for small T affects the exponent of the resulting power law « in the
MLD. If N(t = 0) > 0 (e.g, for the first two scenarios), the exponent is
a = —3; if N(t = 0) =0, the exponent is @« = —4. The functional
forms of the first three scenarios are given in the article, the last one
is a convolution of two exponential distributions (the exact functional
form affects the exponent of the power law tail; see eq. 15).

Surprisingly, for any generic distribution of mutation rates
correlated along the genome, the value of « is equal to —4,
in agreement with empirical observations. This indicates that
the mutation rate in the studied genomes fulfils three condi-
tions. First, the mutation rate of well-conserved segments is
correlated along the genome with a typical correlation length
of at least hundreds of base pairs. Second, there should be
nonmutating long regions, such that the distribution of the
mutation rate does not vanish at zero. Indeed, comparing
eukaryotic genomes numerous such regions have been iden-
tified (Bejerano et al. 2004). Third, the mutation rate of well-
conserved regions is not the same for all the regions but is
continuously distributed. In summary, the distribution of mu-
tation rates of well-conserved regions is a smooth function
which does not vanish at zero.

Using similar arguments, one would also expectan o« = —4
power law tail to appear in the self-alignment of species which
encountered a whole-genome duplication. We observed this
behavior for the self-alignment of the genomes of the plant
and fish model organisms: Arabidopsis thaliana and Danio
rerio (Zebrafish), in which a whole-genome duplication
event occurred recently (Van de Peer 2004; Nakatani et al.
2007; supplementary figs. S2A and B, Supplementary Material
online). However, as stated above, many other duplication
scenarios could also lead to an & = —4 power law.

Note that in general, if N(7) scales as T# for small values of
7, the expected power law is @ = —(3 + f8). Therefore, dif-
ferent integer power laws could be observed if different de-
rivatives in the Taylor expansion of N(t) vanish. For example,
we compared the human (H) and mouse (M) exomes. The
resulting MLD exhibits a power law tail with an exponent

a = —5 (see supplementary fig. S4, Supplementary
Material online), suggesting that in this case the first deriva-
tive N'(0) = Ny(0)Npm(0) vanishes. This indicates that the
distribution of exomic mutation rates vanishes for small
rates in at least one of the species, which could be due to
relaxed selective constraints on synonymous sites (see sup-
plementary data, Supplementary Material online).

MLDs computed from the self-alignment of many other
genomes have been presented by Taillefer and Miller (2014).
These MLDs exhibit power laws with various exponent (from
a = —2 to o = —4.5). However, genomes with long and
highly similar sequences, which are generated by segmental
duplications and especially tandem duplications, are not easy
to sequence and assemble when using short read next gen-
eration sequencing technologies. As the power law behavior
only holds for long matches—typically longer than the read
length—such power law behavior often remains highly ques-
tionable unless the genomic assembly is of a high quality, that
is, comparable with the one of the human and mouse ge-
nomes. When computing an MLD for a new genome, one
would expect to obtain a distribution close to an o« = —3
power law. Any deviation from this behavior could in princi-
ple be interpreted as a lack of proper repeat masking (notably
if one observes peaks for certain lengths in the MLD), a prev-
alence of another biological process (if one observes a power
law with a different exponent) or a poor assembly quality (if
one observes a strong deviation from power law behavior).
Computing the MLD of a genome, which is a simple and fast
computational procedure, can in this sense be of great help in
order to understand the biological processes that shape the
evolution of this genome and to assess the quality of its
assembly.

In conclusion, we have shown that different duplication
mechanisms left different footprints in the MLD of eukaryotic
genomes. Notably, we have shown that exact self-similarities
as long as 1,000 bp in a typical eukaryotic genome could occur
without involving any selection. Besides, we have shown that
the distribution of matches in a genomic alignment of two
species goes through qualitatively different regimes as the
genomes diverge (fig. 1). The variance of the mutation rate
in different parts of the genomes of the two species guaran-
tees a distribution of identical matches exhibiting power law
tail with an exponent o = —4. Such a power law therefore
occurs naturally in the MLD of two diverging genomes and is
a signature of differences in functional constrains and it is
therefore not occurring neutrally.

Materials and Methods

Computing Match Length Distributions

To compute the MLD from either a given sequence or two
distinct sequences, we first used the MUMmer software to
obtain all maximal matches (Kurtz et al. 2004) with the
MAXMATCH option to obtain all matches regardless of
their uniqueness, and the n option such that the N's present
in the sequences and denoting unknown nucleotide do not
match with each other. We then simply counted the resulting
number of matches for each length to obtain the MLD.
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Filtering Out Matches with More Than One
Occurrence

To rule out the possibility that the « = —4 power law ob-
served in comparative alignments was linked to any duplica-
tion mechanism—either RNA or DNA mediated—we filtered
out all matches obtained in the human-mouse alignment
that were not unique in both genomes. To do so, we first
retrieved all the sequences matching in the two genomes
(each match between the two genomes corresponds to one
sequence). Then, we compared each of these matches against
all the other matches using the MUMmer software with
MAXMATCH and n options to get all matches longer than
20. Segments that do match with another segment are then
considered nonunique. Namely, we define a match as non-
unique if it shares a continuous segment of more than 20 bp
with any other matches. In supplementary fig. S3,
Supplementary Material online, we show that the distribution
obtained after filtering out all the matches were not unique in
both the mouse and human genome.

Numerical Simulations

To simulate the dynamical evolution of a genome under the
discussed processes (duplications and mutations) with given
rates, we use a Kinetic Monte Carlo scheme.

The first process, mutation, replaces one nucleotide by
another one. This process occurs with rate p, which can be
understood as the effective mutation rate including insertions
and deletions of random sequence segments, because the
influence of the latter processes on exactly matching se-
quence pairs is the same as a nucleotide replacement.

The second process, segmental duplication, occurs with
rate A per nucleotide. Depending on the evolutionary sce-
nario, we consider different duplication processes. For “ran-
dom” segmental duplications, we first choose two random
loci, ¢ and v. Then, a segment of fixed length K (we always
choose K « L) starting at position c is copied and pasted to
the sequence positions starting at v. The copied segment
replaces the K pre-existing nucleotides such that the total
length L of the sequence remains constant.

If we model the dynamics of segmental duplications fol-
lowing a “Yule process,” we start by duplicating the first K
nucleotides to the sites adjacent to the right, that is, c = 0 and
v =K. The number of duplicated sequence segments is then
n=2. For subsequent duplication events, we choose one of
the n pre-exiting segments and copy it after position v =nK
and increment n by one afterwards.

In case we model the dynamics of “retroduplication,” we
always duplicate the first K nucleotides, that is ¢ = 0, and copy
them to the positions starting at v = nK, where n is again the
total number of duplication events. In this model, we also
reduce the rate of nucleotide exchanges for the first K posi-
tions to mimic the selection on those sites due to functional
constrains on a genomic locus.

We start all simulation at t = 0 with a random iid sequence
of length L with all four bases in the same proportions. To
generate sequences for self-alignments, we apply the dynam-
ics until a stationary state is reached.
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We also use a Kinetic Monte Carlo procedure to generate
sequences of species diverging from a common ancestor
while including mutation rate heterogeneity. At the begin-
ning of such a simulation, we divide the sequence in different
regions of length M, such that we have L/M regions in total.
For each such region, i, a mutation rate y; is randomly chosen
from an exponential distribution with mean 1. This way, some
regions are highly conserved (with a low mutation rate), while
others evolve fast. In this model, we also include random
segmental duplications. We then simulate the dynamics
until a stationary state is reached and then duplicate the
whole sequence to mimic a speciation event. For each species
A and B, we draw new random mutation rates ji,, and jip, for
regions A; and B; as above. Later, the dynamics is simulated for
some divergence time t..The two sequences are aligned to
find exactly matching segments.

Genomic Data

All the repeat-masked genomes we analyze in this article were
downloaded from the Ensembl website version 72 (Flicek
et al. 2014). For Human, we use GRCh37 release.

Processed Pseudogenome

To produce the processed pseudogenome, we downloaded
the sequence of all 16,889 known pseudogenes of the human
genome from the pseudogene.org database. We then filtered
these sequences according to their annotation in this data-
base, keeping only those annotated as processed pseudogenes
(9,053 pseudogenes left). Using the positions of these different
pseudogenes in the genome, we ensure that the different
pseudogenes were not overlapping in the human genome.
When this was the case (only 25 times), we concatenated the
two sequences into one longer sequence containing the two
pseudogenes. We then concatenated all the remaining se-
quences into one long sequence of 6,433 kbp. To separate
the different pseudogenes, we added a letter “N” between
all sequences. This was done to avoid creating irrelevant
matches.

Phylogenetic Tree of Pseudogenes

To find a set of pseudogenes, we searched for homologous
sequences to the RPL21 transcript using BLAST (Altschul et al.
1997). We kept only the sequences with an alignment score
larger than half of the length of the RPL21 transcript. This
results in 117 sequences. We aligned these sequences using
MAFFT program (Katoh and Standley 2013) in the most ac-
curate mode (LINSI). Later, we cleaned the alignment with
trimAl (Capella-Gutiérrez et al. 2009) in the automatic mode.
To calculate the distance matrix, we used the package PHYLIP
(Felsenstein 1989). Four sequences were excluded due to their
large distances to other sequences. After calculating the dis-
tances, all pseudogenes were ranked according to their aver-
age distance to other pseudogenes, from small to large. Then
we assumed that the topology of the phylogenetic tree is such
that the gene is retroduplicated to the first pseudogene in the
ranking and then to the second one, and so on. The tree was
built using the same PHYLIP package while the topology of
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the tree is kept fixed. For this procedure, we used the F84
model (Felsenstein and Churchill 1996) for nucleotides
substitutions.

Supplementary Material

Supplementary figures S1-S5 and Supplementary data are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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