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Abstract Due to their economic relevance, the study of plant pathogen interactions is of

importance. However, elucidating these interactions and their underlying molecular mechanisms

remains challenging since both host and pathogen need to be fully genetically accessible

organisms. Here we present milestones in the establishment of a new biotrophic model

pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including

an annotated fungal genome and methods for genetic manipulation of the fungus and its host

plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular

level on both the pathogen and the host side. Moreover, our research on the fungal life cycle

revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked

to one mating type region. As a result, the identified mating type bias strongly promotes

inbreeding, which we consider to be a potential speciation driver.

DOI: 10.7554/eLife.20522.001

Introduction
Knowledge of basic molecular principles in biology has mainly been gained through intensive studies

of relatively few but technically well accessible model systems ranging from prokaryotes to eukar-

yotes, including the bacterium Escherichia coli, the fungus Saccharomyces cerevisiae, the insect Dro-

sophila melanogaster, the mammal Mus musculus, as well as the dicot plant Arabidopsis thaliana.

However, findings in these model organisms cannot always be generalized to more distantly related

species (Mohammadi et al., 2015; Rine, 2014). This has led to the development of new model
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systems, closer to species of economic relevance for humans. For temperate poaceous crops like

wheat and barley, the small, fast growing grass Brachypodium distachyon has become a promising

model organism (Mur et al., 2011; Brkljacic et al., 2011; Vogel and Hill, 2008; Huo et al., 2008;

Yordem et al., 2011; Garvin, 2008; Draper et al., 2001). The intrinsic properties of B. distachyon,

including self-fertility, its short life cycle, a small sequenced diploid genome, and its genetic accessi-

bility, make it highly suitable as a laboratory model plant. Symbiotic and biotrophic interactions of

plants with fungi or other microbes can have major impacts on plant development and crop yield

(Oerke, 2006). Therefore, the study of these interactions is important for research-driven pest con-

trol. Biotrophic plant pathogens rely on a living host to proliferate and complete their life cycles. To

successfully colonize their host plants, these pathogens employ small secreted molecules, termed

effectors. By means of these molecules, biotrophic pathogens are able to avoid host recognition,

suppress plant defense responses, and redirect the host metabolism for their needs (Djamei et al.,

2011; Doehlemann and Hemetsberger, 2013; Djamei and Kahmann, 2012; Deslandes and Rivas,

2012; Bozkurt et al., 2012). Since most effectors target processes on the host side, the understand-

ing of biotrophy and the molecular study of effectors profits strongly from both, a fully genetically

accessible host plant as well as a pathogen that is amenable to genetic manipulation.

Among the facultative biotrophic pathogens, the smut fungus Ustilago maydis is a valuable model

to study biotrophic interactions (Djamei et al., 2011; Brefort et al., 2014; Kämper et al., 2006;

Horst et al., 2010; Brefort et al., 2009; Doehlemann et al., 2009). Although U. maydis is

eLife digest Fungi cause many diseases in plants, and reduce the yield of important crops like

wheat, corn and rice – all of which belong to the family of grasses. Much research into how disease-

causing fungi infect plants will look at a given fungus that infects a specific plant in order to

understand plant diseases in general. Over the years, scientists have generated suites of research

tools to study these pairs of fungi and plants. However, many of these organism pairs (often called

“model pathosystems”) have drawbacks when it comes to research in the laboratory, either on the

side of the fungus or the side of plant.

Brachypodium is a small grass that grows quickly and, unlike crop plants, it grows well in the

laboratory. These characteristics make Brachypodium a promising model organism for studying

many aspects of plant biology. Recently, a fungus called Ustilago bromivora – which is related to a

fungus that infects corn – was reported to infect Brachypodium. This raised the question: could this

fungus and this small grass become a new model pathosystem?

Rabe, Bosch et al. set out to answer this question and now provide a toolkit that will help to

establish U. bromivora and Brachypodium as a new model pathosystem. In all of U. bromivora’s

close relatives, two compatible strains must meet and mate before the fungus can infect the plant;

first Rabe, Bosch et al. confirmed that this is also the case for U. bromivora. Studying the life cycle of

the U. bromivora fungus also unexpectedly revealed that while both mating partners are needed to

infect the plant, only one of the strains survives outside of the plant after the infection. This

phenomenon, referred to as a “mating type bias”, has been described for a few other related fungi.

Next, Rabe, Bosch et al. conducted a genetic screen and identified two compatible strains that

can grow without the plant as yeast-like cells. This means that these cells can be manipulated

genetically, and indeed protocols to grow and genetically engineer the fungus and plant to address

different research questions are included in the toolkit as well.

Other new tools include the complete genetic sequence of the fungus with all its genes

annotated, and a dataset of which genes are active in U. bromivora growing yeast-like in liquid

culture versus those active when the fungus grows as a pathogen inside the plant.

Together these new tools and datasets will provide a foundation to study different aspects of the

interactions between grasses and disease-causing fungi. This in turn may lead to new methods to

reduce fungal growth and reduce yield losses caused by fungal diseases in crop plants. Finally, the

discovery that U. bromivora shows a mating type bias could provide a starting point for future

studies into sexual reproduction in fungi and how new species arise.

DOI: 10.7554/eLife.20522.002
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genetically fully accessible with a small, completely sequenced genome of 20.5 Mb and many molec-

ular tools available, its host plant Zea mays is not as suitable as laboratory model organism due to

its large size, demanding growth requirements, cross-pollinating nature, elaborate transformation

requirements, and complex genome (Kämper et al., 2006; Que et al., 2014; Schnable et al.,

2009). Accordingly, a more suitable model system where both, plant and pathogen are more
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Figure 1. The life cycle of Ustilago bromivora. U. bromivora spores germinate (A) and form a promycelium

(B). Under high nutrient conditions, haploid yeast-like progeny (sporidia) are released and proliferate via budding

(C). Under low nutrient conditions intratetrad mating occurs between two adjacent cells of a promycelium by

formation of a loop-like mating structure that connects both cells (D). After plant penetration, fungal filaments

grow mainly along the stem without triggering macroscopic symptoms (E) until flower development occurs. Upon

flowering, macroscopic symptoms are detectable as black, smutted spikelets filled with fungal spores (F). Fungal

cell walls and nuclei were stained with WGA-Alexa Fluor 488 and DAPI, respectively (A–D). Plant membranes were

stained with FM4-64, fungal hyphae with WGA-Alexa Fluor 488 (E). Scale bars: 5 mm (A–D), 10 mm (E, right panel),

or 1 cm (E, left panel) and (F).

DOI: 10.7554/eLife.20522.003

The following figure supplement is available for figure 1:

Figure supplement 1. The morphology of U. bromivora sporidia is similar to U. hordei, but not to U. maydis.

DOI: 10.7554/eLife.20522.004
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accessible is highly desirable. The recent redis-

covery that the U. maydis-relative U. bromivora

can infect Brachypodium sp. provided the impe-

tus to explore the suitability of the U. bromi-

vora-Brachypodium system as a novel plant-

pathogen model to study biotrophic interactions

(Barbieri et al., 2011).

Here we describe the characterization of this

valuable model pathosystem. This encompasses

(i) the detailed understanding of the life cycle of

U. bromivora, (ii) the identification of a

sequenced compatible host, (iii) the establish-

ment of transformation systems for both the

pathogen and the plant, and (iv) the sequencing

and analysis of the fungal genome. Moreover,

the observation of a mating type bias present in

U. bromivora provided first insights into the biol-

ogy of this pathogen.

Results and Discussion

The life cycle of U. bromivora and its mating type bias
Descriptive studies on the life cycle and mating behavior of smut fungi have been performed for

more than 100 years (Bauch, 1922; Brefeld, 1883). In all grass smuts (family Ustilaginaceae) studied

so far, sexual and pathogenic development are coupled (Begerow et al., 2014). Infection mostly

occurs at the early seedling stage of the respective host plant. After penetrating the plant, the

dikaryotic pathogen grows biotrophically inter- and intracellularly in its host and macroscopic symp-

toms are usually exclusively limited to the inflorescences (Brefort et al., 2009). In these plant organs,

fungal proliferation finally occurs after systemic growth and eponymous black teliospores are

Video 1. Spore germination under high nutrient

conditions (PD agar).

DOI: 10.7554/eLife.20522.005
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Figure 2. Axenic growth of U. bromivora. Growth of U. bromivora UB1 was assessed by monitoring cell density

spectrophotometrically at l = 600 nm in liquid PD medium at 21˚C in a time course of 96 hr. Growth was

compared between axenic cultures inoculated from plate with cold-treated fungal cell material (24 hr at 4˚C) or
cell material that was kept at 21˚C. Experiments were performed in 3 biological replicates. Significance between

cell densities of cold-treated and non-treated cells at each time point was calculated by unpaired t test. **p<0.01,

***p<0.001, ****p<0.0001. The doubling time was calculated by taking the slope of a linear regression during

exponential phase.

DOI: 10.7554/eLife.20522.006
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formed. U. maydis is a prominent exception as it induces spore filled galls on all aerial parts of its

host (Brefort et al., 2009). As described in the early 20th century by Robert Bauch (Bauch, 1925), U.

bromivora grows in its host plant after infection at the seedling stage, and only exhibits macroscopic

symptoms during inflorescence development by replacing flowers with black teliospore-filled sori

(Figure 1). Teliospores are the diploid resting stage of these fungi and are able to survive harsh envi-

ronmental conditions. In a humid, favorable environment, spores germinate, undergo meiosis and

form a promycelium from which haploid cells are released. The haploid yeast-like cells are non-path-

ogenic and grow saprophytically (Brefort et al., 2009). To elucidate this part of the life cycle of U.

bromivora, we followed germination of fungal spores by widefield and confocal laser scanning

microscopy. Under nutrient-rich conditions, U. bromivora spores germinated, formed a promycelium

and yeast-like cells were released (Figure 1A–C, Video 1). The egg-shaped cells of U. bromivora,

which are released after germination, show high morphological similarity to the sporidia of the bar-

ley-infecting covered smut Ustilago hordei, and their morphology differ from the cigar-like shaped

haploid cells of U. maydis (Figure 1—figure supplement 1). The high morphological similarity

between U. bromivora and U. hordei is in line with phylogenetic analysis based on internal tran-

scribed spacer (ITS) and large subunit (LSU) rDNA sequence comparison, which suggested that U.

bromivora is more closely related to U. hordei than to U. maydis (Stoll et al., 2005).

During saprophytic growth, daughter cells bud off from the mother cell at the side of the oval tip.

For a better visualization of the fungal cells, we employed the chitin stain Wheat Germ Agglutinin

(WGA) that is conjugated to Alexa Fluor 488 (Figure 1C). The WGA-Alexa Fluor 488 conjugate dis-

tinctively stained the tip of the sporidia indicating cell wall composition differences at the sporidial
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Figure 3. Mating type bias of U. bromivora. (A) Diagnostic PCR on genomic DNA derived from spores and spore

progeny to test for mating type 1 (MAT-1) or mating type 2 (MAT-2). To this end, primers targeting a conserved

region of pheromone receptor alleles 1 (pra1) and 2 (pra2), adapted from Kellner et al. (2011), were used. Sizes

of PCR products are indicated with arrow heads. Representative PCR results are shown. (B) Quantification of

mating type alleles of 225 progeny derived from 21 spores by PCR as described in (A). (C) Schematic model

illustrating the observed mating type bias phenomenon.

DOI: 10.7554/eLife.20522.007
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poles. This could be due to either an uneven chi-

tin distribution or an uneven accessibility of chitin

for the stain along the sporidial cell wall

(Figure 1C).

By performing growth analyses we determined

the doubling time of U. bromivora sporidia. In

comparison to U. maydis sporidia that exhibit a

doubling time of about 2 hr (Steinberg, 2007),

U. bromivora sporidia grow much slower (dou-

bling time in exponential phase at 21˚C: 5 1/3 hr;

Figure 2). Interestingly, we observed that the

lag-phase of the U. bromivora culture could be

significantly shortened when U. bromivora was

kept for 24 hr at 4˚C prior to inoculation (Fig-

ure 2). The underlying mechanism for this phe-

nomenon is unclear and awaits further research.

Prior to pathogenic growth, in case of the

well-studied smut fungus U. maydis, two haploid

cells of compatible mating type recognize each

other via a pheromone-receptor system on the plant surface, grow towards each other, fuse, and

form a dikaryotic filament. This dikaryotic filament represents the pathogenic form of the fungus. It

penetrates the leaf cuticle and grows intra- and intercellularly inside the maize plant. After prolifera-

tion in the aerial parts of the host, the filaments fragment and, after karyogamy, form diploid spores

(Brefort et al., 2009; Martinez-Espinoza et al., 2002). The molecular regulation of the dimorphic

switch is based on the bi-allelic a locus encoding the pheromone receptor system and the multiallelic

b locus coding for a heterodimeric homeodomain transcription factor that controls pathogenic

development (Schulz et al., 1990; Bölker et al., 1992). While U. maydis has a tetrapolar mating

type system with a and b loci that segregate during meiosis, these two loci are genetically and physi-

cally linked in U. hordei, leading to a bipolar mating system with only two mating types, mating type

1 (MAT-1) and mating type 2 (MAT-2) (Bakkeren and Kronstad, 1994; Lee et al., 1999). To test for

the presence of the mating system described for related smuts we assessed whether U. bromivora

spores, that are considered to contain the genetic information of both mating partners, harbor

known pheromone-receptor alleles. To this end, we employed a diagnostic PCR approach described

by Kellner et al. (2011) using primers that target conserved regions of either the pheromone recep-

tor allele pra1 or pra2 -. The PCR analysis revealed amplicons for pra1 and pra2 indicating the pres-

ence of both mating type alleles (Figure 3A). To subsequently identify haploid U. bromivora cells of

compatible mating type after spore germination, 225 randomly chosen progeny of 21 spores were

tested. Surprisingly, by testing these progeny, we identified only cells of mating type 1 (MAT-1;

Figure 3A,B). These findings indicate a mating type bias after spore germination (Figure 3C). This

phenomenon of biased strains was previously described in other related fungi where recessive alleles

linked to the mating type-locus were found to be causative for the observed biases (Nielsen, 1968;

Hood and Antonovics, 2000).

Due to the putative haplo-lethal allele, we assumed that haploid MAT-2 cells have only a very

short period of time to be rescued by finding and mating with a compatible partner, allowing the

subsequent formation of a dikaryotic filament. To observe mating events, spores were germinated

on water agar and monitored by light microscopy (Video 2, Figure 1D). After spore germination,

the cytoplasmic connection to the spore content becomes separated and, in the majority of germi-

nation events, only two cells are visible outside the spores. These cells frequently form a cytoplasmic

bridge-like mating structure and fuse (Video 2, Figure 1D). The mating of progeny derived from the

same spore is also known as an intratetrad mating event (Antonovics and Abrams, 2004). Using

DAPI staining at this stage, we most commonly observed a diffuse distribution of signal across the

two mating cells and, more rarely, a distinct nuclei-like area (Figure 1D). In contrast to these mating

cells, distinct nuclei-like structures could be visualized with this stain in saprophytically growing cells

(Figure 1C). The destiny of the other two meiotic products, which, in the majority of observed cases,

seemed to stay inside the spore shell, is unclear and awaits further research. The formation of conju-

gation hyphae that loop directly to neighboring, conjoined cells of the same tetrad could be a

Video 2. Spore germination under low nutrient

conditions (water agar).

DOI: 10.7554/eLife.20522.008
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Table 1. Tested Brachypodium accessions for U. bromivora susceptibility/resistance.

Name Species Sequenced
Susceptible to U.
bromivora

Accession
number Source

Country of
origin

ABR3 B.
distachyon

Y N (2x)* ABY-Bs 5088 Brachyomics collections (C. Stace and P. Catalán),
Aberystwyth, UK

Spain

ABR4 B.
distachyon

Y Y (many) ABY-Bs 5089 Brachyomics collections (C. Stace and P. Catalán),
Aberystwyth, UK

Spain

ABR6 B.
distachyon

Y N (2x)* ABY-Bs 5091 Brachyomics collections (C. Stace and P. Catalán),
Aberystwyth, UK

Spain

ABR7 B.
distachyon

Y N (2x)* ABY-Bs 5092 Brachyomics collections (C. Stace and P. Catalán),
Aberystwyth, UK

Spain

ABR9 B.
distachyon

Y N - unknown Croatia

Adi-10 B.
distachyon

Y N W6 39243 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Adi-12 B.
distachyon

Y N W6 39245 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Adi-2 B.
distachyon

Y N W6 39235 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Bd1-1 B.
distachyon

Y Y PI 170218 / W6
46201

GRIN Germplasm; Vogel et al. (2006) Turkey

Bd18-1 B.
distachyon

Y N PI 245730 / W6
46204

USDA-ARS-WRPIS; Vogel et al. (2006) Turkey

Bd21 B.
distachyon

Y N PI 254867 / W6
36678

GRIN Germplasm; Vogel et al. (2006) Iraq

Bd21-3 B.
distachyon

Y N W6 39233 GRIN Germplasm; Vogel and Hill (2008) Iraq

Bd2-3 B.
distachyon

Y N PI 185133 / W6
46202

Vogel et al. (2006) Iraq

Bd3-1 B.
distachyon

Y N (2x)* PI 185134 / W6
46203

USDA-ARS-WRPIS; Vogel et al. (2006) Iraq

BdTR10C B.
distachyon

Y N W6 39406 USDA-ARS-WRPIS Turkey

BdTR11I B.
distachyon

Y N W6 39426 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR13a B.
distachyon

Y N W6 39430 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR13C B.
distachyon

Y N W6 39432 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR1I B.
distachyon

Y N W6 39308 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR2B B.
distachyon

Y N W6 39314 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR2G B.
distachyon

Y N W6 39319 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR3C B.
distachyon

Y N W6 39332 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

BdTR5I B.
distachyon

Y N W6 39366 USDA-ARS-WRPIS; Filiz et al. (2009) Turkey

Foz1 B.
distachyon

Y N - Mur et al. (2011) Spain

Gaz8 B.
distachyon

Y N W6 39269 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Kah1 B.
distachyon

Y N W6 39278 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Table 1 continued on next page

Rabe et al. eLife 2016;5:e20522. DOI: 10.7554/eLife.20522 7 of 35

Research article Microbiology and Infectious Disease Plant Biology

http://dx.doi.org/10.7554/eLife.20522


necessary result of the mating type bias and ensures an efficient re-entry into the pathogenic stage

of the life cycle. At the same time, the haplo-lethal allele that is likely linked to the MAT-2 locus pro-

motes an inbreeding mode of U. bromivora with direct consequences on speciation, genome size,

and selection on recessive alleles as it has been observed in other organisms (Wright et al., 2008;

Ellegren and Galtier, 2016; Joly, 2011).

Isolation of a haplo-viable U. bromivora MAT-2 strain
Although the observed mating type bias is an interesting biological phenomenon, it is an undermin-

ing factor for the use of U. bromivora as genetically accessible model system to study biotrophic

interactions. It creates a situation where one mating partner can only be maintained in the patho-

genic, dikaryotic stage together with its compatible mating type and, as a consequence, it can nei-

ther be cultured axenically nor transformed under laboratory conditions. Depending on the physical

distance of the MAT-2 locus to the haplo-lethal allele that causes the mating type bias, homologous

recombination can lead to an uncoupling and the formation of a haplo-viable MAT-2 strain. There-

fore, we screened for such viable haploid MAT-2 recombinants by using a pooled infection assay

where a pool of spore-derived progeny was grown saprophytically and used for re-infection of Bra-

chypodium sp. (for details see Material and Methods). By pursuing this approach, we identified one

MAT-2 strain that we named UB2. This strain, which is not derived from the same spore as UB1,

retained the capability to mate with the U. bromivora MAT-1 strain UB1, which we isolated in a clas-

sical spore germination assay. Moreover, upon inoculation of Brachypodium sp., UB2 along with

UB1 formed viable spores demonstrating a successful completion of their life cycle. Infection symp-

toms of UB1xUB2-inoculated plants were indistinguishable from infected spikelets of spore-inocu-

lated plants (data not shown).

Table 1 continued

Name Species Sequenced
Susceptible to U.
bromivora

Accession
number Source

Country of
origin

Koz1 B.
distachyon

Y N W6 39284 USDA-ARS-WRPIS; Vogel et al. (2009) Turkey

Mur1 B.
distachyon

Y N - Mur et al. (2011) Spain

S8iiC B.
distachyon

Y N - Ana Caicedo Lab, University of Massachusetts Spain

ABR114 B. stacei Y Y (2x)* - unknown Spain

ABR113 B.
hybridum

Y N - unknown Portugal

ABR117,
Bd117, Bd6

B.
hybridum

N Y (2x)* PI - 219965 GRIN Germplasm Afghanistan

Bal-P7 B.
hybridum

N Y (2x)* W6 - 39259 GRIN Germplasm Turkey

Bd23 B.
hybridum

N Y (2x)* PI - 287783 GRIN Germplasm Spain

Bd26 B.
hybridum

N Y (2x)* PI - 372187 GRIN Germplasm Uruguay

Bd28 B.
hybridum

N Y (many)* PI - 533015 GRIN Germplasm Australia

Bd4 B.
hybridum

N Y (2x)* PI - 208216 GRIN Germplasm South Africa

Bd8 B.
hybridum

N Y (2x)* PI - 219971 GRIN Germplasm Afghanistan

Isk-P4 B.
hybridum

N Y (2x)* W6 - 39273 GRIN Germplasm Turkey

Y = yes, N = no; * = times tested
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Identification of a sequenced compatible host of U. bromivora
Phylogenetic analysis recently led to a taxonomy split within the Brachypodium lineages, separating

B. distachyon with cytotype 2n = 10 from Brachypodium stacei (2n = 20) and the allotetraploid Bra-

chypodium hybridum (2n = 30) (Catalan et al., 2012). The spontaneous infection event by U. bromi-

vora reported by Barbieri et al. (2011) occurred in the B. hybridum accession Bd28. The B.

hybridum accession Bd28 undergoes self-fertilization, grows fast, and is easy to

handle (Barbieri et al., 2011). One slightly complicating fact is its allotetraploid genetic background

but its genome is currently being sequenced and will be available to the community in near future (J.

Vogel, unpublished). In order to identify additional Brachypodium sp. accessions susceptible to U.

bromivora, in total, 39 accessions were infected with spores and analyzed for macroscopic infection

symptoms in the spikelets. Whereas B. distachyon Bd21, along with 27 other tested accessions, did

not show infection symptoms, we found eleven accessions to be fully susceptible to U. bromivora

(Table 1). The finding that susceptible host plant accessions originate from Europe, Asia, Africa, Aus-

tralia as well as South America (Table 1) underlines that U. bromivora is considered as a cosmopolite

(Bauch, 1925). The natural host range of U. bromivora comprises various species of the genera

Agropyron, Austrofestuca, Brachypodium including B. distachyon, Bromus, Critesion, Elymus, Fes-

tuca, Hordeum, Lolium, Sitanion and Trachynia (Bauch, 1925; Fisher and Holton, 1957;

Vanky, 2011) and our experiments can confirm at least three host species, B. distachyon, B.

hybridum and B. stacei. Among the susceptible accessions are the B. distachyon accessions ABR4,

originally collected from Southern Spain, and Bd1-1, an inbred line, as well as the B. stacei accession

ABR114 (Figure 4). The genomes of all three susceptible diploid accessions have been sequenced

(J. Vogel, unpublished), providing the foundation for valuable tools and studies of our novel plant

pathosystem. While, to our knowledge, ABR4 has not been tested for susceptibility to other impor-

tant fungal pathogens, Bd1-1 shows resistance to the wheat pathogen Zymoseptoria tritici as well as

to Puccinia graminis (Figueroa et al., 2013; O’Driscoll et al., 2015). Therefore, Bd1-1 represents a

suitable model accession to study compatible interactions with U. bromivora as well as incompatible

interactions with P. graminis and Z. tritici. Moreover, the comparison of susceptible B. distachyon

accessions such as Bd1-1 and ABR4, with the resistant accession Bd21 allows the study of

ABR4 ABR114 Bd1-1

Figure 4. ABR4, ABR114, and Bd1-1 are susceptible to U. bromivora. Representative pictures of infected ABR4,

ABR114, and Bd1–1 spikelets. Sequenced B. distachyon accessions ABR4 and Bd1-1 as well as the sequenced B.

stacei accession ABR114 were inoculated with U. bromivora spore material and screened for infection symptoms.

Upon flowering macroscopic infection symptoms could be observed as spore-filled spikelets. This figure relates to

Table 1. Scale bars: 1 cm.
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compatible and incompatible interactions with U. bromivora without switching pathosystems. The

discovery of several Brachypodium accessions resistant to U. bromivora, comprising accessions of B.

distachyon, B. stacei, and B. hybridum, suggests that resistance likely evolved in a common ancestor

of B. distachyon and B. stacei. As there is evidence that B. hybridum is the product of an interspecies

cross between these two diploid taxa (Petersen et al., 2011), this scenario would suggest that smut

resistance was independently lost several times in each taxon. Alternatively, resistance based on sin-

gle or even multiple factors could have evolved independently several times in the different closely

related species. Within the limits of a relatively small sample size we observe a trend of B. hybridum

accessions to be susceptible to U. bromivora. This could be due to suppression of resistance in poly-

ploid genomes, a previously described phenomenon found in tetra- and hexaploid wheat

(Knott, 2000; Kerber, 1991).

Since Bd28 is an excellent host for U. bromivora and needs only very short vernalization to induce

flowering and to show infection symptoms, we used this accession for the establishment of a model

host. To this end, we developed an efficient growth and infection method providing high germina-

tion rate, reliable floral induction, and high infection rate by U. bromivora (for details see Material

and Methods). These protocols could be also applied for the diploid and sequenced accession

A

B

~4 h

10µm 10µm10µm 10µm

   ~10-14 d

haploid, exponentially 

growing fungal cells

protoplastation +

PEG-mediated transformation

selection of transformed cells GFP producing transformant

 ~56-84 d  ~56-84 d

callus induction

A. tumefaciens-mediated 

transformation + 

A. tumefaciens counterselection
selection of 

transformed cells

plant regeneration

   2 weeks

5-8 months

~50-64 d

Figure 5. Establishment of transformation for the fungal pathogen U. bromivora and its host plant B. hybridum

Bd28. (A) Schematic representation and timeline of protoplastation and transformation of U. bromivora UB1 with

the autonomously replicating pNEBuC-GFP plasmid conferring Carboxin resistance and encoding GFP.

(B) Schematic representation and timeline of A. tumefaciens-mediated transformation of B. hybridum Bd28.

Illustrations are not to scale.

DOI: 10.7554/eLife.20522.011

The following figure supplements are available for figure 5:

Figure supplement 1. Several resistance markers can be employed for selection of U. bromivora transformants.

DOI: 10.7554/eLife.20522.012

Figure supplement 2. UB2 can mate with UB1-GFP, form filaments, and produce viable spores.

DOI: 10.7554/eLife.20522.013

Figure supplement 3. Microscopy of transgenic Bd28 eCFP-SKL marker line.

DOI: 10.7554/eLife.20522.014
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ABR4. However, in contrast to Bd28, ABR4 requires a minimum of four weeks vernalization to induce

flowering and needs six weeks of vernalization to induce fast bulk flowering. 95 days after the initia-

tion of vernalization, flowering of ABR4 is completed and we observed infection rates of almost

100%. Due to its shorter vernalization requirement, Bd28 can complete its life cycle in approximately

70 days. Interestingly, different time points of spore inoculation as well as the spore load seem to

lead to varying infection efficiency. We regularly observed infected plants showing a few healthy spi-

kelets beside spore-filled ones (data not shown). The presence of healthy spikelets might be the evo-

lutionary result of a sustainable virulence strategy of this host-specific, biotrophic pathogen to avoid

complete sterilization of its host and therefore its local extinction.

Transformation establishment for U. bromivora and its host B.
hybridum Bd28
The establishment of transformation protocols for both the pathogen and its host plant is an impor-

tant requirement to employ U. bromivora and Brachypodium sp. as a genetically accessible biotro-

phic model system.

For initial transformation tests of U. bromivora, we used the self-replicating pNEBuC-GFP and

pNEBuC-mCherry-HA vectors, which were developed for U. maydis (Brachmann, 2001). These plas-

mids contain a gene conferring Carboxin resistance and a gene encoding either the green fluores-

cent protein (GFP-HA) or mCherry-HA protein. GFP-HA or mCherry-HA are under control of the

artificial otef promoter, which is constitutively active in axenic culture (Spellig et al., 1996). Expres-

sion of these genes allows a fast readout of the transformation efficiency. Although different trans-

formation protocols were tested, PEG-mediated protoplast transformation turned out to be most

efficient (average transformation efficiency: 314 colonies per mg plasmid DNA; Figure 5A). Since

appropriate selection markers are essential for high-efficiency transformations, we concomitantly

tested three different antibiotics and selection markers. While wild type cells could not be propa-

gated, transformants harboring self-replicating plasmids conferring Carboxin, Geneticin G418, or

Hygromycin resistance were able to grow on respective selection media (Figure 5—figure supple-

ment 1). We also tested integrative constructs for various loci such as the mating type region or the

predicted pep1 gene locus, encoding an effector ortholog that has been shown to contribute to vir-

ulence in U. maydis (Doehlemann et al., 2009). However, our results suggest, that in contrast to U.

maydis, DNA uptake or other steps during transformation seem to be less efficient in U. bromivora

preventing high transformation rates and strongly reduced the number of stable integration events.

Therefore, we conducted a restriction enzyme mediated integration (REMI) approach which should

promote genomic integrations (Bölker et al., 1995). By employing this technique, we obtained a

UB1 derivative with a stable integration of GFP driven by the otef promoter (UB1-GFP). To ensure

that after REMI mutagenesis, UB1-GFP has retained its capability to infect, we inoculated germinat-

ing Bd28 caryopses with a mixture of UB1-GFP and UB2. Spore-filled spikelets and GFP producing

progeny derived from these spores demonstrated a successful infection and completion of the fun-

gal life cycle (Figure 5—figure supplement 2).

To establish transformation for the B. hybridum accession Bd28, we adapted a Bd21 transforma-

tion protocol (Vain et al., 2008) for its specific needs (Figure 5B). As a proof of principle, we gener-

ated transgenic lines harboring a fluorescently tagged peroxisome-targeting construct (eCFP-SKL).

On the one hand, this construct provides a fast visual read out of a successful transformation; on the

other hand, respective transgenic lines might be a valuable tool for studying cell biological questions

in Brachypodium sp. (Figure 5—figure supplement 3).

The genome of U. bromivora
By comparative rDNA analysis, U. hordei has been shown to be the most closely related smut to U.

bromivora that has been sequenced to date (Stoll et al., 2005). The presence of extensive repetitive

elements and transposable elements (TE) in the U. hordei genome complicated its genome assembly

(Laurie et al., 2012). To circumvent possible assembly problems with the related U. bromivora

genome, we performed Single Molecule Real-Time (Pacific Biosciences, Menlo Park, CA) sequencing

of UB1, the isolated MAT-1 strain. PacBio sequencing has been shown to deliver long reads, facilitat-

ing fast and accurate genome assembly. After subread filtering, 376,645 reads (3.1 Gb total) with

84.5% accuracy and a mean length of 8,186 bp (approximately 154x coverage of the ~20.7 Mb
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genome) were obtained. Assembly and polishing resulted in 25 contigs of which 23 showed good

synteny with the optically mapped synthetic chromosomes of U. hordei (Laurie et al., 2012). Based

on this, U. bromivora has 23 chromosomes (20.5 Mb), the mitochondrial genome and an unassigned

Table 2. Genome comparison of sequenced smut fungi.

U. bromivora U. maydis1 S. reilianum2 S. scitamineum3 U. hordei4 M. pennsylvanicum5

Assembly statistics

Total contig length (Mb) 19.7 18.2 19.5 20.6 19.2

Total scaffold length (Mb) 20.5 19.8 18.4 19.6 21.15 19.2

Average base coverage 154x 10x 20x 30x 25x 339x

N50 contig (kb) 127.4 50.3 37.6 48.7 43.4

N50 scaffold (kb) 877 817.8 738.5 759.2 307.7 121.7

Chromosomes 23 23 23 23

GC-content (%) 52.4 54 59.7 54.4 52 50.9

coding (%) 54.4 56.3 62.6 57.8 54.3 54

non-coding (%) 49.4 50.5 54.3 51.1 43.4 46.9

Coding sequence

Percent coding (%) 59.8 61.1 65.9 62 57.5 56.6

Average gene size (bp) 1699 1836 1858 1819 1705 1734

Average gene density (gene/kb) 0.35 0.34 0.36 0.34 0.33 0.33

Protein-coding genes 7233 6786 6648 6693 7113 6279

Exons 11154 9783 9776 10214 10907 9278

Average exon size 1101 1230 1221 1191 1107

Exons/gene 1.5 1.44 1.47 1.5 1.53 1.48

tRNA genes 133 111 96 116 110 126

Secretome

Predicted secreted proteins 409 485 461 466 405 300

Non-coding sequence

Introns 3921 2997 3103 3521 3161 2999

Introns/gene 0.54 0.44 0.46 0.53 0.44 0.48

Average intron length (base) 163 142 144 130.1 141 191.4

Average intergenic distance (bp) 1054 1127 929 1114 1186 1328

Repeat sequences

DNA Transposon 1.89% 0.29% 0.13% 0.25% 0.89% 0.29%

LINE 4.38% 0.35% 0.04% 0.27% 4.62% 0.40%

SINE 0.18% 0.05% 0.03% 0.05% 0.27% 0.10%

LTR Retrotransposon 5.83% 1.15% 0.13% 0.69% 4.82% 1.17%

Unclassified non LTR-Retrotransposon 0.06% 0.02% 0.01% 0.01% 0.10% 0.032

Unclassified Retrotransposon 2.03% 0.21% 0.12% 0.29% 1.47% 0.39%

Unclassfied 0.06% 0.08% 0.02% 0.08% 0.38% 0.04%

Total TE class 14.33% 2.11% 0.45% 1.60% 11.84% 2.32%

Simple sequence repeats 1.31% 1.75% 2.00% 1.59% 1.59% 1.54%

Total excl. Tandem repeats 15.72% 3.90% 2.49% 3.23% 13.56% 3.95%

Tandem repeats 5.14% 4.22% 6.97% 4.54% 5.20% 5.16%

Total repeat coverage 18.51% 6.70% 8.26% 6.68% 16.45% 6.72%

1Kämper et al., 2006; 2Schirawski et al., 2010; 3Dutheil et al., 2016; 4Laurie et al., 2012; 5Sharma et al., 2014
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smaller contig. Gene model prediction led to the identification of 7,233 protein coding genes

(Table 2). All gene models were manually curated by extensive comparative analysis to the existing

Ustilaginaceae annotations and 82.3% of all gene models were confirmed by assembled transcripts

obtained from Illumina-based RNA-seq of axenically grown UB1. With 7,233 protein coding genes,

U. bromivora harbors 120 more genes than the close relative U. hordei that has an assembled

genome 0.65 Mb larger than U. bromivora (Laurie et al., 2012). The compactness of the U. bromi-

vora genome is underscored by the fact that 67.9% of the genes are intron-less, 19.3% have one

intron, whereas only 12.8% are predicted to contain multiple introns.

To assess the completeness of the U. bromivora genome, a BLAST search was performed with

highly conserved core genes present in higher eukaryotes (Aguileta et al., 2008; Parra et al.,

2009). From the expected 248 single-copy orthologs extracted from 21 genomes (Parra et al.,

2009), 247 are present in the U. bromivora genome (missing KOG1468, translation initiation factor

eIF-2B), indicating that >99% of the gene space is covered by the assembly.

To assess the difference of UB1 and its compatible mating partner UB2 on a genomic level, we

performed Illumina 125 paired-end sequencing of UB2 and single nucleotide polymorphism (SNP)

calling. By using stringent parameters, we identified 1,323 SNPs between the two strains (Figure 7—

source data 1). 783 of them are found in coding sequences and 429 lead to non-synonymous muta-

tions. Since UB1 and UB2 were independently isolated from different spores, SNPs might be a result

of the prevalent inbreeding due to intratetrad mating which over time leads to significant differences

between progenies of different spore tetrads.

We constructed a phylogenetic tree using one-to-one orthologous genes as identified by

OrthoMCL (Figure 6). The resulting phylogeny shows Sporisorium reilianum and Sporisorium scitami-

neum forming one cluster and U. bromivora and U. hordei forming a second cluster. U. maydis

shows a closer relationship to the tested species of the Sporisorium genus than to the ones of the

Ustilago genus that are more closely related to Melanopsichium pennsylvanicum. This is in agree-

ment with the relationships found by Stoll et al. (2005) and Sharma et al. (2014) . The phylogeny

also illustrates the close relationship between U. hordei and U. bromivora, which share orthologs for

a large number of genes and between which protein sequence conservation is much higher than

between other fungi (data not shown).

M. pennsylvanicum

S. scitamineum

S. reilianum

U. maydis

U. bromivora

U. hordei
0.012

0.130

0.108

0.009

0.295

0.335

0.094

0.271

0.121

Figure 6. Phylogeny of U. bromivora and related smuts. Unrooted phylogeny created from 4,947 one-to-one

orthologs. Branch lengths represent the mean number of substitutions per DNA site. Terminal branch lengths for

U. bromivora and U. hordei are not to scale.

DOI: 10.7554/eLife.20522.016
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The mating type chromosome
The mating type locus of U. bromivora UB1 is located on chromosome 1. We identified genes

encoding a putative pheromone receptor (UBRO_03901) and pheromone (UBRO_03899) as well as

bEast (UBRO_00885) and bWest (UBRO_00887) orthologs encoding a putative homeodomain-tran-

scription factor (Figure 7A). The pheromone/receptor genes (a locus) are separated from the bEast

and bWest genes (b locus) by a 183 kb long region highly enriched in transposable elements (TE;

39.85% compared to an average of 17.18% over the length of the chromosome and to an overall

genome average of 14.33%; Figure 7B, Figure 7—figure supplement 1). This bipolar mating sys-

tem resembles the structural organization found in the close relative U. hordei although the region
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Figure 7. The mating type chromosome (chromosome 1) of U. bromivora UB1 (MAT-1) and UB2 (MAT-2). (A)

Schematic representation of the a locus (encoding the predicted pheromone receptor system) and the b locus

(encoding the putative heterodimeric transcription factor for pathogenic development) of UB1 (MAT-1 strain) and

UB2 (MAT-2 strain) according to de novo assembly of both strains. Potential rga2 and lga2 orthologs, encoding

proteins for uniparental mitochondrial inheritance (Fedler et al., 2009), are located in the a2 region between mfa2

and pra2. *Due to rearrangements in the mating type region of UB2, the orientation of a2 and b2 locus could not

be exactly determined. However, data suggest an inversion of the a2 locus. (B) The mating type region of UB1 is

enriched for transposable elements. Graph depicts percentage of transposon coverage in 25 kb windows

occurring every 12.5 kb along the chromosome. (C) Mapping of UB2 to the UB1 reference genome shows large

non-mapped stretches in the MAT-1 locus indicating sequence differences in this region between MAT-1 and

MAT-2. (D) Enrichment of single nucleotide polymorphisms (SNPs) in and around the mating type region between

the genomes of UB1 and UB2. Number of SNPs is shown in 5 kb windows.

DOI: 10.7554/eLife.20522.017

The following source data and figure supplements are available for figure 7:

Source data 1. List of Single Nucleotide Polymorphisms (SNPs) identified in UB2.

DOI: 10.7554/eLife.20522.018

Figure supplement 1. Transposon content along U. bromivora chromosomes.

DOI: 10.7554/eLife.20522.019

Figure supplement 2. Genes of the mating type regions are up to 98% identical between U. bromivora and U.

hordei.

DOI: 10.7554/eLife.20522.020
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Figure 8. Enrichment of classes of interest among predicted secreted proteins and in planta differentially expressed transcripts. (A) Proportions of

genes encoding unclassified proteins based on FunCat classification within all annotated U. bromivora genes, within genes encoding secreted proteins,

within all genes up- and downregulated in planta twelve days after planting (dap) as well as within the genes that are differentially regulated and

encode secreted proteins. (B) Proportions of genes encoding predicted secreted proteins within all annotated U. bromivora genes, within all genes
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between the a and b locus in U. hordei is, at ~500 kb, larger (Figure 7—figure supplement 2)

(Bakkeren and Kronstad, 1994).

Mapping of Illumina reads from UB2 to the UB1 reference genome and subsequent SNP calling

showed that the mating type region flanked by the a and b loci is highly diverse between the two

compatible strains, as evidenced by segments depleted of reads, rearrangements and a high num-

ber of SNPs in the regions covered (Figure 7C,D; Figure 7—source data 1). We calculated for the

mating type region a SNP frequency of 1.8E-03 SNPs bp-1 compared to a frequency of 6.5E-05 SNPs

bp�1 for the entire genome. This sequence divergence is likely a result of recombination suppression

in the mating type region leading to a bipolar mating system at the cost of losing a recombination-

based repair in this region.

Analysis of genes encoding putatively secreted proteins
One class of proteins which is of special interest for biotrophic interactions is secreted proteins. In

addition to functions such as cell wall remodeling and hydrolytic enzymes for substrate degradation,

this class includes effector proteins, which might directly impact the outcome of the biotrophic inter-

action with the host and often target the host defense system or its metabolism (Asai and Shirasu,

2015). Several criteria had to be fulfilled for a predicted U. bromivora protein to be considered a

Figure 8 continued

found to be expressed in axenic culture and in planta, and within genes significantly up- or downregulated in planta. Fisher exact test was used to test

whether the proportion of selected genes within a given class differs significantly from the proportion within all annotated genes; ****p-value < 0.0001,

***p-value < 0.001. The total number of genes is shown in brackets below each chart.

DOI: 10.7554/eLife.20522.021

The following figure supplement is available for figure 8:

Figure supplement 1. Functional categorization of putatively secreted proteins and all proteins encoded in the genome.

DOI: 10.7554/eLife.20522.022
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Figure 9. Gene by gene comparison between the largest secreted virulence cluster of U. maydis (cluster 19) with the corresponding region in the U.

bromivora and U. hordei genome on chromosome 18. The scheme depicts U. maydis cluster 19 on chromosome 19, the predicted U. bromivora cluster

18 on chromosome 18 and the corresponding region on chromosome 18 (scaffold 5.0017) of U. hordei. Syntenic orthologs between U. maydis and U.

bromivora as well as between U. bromivora and U. hordei are connected with a green bar. Genes encoding predicted non-secreted proteins are

displayed in grey, genes encoding putative secreted proteins in blue.
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secreted protein: it had to contain a signal peptide, fewer than two transmembrane helices, no

endoplasmatic reticulum (ER) retention signal, and it had to be predicted not to target mitochondria.

These strict criteria led to the prediction of 409 secreted proteins encoded in the U. bromivora

genome.

The majority of putatively secreted proteins are of unknown function
and their transcripts are overrepresented in planta
While for 46.3% of all U. bromivora proteins we could not assign a potential function based on

BLAST sequence similarity (’unclassified proteins’), this fraction increases to 69.7% for the proteins

that are predicted to be secreted. This makes proteins of unknown function the most significantly

enriched functional category of U. bromivora secreted proteins (Figure 8A, Figure 8—figure sup-

plement 1).

To provide insights into expression patterns of the genes encoding putatively secreted proteins

in U. bromivora during saprophytic growth and in planta, we conducted RNA-seq analyses. To this

end, we isolated RNA from axenic UB1 culture and from stems of twelve day old B. hybridum Bd28

plants that were spore-inoculated with U. bromivora. Among the 6,756 transcripts found to be

expressed in our dataset, 493 were significantly upregulated in planta compared to axenic culture

(logFC > 2, adjusted p-value < 0.1), while 1,138 transcripts were significantly downregulated. Nota-

bly, transcripts predicted to encode secreted proteins are significantly enriched among the upregu-

lated transcripts compared to all annotated genes (30.8% compared to 5.7%; Fisher exact test,

p-value � 2.2E-16; Figure 8B). Moreover, we could show by functional protein classification that

among the putatively secreted proteins that are induced in planta, unclassified proteins are signifi-

cantly overrepresented (84.1% compared to 46.4% within all annotated genes; p-value = 2.2E-16;

Figure 8A). In contrast, in the subset of down-regulated genes, a functional overrepresentation of

genes encoding secreted, unclassified proteins could not be observed. Our findings are in line with

the observation that the vast majority of effector proteins are so far functionally not characterized.

At the sequence level these proteins are only poorly conserved between distant fungal pathogens

making the prediction of protein function difficult.

The majority of putative U. bromivora effectors are not clustered
In the case of U. maydis, many of the small secreted protein encoding genes are organized in patho-

genicity clusters and a large number of them were shown to play a role in virulence (Kämper et al.,

2006). To assess the presence of potential pathogenicity clusters in the U. bromivora genome, we

defined clusters as containing at least three adjacent genes encoding predicted secreted proteins or

three genes encoding secreted proteins interrupted by maximal one single non-secreted protein-

coding gene. These in comparison to the analysis of Kämper et al. (2006) relatively relaxed criteria

led to the identification of only eleven secretion clusters comprising a total of 10.51% of all putative

secreted proteins of U. bromivora. Although some of the putative effector clusters identified in U.

maydis also show a syntenic organization in the U. bromivora genome, many others do not and the

vast majority of the predicted secreted proteins of U. bromivora are not clustered. Among all clus-

ters, the largest is cluster 18, related to U. maydis cluster 19. Whereas cluster 19 (as located on chro-

mosome 19) in U. maydis comprises 24 putative effector genes (Brefort et al., 2014), the syntenic

cluster in U. bromivora comprises less than half the number of putative secreted protein encoding

genes and is located on chromosome 18 (Figure 9). In the close relative U. hordei the clustering of

genes encoding predicted secreted proteins in this region is even less compact and disrupted to a

greater extent than in U. bromivora (Figure 9) (Laurie et al., 2012). Our analysis of the U. bromivora

clusters further showed that the syntenic genes missing from cluster 18 have not moved to other

parts of the genome but are simply absent from U. bromivora and occur only in U. maydis or are

shared between U. maydis, S. reilianum, and S. scitamineum (data not shown).

Orthologous and orphan genes
One indication of how suitable a specific model system is for generalizing knowledge to other

related species is the presence of orthologous genes. Excluding mitochondrial genes, among the

7,193 genes present in the U. bromivora genome, 5,121 one-to-one orthologs were predicted with

U. maydis, U. hordei, S. scitamineum, S. reilianum, and M. pennsylvanicum. These one-to-one
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orthologs are genes which have one ortholog in each of the other species and no paralogs. M. penn-

sylvanicum and U. bromivora share 5,470 orthologs. In contrast, U. bromivora shares 5,841 orthologs

with U. maydis and 6,180 orthologs with U. hordei. The lower number of orthologs in M. pennsylva-

nicum is in line with the observation that this smut genome has lost genes that might be associated

with a switch from a monocot to a dicot host plant (Sharma et al., 2014).

Among the 409 U. bromivora predicted secreted proteins, we found 216 of them among the

5,121 one-to-one orthologs. All of the U. maydis effectors functionally characterized or described in

the literature, including Tin2, See1, Cmu1, Pep1, Pit2 and Mig1 (Djamei et al., 2011; Redkar et al.,

2015a, 2015b; Hemetsbergeret al., 2012; Doehlemann et al., 2009; Mueller et al., 2013;
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Figure 10. Testing orthologs of core effectors for functional interchangeability between U. bromivora and U.

maydis. (A) List of known effector orthologs in U. bromivora and U. maydis and their amino acid identity and

similarity. Identity shows the percentage of identical positions in the alignment, taking gaps into account.

Percentage identity = 100 (identical positions / length of alignment). Similarity gives a measure of how similar two

protein sequences are to one another based on the physical and chemical properties of their amino acids.

Sequences were aligned using T-Coffee and identity and similarity scores were given by SIAS (Sequence Identity

and Similarity; http://imed.med.ucm.es/Tools/sias.html). (B) Core-effector mutants of U. maydis (SG200Dstp1 and

SG200Dpep1) can be complemented with the respective U. bromivora ortholog. Disease symptoms of infected

plants were scored at twelve days post inoculation (dpi) according to Kämper et al., 2006. The darker the color,

the more severe the symptoms. Numbers of infected plants are indicated above each column. p-values are

calculated by Fisher exact test, MTC by Benjamini-Hochberg algorithm, ****p<0.0001. Leaves of representative

plants twelve days after inoculation with indicated strains are shown next to the stacked bar plot. Scale bars: 1 cm.
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Basse et al., 2000; Tanaka et al., 2014), share orthologs with U. bromivora (Figure 10A). The amino

acid similarity between each U. maydis effector and its corresponding U. bromivora ortholog ranges

from 41% for the organ specific effector See1 to 70% for the widely conserved peroxidase inhibitor

effector Pep1 (Figure 10A). To experimentally test if U. bromivora effectors can functionally comple-

ment their respective orthologs in the U. maydis / Zea mays pathosystem, we chose two conserved

effectors for that assay, Stp1 and Pep1 (Doehlemann et al., 2009; Schipper, 2009). These effectors

were recently shown to play an essential role for virulence of U. maydis. The avirulent phenotype of

both U. maydis deletion mutants could be complemented by introducing the corresponding U. bro-

mivora ortholog (Figure 10B). This demonstrates that the U. bromivora / Brachypodium system

could be indeed suitable to study the functional role and host targets of conserved effectors from

related species.

Besides the described orthologs, we found 427 orphan U. bromivora genes that lack orthologs in

the five other fungi they were compared with. Of these, 21 are predicted to encode secreted pro-

teins. None of the orphan genes had a predicted function according to either FunCat or Blast2GO.

Transposable elements and genome defense machinery
Comparing the currently available smut genomes both, U. hordei and, to an even greater extent, U.

bromivora contain a high number of transposable elements and other repetitive sequences, encom-

passing up to 14.33% of the genome (Table 2). Similar to the other smuts sequenced to date, the U.

bromivora genome has a low frequency of small interspersed nuclear elements (SINEs) (0.18% of the

genome), a class of retrotransposons that lost the coding region for their own reverse transcriptase.
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repeat regions were determined using RIPCAL and were compared to those of control regions. A noticeable

decrease in the occurrence of CpG dinucleotides was detectable for both U. hordei and U. bromivora as well as,

to a lesser extent, M. pennsylvanicum.
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However, it contains a high percentage of long terminal repeat (LTR) retrotransposons (5.83%),

which are independent from other mobile genomic elements and encode all proteins necessary for

transposition. Similar ratios of long interspersed elements (LINE) have spread in the U. hordei and

the U. bromivora genome (4.62% and 4.38%, respectively; Table 2). With few exceptions, such as

the mating type chromosome (Chr1), transposable elements are evenly distributed over the U. bro-

mivora chromosomes (Figure 7—figure supplement 1). These results are in line with those made in

U. hordei, where except for the mating type region, repetitive sequences are also evenly distributed

across the genome (Laurie et al., 2012; Bakkeren et al., 2006).

While transposable elements have clearly shaped the genome of U. bromivora, their action might

be counter-balanced by the presence of a functional core machinery of the RNA interference path-

way. Homology searches identified UBRO_08937 that likely encodes the PAZ-domain (Piwi/Argo-

naute/Zwille-domain) containing endoribonuclease DICER. UBRO_20628, UBRO_01631, and

UBRO_08874 encode three RNA-dependent RNA Polymerases (RdRP) which are necessary for the

formation of the complementary strands of target RNA, and therefore represent a prerequisite for

RNA-directed silencing. UBRO_06256 is predicted to encode the argonaute protein, the catalytic

subunit of the RISC-complex. We also identified the small RNA methyltransferase Hen1

(UBRO_08578). Moreover, the chromodomain (CD) protein CHP1 and CHP2 important for hetero-

chromatic gene silencing are with UBRO_05116 and UBRO_07750 as well present. Analysis of dinu-

cleotide frequencies in repetitive regions of the genome shows a lack of CpG dinucleotides similar

to that observed in U. hordei (Laurie et al., 2012) (Figure 11). This may indicate the presence of

repeat induced point-mutations (RIP) which can serve as an additional genomic defense mechanism

against transposable elements (Selker, 2002).

Genes under positive selection in U. bromivora
Genes under positive selection are indicative of an ongoing adaptation process often found either

upon a host jump, neofunctionalization of a protein, or during the arms race between the host and

the pathogen. We analysed the proteins of our six fungal genomes for signs of positive selection.

Our analysis of the one-to-one orthologs between the six smut fungi we compared (Table 3) con-

firmed the previously reported finding of high levels of positive selection in M. pennsylvanicum

(Sharma et al., 2014). It also showed that U. bromivora has the lowest levels of selection when mea-

sured at a false discovery rate (FDR) of 0.05 but is between U.maydis and S. reillianum when using

an FDR of 0.01. Among the genes being under positive selection, only twelve encode predicted

Table 3. Positive selection among sequenced smut fungi

U. bromivora U. maydis U. hordei S. scitamineum S. reilianum M. pennsylvanicum

Genes analysed

Total 4947 4947 4947 4947 4947 4947

Under selection (q = 0.05) 140 345 188 170 256 2390

Under selection (q = 0.01) 96 116 135 90 91 1434

Non-PSEPs

Total 4738 4735 4733 4748 4743 4753

Under selection (q = 0.05) 128 318 168 153 240 2287

Under selection (q = 0.01) 86 105 122 81 84 1377

PSEPs

Total 209 212 214 199 204 194

Under selection (q = 0.05) 12 27 20 17 16 103

Under selection (q = 0.01) 10 11 13 9 7 57

*Number of genes under positive selection in each of the six fungi used in this study. The number of genes predicted to be under positive selection is

given for both a FDR of 0.05 and 0.01 and are grouped in three categories: total genes analyzed, the subset of genes that are not predicted to be

secreted and the subset of genes that are predicted to be secreted. This analysis is limited to the 4,947 one-to-one orthologs that were used for the

construction of the phylogeny.

DOI: 10.7554/eLife.20522.026
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secreted proteins. In contrast to the twelve genes found in U. bromivora, M. pennsylvanicum, which

adapts to its dicot host, harbors 103 genes encoding predicted secreted proteins that were shown

to be under positive selection. The evolutionary pressures driving the observed incidents of selection

in U. bromivora remain unclear.

Conclusion
Smut fungi, especially U. maydis, have become models for studying recombination (Holliday, 1964),

cell biology (Steinberg et al., 2008; Haag et al., 2015), and, due to their nature, biotrophic interac-

tions (Brefort et al., 2009). This has resulted in U. maydis being considered as an important model

pathogen in the scientific community (Dean et al., 2012). In recent years, the importance of small

secreted molecules termed effectors, which shape the biotrophic interaction between the pathogen

and its host, has become increasingly evident. One major challenge for effector research is that most

effector proteins have no sequence similarity to any known protein and are therefore difficult to

functionally characterize. Although these important molecules are produced by the pathogen, in

many cases they target host processes and therefore require a completely accessible host system for

complementary functional studies in both the host and pathogen. In our search to identify a biotro-

phic model pair for a smut and a temperate host grass that due to their genetic accessibility will

enable these complementary functional studies, we chose the smut fungus U. bromivora and its

compatible host grass Brachypodium sp.

Although U. bromivora is closely related to other sequenced model smuts, it displays interesting

peculiarities in its lifestyle, especially in connection with its mating system. Most strikingly is one

major feature: the mating type bias. Upon spore germination and meiosis, the a and b loci located

on chromosome 1 co-segregate, and progeny with two different mating types arise from one spore,

MAT-1 and MAT-2. Interestingly, the locus that causes the mating type bias co-segregates with the

MAT-2 mating type region leading to the inability to survive under saprotrophic conditions. Indepen-

dent of its cause, it has important implications for the biology of U. bromivora. The bipolar mating

system and the intratetrad mating entail a strong tendency for inbreeding which could be

an advantageous driving speciation of this highly specialized plant pathogen (Hoekstra, 2005). This

holds especially true as the pheromone receptor based cell-cell recognition system is rather promis-

cuous between different smut species and might not be sufficient as a speciation barrier

(Kellner et al., 2011). Besides the removal of detrimental DNA, like transposable elements and del-

eterious mutations, sexual reproduction is a way to efficiently reshuffle alleles over generations to

provide an opportunity for natural selection to produce efficient allele combinations

(Goddard et al., 2005; Lee et al., 2010). The relative abundance of transposable elements in U.

bromivora could potentially serve as a source of variation to counterbalance the assumed loss of het-

erozygosity due to inbreeding between progeny from the same spore. This could enable the popula-

tion to adapt to evolving challenges such as host defense mechanisms. As a consequence, it might

be essential to keep the functional machinery for RNA silencing intact to limit the uncontrolled

spreading of transposable elements with potentially deleterious effects. In contrast to U. bromivora,

U. maydis has evolved a very efficient recombination system enabling the removal of most of its inva-

sive transposable elements. This was likely a prerequisite to allow the loss of the silencing machinery

in U. maydis, which subsequently led to the gain of a competitive advantage through symbiosis with

double-stranded RNA totiviruses, which encode for killer toxins that target non-killer containing

competitive microbes (Drinnenberg et al., 2011; Koltin and Day, 1976).

The deleterious allele which leads to the mating type bias in U. bromivora is still unidentified. In

the related smut Microbotryum violaceum (formerly described as Ustilago violacea), intratetrad mat-

ing was observed as a result of a recessive haplo-lethal allele (Hood and Antonovics, 2000). In Usti-

lago nuda, a recessive proline biosynthesis allele linked to the mating type locus led to a similar

result in the haploid stage of the dimorphic life cycle (Nielsen, 1968). Alternatively, a dominant

mechanism via meiotic drive elements as described for Neurospora crassa (Turner and Perkins,

1979) and other ascomycetes such as Gibberella fujikuroi (Fusarium verticillioides) (Kathariou and

Spieth, 1982) and Podospora anserina (Bernet, 1967) could be causative for the observed mating

type bias in U. bromivora. While, in this scenario, the ‘killer’-allele and ‘resistance’-allele would form

a locus and would be linked to the recombination-suppressed MAT-1 region, the corresponding

‘Non-killer/susceptibility’ alleles would co-segregate with the MAT-2 region. The alleles of the MAT-
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2 strain would therefore lead to its haplo-lethality. Future research will clarify the cause of the mating

type bias in U. bromivora.

In summary, the newly established model system U. bromivora and Brachypodium sp. has tremen-

dous potential for the study of biotrophy related questions on both the pathogen and host side as

well as evolutionary questions such as sex and speciation. The high quality, manually curated fungal

genome, available RNA-seq data, and growth as well as transformation protocols for both the host

and the pathogen, provide a solid basis for scientists to gain new insights into biotrophic plant path-

ogen interactions.

Materials and methods

Strains, plasmids, and fungal culture conditions
DNA manipulation and plasmid generation were performed according to standard molecular cloning

procedures (Chong, 2001; Ausubel et al., 1987). All DNA manipulations were performed with E.

coli MACH1 (Thermo Fisher Scientific, Waltham, MA). Primers and plasmids are compiled in

Supplementary file 1. All sequences of plasmids created in this study are provided as gb/gbk files

in Supplementary file 2. Strains used in this study are listed in Supplementary file 1. The Ustilago

bromivora spore material used in this study was obtained from Thierry Marcel and originated from

spontaneous repetitive infections which occurred in a greenhouse at INRA UMR BIOGER, Avenue

Lucien Brétignières BP01, 78850 Thiverval-Grignon, France (Barbieri et al., 2012). U. bromivora UB1

(formerly named UB2112) and UB2 were cultivated in Potato dextrose (PD) liquid medium (2.4% PD

dissolved in H2O; Becton, Dickinson and Company, Franklin Lakes, New Jersey) at 21˚C, shaking at

200 rpm in baffled flasks. U. maydis and U. hordei were cultivated according to Kämper et al.

(2006) and Laurie et al. (2012). U. maydis strains were generated by gene replacement via homolo-

gous recombination as described by Kämper (2004) or by insertion of p123 derivatives into the ip

locus (Loubradou et al., 2001).

U. maydis virulence assays
U. maydis virulence assays were performed as described by Kämper et al. (2006). In brief, the solo-

pathogenic strain SG200 and its derivatives were cultivated in YepsLight (0.4% yeast extract, 0.4%

peptone, 2% sucrose) at 28˚C, under continuous shaking (200 rpm), until they reached an OD600 nm

of 0.8. After centrifugation at 2400 g for 5 min, cultures were adjusted in H2Odd to an OD600 nm = 1.

The suspensions were subsequently used for syringe-inoculation of seven day old maize seedlings

(variety Early Golden Bantam). Infection symptoms were scored twelve days post infection employ-

ing the scoring system described by Kämper et al. (2006).

Genomic DNA extraction for Single Molecule Real-Time (PacBio) and
Illumina sequencing
Genomic DNA (gDNA) extraction was performed as previously described for U. maydis

(Kämper et al., 2006). U. bromivora cultures were grown to an exponential phase and subjected to

Phenol-Chloroform extraction. For Single Molecule Real-Time (PacBio) sequencing of UB1, Phenol-

Chloroform extraction was followed by an additional purification step via the Power Clean DNA Kit

(MO BIO Laboratories, Carlsbad, CA). For Illumina sequencing of UB2, Phenol-Chloroform extracted

gDNA was purified using the MasterPure Complete DNA and RNA Purification Kit (Epicentre, Madi-

son, WI).

Library preparation and Single Molecule Real-Time (PacBio) sequencing
The SMRT bell was produced using the DNA Template Prep Kit 1.0 (Pacific Biosciences, Menlo Park,

CA). The input genomic DNA concentration was measured using a Qubit Fluorometer dsDNA Broad

Range assay (Thermo Fisher Scientific, Waltham, MA). 10 mg of gDNA was mechanically sheared to

an average size distribution of 15 kb, using a Covaris gTube (Kbiosciences, Hoddesdon, UK). A Bioa-

nalyzer 2100 12K DNA Chip assay (Agilent, Santa Clara, CA) was used to assess the fragment size

distribution. 5 mg of sheared gDNA was DNA damage repaired and end-repaired using polishing

enzymes. A blunt end ligation reaction followed by exonuclease treatment was performed to create

the SMRT bell template. A Blue Pippin device (Sage Science, Beverly, MA) was used to size select
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the SMRT bell template and enrich for large fragments > 10 kb. The size selected library was quality

inspected and quantified on an Agilent Bioanalyzer 12 kb DNA Chip and on a Qubit Fluorimeter

(Thermo Fisher Scientific, Waltham, MA), respectively.

A ready to sequence SMRT bell-Polymerase Complex was created using the P6 DNA/Polymerase

binding kit 2.0 (Pacific Biosciences, Menlo Park, CA) according to the manufacturer’s instructions.

The Pacific Biosciences RS2 instrument was programmed to load and sequence the sample on 5

SMRT cells (v3.0; Pacific Biosciences, Menlo Park, CA), taking 1 movie of 240 min each per SMRT

cell. A MagBead loading (Pacific Bioscience, Menlo Park, CA) method was chosen in order to

improve the enrichment of longer fragments.

After the run, a sequencing report was generated for every cell via the SMRT portal, in order to

assess the adapter dimer contamination, the sample loading efficiency, the obtained average read-

length, and the number of filtered sub-reads.

UB1 de novo genome assembly
The genome was assembled with Pacific Bioscience’s SMRTanalysis software version 2.2.0 and the

hierarchical genome-assembly process (HGAP) v3 protocol (Chin et al., 2013) including polishing

with Quiver. Default settings were used, except for selecting only reads with a minimum length of

10,000 bp and read quality above 0.8. Assembly and polishing resulted in 25 contigs with an overall

length of 20.7 Mb.

Transcriptome assembly
U. bromivora UB1 was grown in axenic culture (21˚C, 200 rpm, PD medium) in three independent

biological replicates to an exponential phase (OD600 nm = 0.8). RNA was extracted using the TRIzol

method (Chomczynski and Sacchi, 2006) according to the manufacturer’s protocol (Thermo Fisher

Scientific, Waltham, MA). Residual DNA was removed with the DNA-free Kit (Thermo Fisher Scien-

tific, Waltham, MA). The extracted and purified RNA was used for library generation with the NEB

Next Ultra RNA Library Prep Kit according to the manufacturer’s protocol (cutout size 200–800 bp;

New England Biolabs, Ipswich, MA) and was sequenced with an Illumina HiSeq2000 instrument in

paired-end 100 mode. The resulting data was pooled to yield 68M read pairs. The overall quality

metrics were verified with fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). The

pooled reads were then assembled using Trinity (vr20140413p1) using the built-in trimmomatic qual-

ity trimming, in-silico read normalization and jaccard clipping procedures (Grabherr et al., 2011).

The resulting transcriptome assembly consisted of 11,918 contigs with an N50 of 3,027 bp.

Prediction of open reading frames and proteome analysis
Primary structural annotation was achieved by mapping the protein sequences of U. hordei on the

scaffolds using exonerate (v2.2.0) unless the protein sequences could not be mapped (Slater and

Birney, 2005). As a de novo gene predictor, GeneMark-ES version 2 was applied (Ter-

Hovhannisyan et al., 2008). In addition, the orthologous protein sequences of U. maydis, S. reilia-

num and U. hordei were inspected by multi T-Coffee (v8.69) alignments to further validate the gene

structure in U. bromivora (Notredame et al., 2000). As transcriptional evidences, RNA-seq reads

were mapped on the genome using tophat2 (v2.0.8). The interval for allowed intron lengths was set

to a minimum of 20 nt and a maximum of 1 kb (Langmead et al., 2009; Trapnell et al., 2012). The

Trinity assembled RNA reads were mapped as transcripts (Grabherr et al., 2011). The different

gene structures and supporting evidence were displayed in GBrowse (Donlin, 2009), allowing man-

ual validation and correction of all coding sequences. The final call set comprises 7,233 protein cod-

ing genes. In addition, 133 tRNA-encoding genes are predicted using tRNAscan-SE (Lowe and

Eddy, 1997). The protein coding genes were analyzed and functionally annotated using the PED-

ANT system (Walter et al., 2009), accessible at http://pedant.helmholtz-muenchen.de/genomes.

jsp?category=fungal. The genome and annotation were submitted to the European Nucleotide

Archive (http://www.ebi.ac.uk/ena) under the study number PRJEB7751.

The predicted protein set was searched for highly conserved single (low) copy genes to assess

the completeness of the sequence dataset. Orthologous genes to all 246 single copy genes were

identified by BLASTP comparisons (eValue: 10�3) against the single-copy families from all 21 species

available from the FunyBASE (Aguileta et al., 2008). Additionally, 247 of 248 core-genes commonly
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present in higher eukaryotes (CEGs) could be identified by BLASTP comparisons (eValue: 10�3)

(Parra et al., 2009).

Differential expression and overrepresentation analyses in the
transcriptomic dataset
For differential expression analysis, RNA from axenic culture of UB1 (see ’Transcriptome assembly’)

and from seedlings, 12 days after planting of germinating caryopses that were incubated with spore

material for 1 week at 4˚C, was isolated using the TRIzol method and DNA was removed with the

DNA-free Kit (Thermo Fisher Scientific, Waltham, MA). After library preparation (cutout size: 200–

800 bp; NEB Next Ultra RNA Library Prep Kit; New England Biolabs, Ipswich, MA) three indepen-

dent biological replicates were sequenced with an Illumina HiSeq2000 instrument, paired-end 100

bp.

RNA-Seq was quantified against the combined transcriptome extracted from Brachypodium dis-

tachyon Bd21 (Bdistachyon_283_v2.1) and Ustilago bromivora UB1 annotations with kallisto using

default parameters (Bray et al., 2016). In our dataset we identified 20 cases, where more than one

splicing variant encoded by the same gene was present. In all subsequent analyses, splicing variants

were treated and counted as individual genes. Differential expression statistics between axenic and

in planta samples were computed using the DeSeq2 R package under the assumption that the over-

all expression level is similar between the two samples (Love et al., 2014). Transcripts were consid-

ered significantly up- or downregulated in planta, if the log2fold-change compared to axenic culture

was �2/��2 and the Benjamini-Hochberg (Hochberg and Benjamini, 1990) corrected p-value

was �0.1. Over-/underrepresentation of individual functional classes of interest (e.g. predicted

secreted proteins) among the in planta up- and downregulated transcripts was tested by Fisher

exact test in the R statistical environment (Core Team, R, 2011). Systematic over-/underrepresenta-

tion analysis for all functional classes present in the FunCat annotation of the given dataset was con-

ducted with the FunCat workflow (Ruepp et al., 2004). Expression data were submitted to

GeneExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/) under the accession number

GSE87751.

Bioinformatics analysis: Secreted protein prediction, orthologs, and
transposons
To predict putative secreted proteins, protein sequences were retrieved from the PEDANT 3

Genome Database and analysed for specific features that are associated with secreted proteins. We

used SignalP (v4.0) (Petersen et al., 2011) to predict the existence of a signal peptide, TMHMM

(v2.0c) (Sonnhammer et al., 1998; Krogh et al., 2001) to predict the existence of transmembrane

domains, Phobius (v1.01) (Kall et al., 2004) to detect both signal peptides and transmembrane

domains, TargetP (v1.1b) (Emanuelsson et al., 2000) to predict the final location of a protein, and

ScanProsite (Gattiker et al., 2002) to detect the presence of the ER retention motif [KRHQSA]-

[DENQ]-E-L. A list of putative secreted proteins was generated that met the criteria of (1) signal pep-

tide predicted by both SignalP and Phobius, (2) fewer than two transmembrane domains predicted

by both TMHMM and Phobius, (3) no ER retention motif and (4) not predicted to target the

mitochondrion.

Orthologs were detected using OrthoMCL (v2.0.9) using default settings (Fischer, 2011).

OrthoMCL takes a list of proteins as an input and was provided with the full proteomes of U. maydis,

U. bromivora, U. hordei, S. scitamineum, S. reilianum, and M. pennsylvanicum. Orthologous proteins

from the different genomes are then sorted into groups. OrthoMCL makes use of the MCL algorithm

(Enright et al., 2002). Only nuclear genes were used for the prediction of orthologous relationships.

Protein alignments were performed in T-Coffee (v11.00.8cbe486) using the default settings.

BLAST searches were performed with the stand-alone BLAST+ suite (Camacho et al., 2009) where

possible. However, some programs required the older C legacy toolkit. We used RepeatScout

(Price et al., 2005) for the de novo identification of repeat families in combination with the RepBase

database (Jurka et al., 2005) to detect previously published transposable elements, pseudogenes,

and retroviruses. The combined library of de novo and RepBase repeats were used to identify indi-

vidual repeat elements on the genome using RepeatMasker (Smit et al., 1996-2010). All determined

repeat elements were classified using TEclass (Abrusan et al., 2009) and analyzed for fingerprints of
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repeat-induced point mutations (RIP) regarding overrepresented dinucleotide frequencies using RIP-

CAL (Hane and Oliver, 2008).

Fungal phylogeny and prediction of positive selection
5,121 genes were predicted as one-to-one orthologs, that means that there was an ortholog

detected in each of the six fungal species and there was only a single copy in each genome. After

removal of genes that were unsuitable for the positive selection analysis like genes without one-to-

one orthologs or which had more than one predicted transcript in one or more species, 4,947

sequences remained. The ORF sequences were converted to amino acid sequences with T-Coffee

(v11.00.8cbe486), aligned and then converted back into nucleotide sequences. These nucleotide

alignments were concatenated to form a single alignment which was used as the input for RAxML

(v8.1.16) (Stamatakis, 2014). The tree was generated using the rapid bootstrapping and best-scor-

ing maximum likelihood tree algorithm, GTRGAMMA nucleotide model and 1000 bootstraps.

The individual alignments and the unrooted species tree were used as inputs for the codeml pro-

gram from PAML 4.8A. (Yang, 1997). Two control files were used, both, allowing two or more dN/

dS ratios for branches, checking for positive selection and having an initial omega value of 1. One

allowed the omega value to vary while the second kept it constant. The likelihood ratios under the

two models were compared for each gene with the formula DLRT = 2 � (lnL1 – lnL0). The resulting

value could be assessed using the chi-squared distribution with 1 degree of freedom to determine if

the gene was under positive selection or not. Raw p-values were adjusted to take into account the

false discovery rate using the qvalue R package (http://qvalue.princeton.edu/, http://github.com/

jdstorey/qvalue) (Storey, 2015).

Illumina sequencing of UB2, mapping to UB1, and SNP calling
Genomic DNA of UB2 was used for library generation (insert size 600–900 bp; NEBNext Ultra DNA

Library Prep Kit for Illumina; New England Biolabs, Ipswich, MA) and sequenced with an Illumina

HiSeq2500 instrument in 125 bp paired-end mode. Reads were mapped to the genome of UB1

using CLC Genomics Workbench (v.7.0.3; Qiagen, Hilden, Germany) with the following parameters:

mismatch cost = 2, insertion cost = 3, deletion cost = 3, length fraction = 0.5, similarity fraction = 0.8,

no global alignment. SNP calling was performed via the quality-based variant detection mode with

the following parameters: neighbourhood radius = 4, maximum gap and mismatch count = 2, mini-

mum central quality = 10, non-specific matches, broken pairs and variants in non-specific regions

were ignored, minimum coverage = 90, minimum variant frequency = 95%, maximum expected

alleles = 2, maximum coverage = 203, sufficient variant count = 85, required variant count = 85. For

calling SNPs the presence in both forward and reverse reads was a requirement. Heterozygous SNPs

as well as small insertions and deletions were not considered. Moreover, the mitochondrial genome

was not included in the analysis.

UB2 de novo genome assembly from Illumina paired-end reads
De novo assembly of the MAT-2 strain UB2 was performed with SOAPdenovo2 (Luo et al., 2012)

(127mer version 1.4.10) with kmer lengths ranging from 43 to 115 in steps of 6 with the following

parameters: max_rd_len = 120, avg_ins = 470, asm_flags = 3, rd_len_cutoff = 120, rank = 1, pair_-

num_cutoff = 3, map_len = 32. While assemblies with kmer lengths 73–91 performed good at

diverse metrics, kmer 91, at 4,712 bp and 8,160 bp, had the best mean size for both contigs and

scaffolds, respectively, and the highest number of contigs larger than 100 kb. The resulting assembly

(kmer 91) had a contig and scaffold N50 of 23,058 bp and 113,827 bp. Scaffolds obtained after de

novo assembly as well as the raw sequencing reads were submitted to the European Nucleotide

Archive (http://www.ebi.ac.uk/ena) under the study number PRJEB7751.

Spore recovery and sterilisation
Infected spikelets were dehusked and ground with a pistil in a 1.5 ml microcentrifuge tube. After the

addition of 250 ml water, grinding continued until a black spore suspension was visible. The spore

suspension was subjected to CuSO4 treatment to kill vegetative fungal cells and bacteria. CuSO4

was added to the suspension at a final concentration of 1.5%, solution and spores were incubated

for 15 min, and washed 3 times with water to remove all traces of CuSO4. CuSO4-treated spore
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material was resuspended either in 500 ml of water supplemented with 100 mg ml�1 ampicillin, 50 mg

ml�1 tetracycline, and 25 mg ml�1 chloramphenicol and plated on PD agarose plates (2.4% PD sup-

plemented with 2% agarose) in serial dilutions for the isolation of haploid progeny or resuspendend

in 1 ml of the above-mentioned antibiotic solution and spotted on objective slides for microscopy.

WGA, FM4-64, and DAPI staining
Cell walls of fungal hyphae were stained with the chitin specific Wheat Germ Agglutinin - Alexa Fluor

488 conjugate dye (WGA-AF 488; Thermo Fisher Scientific, Waltham, MA). Plant membranes were

stained with FM4-64 (Thermo Fisher Scientific, Waltham, MA). Staining and confocal laser scanning

microscopy was performed as previously described by Doehlemann et al. (2008). For DAPI and

WGA staining of germinating spores and sporidia, germinating spores/sporidia were pelleted and

fixed by incubating them with acetone for 15 min. Fixation was followed by 10 min incubation with

WGA-AF 488 to visualize fungal cell walls and 15 min incubation with 1 mg ml�1 DAPI solution

(Sigma-Aldrich, Taufkirchen, Germany) to stain nucleic acid. Cell/spore pellets were resuspended in

PBS and subjected to confocal laser scanning microscopy. Images were acquired with a LSM780

Axio Observer confocal laser scanning microscope (Zeiss, Jena, Germany). WGA-AF excitation was

at 488 nm and detection at 517–552 nm, DAPI excitation at 405 nm and detection at 421–508 nm.

Monitoring of germination by microscopy
CuSO4-treated spore suspensions were spotted on objective slides (mm dish 35 mm; IBIDI, Planegg,

Germany). After freezing them for 20 min on a metal block to avoid spreading of the liquid, they

were covered with a thin (<2 mm) layer of PD agar or 1.5% water agar, respectively. After a 15–17 hr

incubation at 21˚C, the picture acquisition was performed with an inverted microscope (Zeiss Axio-

vert 200 M with 40�/1.3 Plan-Neofluar Oil objective). Picture acquisition occurred every 20 min.

Image processing was done with Fiji Imaging software.

Transformation of U. bromivora
The transformation protocol was adapted from Schulz et al. (1990) and Gillissen et al. (1992). U.

bromivora cells were grown to an OD600 nm of 0.3–0.6. Cells were harvested at 2400 g (10 min, RT),

and washed once with Mg2+-MES buffer (20 mM MES buffer, pH 5.8, 1 M MgSO4). The Pellet was

resuspended in 1 ml Mg2+-MES buffer containing 10 mg ml�1 Glucanex (Sigma-Aldrich, Taufkirchen,

Germany) and 5 mg ml�1 Yatalase (Takara Bio, Saint-Germain-en-Laye, France) and kept on ice. Pro-

toplastation was monitored and stopped by addition of 10 ml ice-cold Mg2+-MES buffer when 30–

40% of the cells appeared round due to the loss of the cell wall. Cells were washed 3 times (2400 g,

10 min, 4˚C) in Mg2+-MES and once in STC buffer (STC: 100 mM CaCl2, 10 mM Tris-HCL pH 7.5, 0.9

M sorbitol). Protoplastation was followed by PEG-mediated transformation. To this end, 5 mg plas-

mid DNA and 1 ml 100 mg ml�1 Heparin were added to 100 ml protoplasts and incubated for 30 min

on ice. 500 ml STC-PEG (40% PEG4000 in STC buffer) were added and mixed by pipetting gently up

and down. After 15 min incubation on ice, the mixture was plated on PD regeneration agar plates

composed of an lower layer of PD regeneration agar with twice the concentration of antibiotic (2.4%

PD, 0.9 M sorbitol, 1.5% agar supplemented with either 4 mg ml�1 Carboxin, 200 mg ml�1 Geneticin

G418, or 200 mg ml�1 Hygromycin B) overlaid by an antibiotic-free layer of PD regeneration agar.

Colonies were visible after 10 to 14 days. For stable genomic integrations, restriction enzyme medi-

ated transformation was performed according to Bölker et al. (1995). In brief, 25 U of the restriction

enzyme XbaI and XbaI-linearized p123UB-GFP were added to protoplasts and the aforementioned

transformation protocol was followed immediately after addition of enzyme and plasmid.

Plant growth conditions and sexual propagation
Caryopses of B. distachyon accession Bd21 were kindly provided by Phillipe Vain (Vain et al., 2008),

caryopses of accession ABR4 by John Vogel. For production of donor material, caryopses of each

accession were gas-sterilized and transferred to Ø = 10 cm pots with a 4:1 mixture of standard pot-

ting soil (Einheitserde Werkverband e.V., Sinntal-Altengronau, Germany) and perlite (Granuflor,

Vechta, Germany). Germination and early plant growth took place in a phyto chamber (Johnson

Controls, Milwaukee, WI) under the following conditions: 20 hr light (150 mE), 24˚C; 4 hr dark, 18˚C;
60% humidity. After 10 days, pots were transferred to a cold room to vernalize plants for 6 weeks at
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4˚C, 40 mE, 13 hr light period. Pots were then moved back to the phyto chamber to allow plants to

flower. Four weeks after anthesis, plants were transferred to the greenhouse for caryopses matura-

tion and drying. Harvested caryopses were stored at 4˚C in the dark.

Surface-sterilization of B. distachyon caryopses, vernalization, and
infection with U. bromivora spores and planting
Caryopses within husks were gas sterilized (Clough and Bent, 1998). After sterilization, caryopses

were moistened with a few ml of sterile water without submerging the caryopses and incubated in

the dark at 4˚C for 1 week to germinate. The seedlings were then moistened with a spore/water sus-

pension for infection for one additional week at 4˚C in the dark. Subsequently the seedlings were

potted in a mixture of 3:1:1:1 standard potting soil (Einheitserde Werkverband e.V., Sinntal-Alten-

gronau, Germany): perlite (Granuflor, Vechta, Germany): silica sand (min2C GmbH, Melk, Austria):

germination soil (Neuhaus ‘Huminsubstrat’, Klasmann-Deilmann GmbH, Geeste, Germany), at a

depth of ~1 cm, so that the emerged shoot remained exposed to the air and light. After 10 days in

the growth chamber (20 hr light (150 mE), 24˚C; 4 hr dark, 18˚C; 60% humidity) the pots were trans-

ferred to 4˚C, 40 mE, 13 hr light period for 3 weeks (Bd28) or 6 weeks (ABR4), for vernalization and

subsequently returned to the growth chamber. 4–5 weeks later, the infected, spore filled spikelets

were visible.

Screen to isolate a compatible mating partner
U. bromivora spore material was surface sterilized and germinated on PD plates (see spore recovery

and sterilization). After spore germination, all derived colonies were pooled and used as an inoculum

for further proliferation in liquid PD medium for 24 hr to ensure that only strains, which are viable in

axenic culture, would grow. These mixtures were used as an infection inoculum of 300 vernalized B.

hybridum caryopses (Bd28). After six weeks the infected spikelets were harvested, derived spores

were surface sterilized and plated on solid PD medium. Colonies derived from single spores were

singled out and tested by diagnostic PCR for the presence of pra2.

Infection of B. hybridum with U. bromivora liquid culture
To infect B. hybridum Bd28 with a pair of compatible mating partners, both strains were grown until

they reach the exponential phase (OD600 nm = 0.8) and set to an OD600 nm = 2 with H2Odd. Both

strains were mixed in equal amounts. One or two days before inoculation, vernalized B. hybridum

caryopses were placed to RT to promote germination. Upon inoculation with the fungal mixture, the

onset of coleoptiles should be visible. Seedlings were moistened with the fungal mixture and incu-

bated in an appropriate tube, e.g. 2 ml microcentrifuge tube, at 21˚C in the dark. After 24 hr incuba-

tion, seedlings were potted.

Callus culture generation of Bd28
Mature embryos from dormant caryopses were used for callus culture, plant regeneration, and trans-

formation. In brief, dry dormant caryopses were surface-sterilized for 45 min with 6% NaClO includ-

ing 0.03% Tween20. After surface-sterilization, caryopses were rinsed five times with sterile tap

water. Embryo preparation was carried out in two steps. First, the embryo was cut away from the

endosperm. Second, the embryo was cut in a longitudinal direction into two pieces. Forty bisected

embryos were transferred to a Ø = 10 cm petri dish with longitudinal wound in direct contact with

the callus induction medium (CIM). Callus induction of B. hybridum Bd28 took place on CIM (4.3 g

l�1 MS No.4 (Murashige and Skoog medium modification No. 4; Duchefa Biochemie, Haarlem, The

Netherlands), 30 g l�1 maltose, 11.1 mM 2,4-D, 2 mM NH4NO3, 1.9 mM MES-monohydrate, 1x B5

vitamin mixture (Duchefa Biochemie, Haarlem, The Netherlands), 3.5 g l�1phytagel (Sigma-Aldrich,

Taufkirchen, Germany), pH 5.8. Before transformation, bisected embryos were pre-cultured for 6–8

weeks at 24˚C without light. Every 14 days, calli were transferred to fresh CIM. Developing roots and

shoots were cut away.

A. tumefaciens-mediated transformation of B. hybridum Bd28
Agrobacterium tumefaciens strain AGL1 was used for transformation (Lazo et al., 1991). The plant

transformation vector p6U contains a hygromycin phosphotransferase gene driven by the Zea mays
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ubiquitin promoter to confer hygromycin resistance to transformed plant cells. For B. hybridum

Bd28 transformation, AGL1 harboring the respective p6U derivative was cultivated at 28˚C and 210

rpm in Erlenmeyer flasks containing 10 ml MG/L medium (Jones et al., 2005) supplemented with

100 mg ml�1 Carbenicillin, 50 mg ml�1 Rifampicin, and 100 mg ml�1 Spectinomycin. After 22 hr, 500

mM Acetosyringone (Sigma-Aldrich, Taufkirchen, Germany) was added and the p6U-containing AGL1

strain was cultivated for additional 2 hr. For inoculation of pre-cultured B. hybridum calli, the A.

tumefaciens culture was diluted with infection solution (4 g l�1 Chu (N6) minerals (Duchefa Bioche-

mie, Haarlem, The Netherlands), 6.75 mM 2,4-D, 36 g l�1 glucose, 68.4 g l�1 sucrose, 0.7 g l�1, 6

mM L-proline, 1x Chu (N6) vitamin mixture (Duchefa Biochemie, Haarlem, The Netherlands), 500 mM

Acetosyringone (Sigma-Aldrich, Taufkirchen, Germany), pH 5.2) to OD550 nm = 0.8.

6–8 weeks after callus induction, forty calli were transferred into 15 ml tubes and inoculated with

A. tumefaciens suspension. After 30 min, the A. tumefaciens suspension was discarded, calli were

transferred to sterile filter paper and dried for 30 min. Calli were then transferred to Co-culture-

medium (2 g l�1 Chu (N6) minerals, 34.2 g l�1 sucrose, 2 mM CaCl2, 20 mM Dicamba, 25 mM L-pro-

line, 2.3 mM MES-monohydrate, 3.3 mM L-cysteine, 1x B5 vitamin mixture (Duchefa Biochemie,

Haarlem, The Netherlands), 500 mM Acetosyringone (Sigma-Aldrich, Taufkirchen, Germany), 3.5 g

l�1 phytagel, pH 5.8) and co-cultivated for 3 days, at 21˚C without light. After co-cultivation, calli

were transferred to CIM supplemented with 300 mg l�1 Timentin (Duchefa Biochemie, Haarlem, The

Netherlands) for a 5 days resting phase (counterselection of agrobacteria) at 24˚C without light.

After the resting phase, calli were transferred to CIM supplemented with 300 mg l�1 Timentin and

50 mg l�1 Hygromycin B (Sigma-Aldrich, Taufkirchen, Germany) for an 8–12 week selection phase at

24˚C without light. During that time, calli were transferred to fresh selection medium every two

weeks. After these 8–12 weeks of selection, surviving calli were transferred to regeneration medium

(K4N) (Kumlehn et al., 2006) including 150 mg l�1 Timentin and 25 mg l�1 Hygromycin B and culti-

vated for 8–12 weeks at 25˚C with a 16/8 hr (light/dark) photoperiod. Regenerating plantlets from

independent calli were transferred to pots with a substrate mixture of 3:1:1:1 Einheitserde:perlite:

sand and grown as described previously (see ’Plant growth conditions and sexual propagation).

Cyan fluorescent protein peroxisome (eCFP-SKL) Bd28-marker lines were tested by PCR and confo-

cal laser scanning microscopy.
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Amigo for excellent technical support, Andrea Patrignani and the Functional Genomics Center Zürich
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Biologischen Zentralblatt 42:33.

Bauch R. 1925. Untersuchungen über die Entwicklungsgeschichte und Sexualphysiologie der Ustilago bromivora
und Ustilago grandis. Zeitschrift Für Botanik 17:129–177.
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MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martı́n J,
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