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of MCQTL parameters and thus boost the QTL discov-
ery. We developed clusthaplo, an R package (http://cran.r-
project.org/web/packages/clusthaplo/index.html), which 
aims to cluster haplotypes using a genomic similarity that 
reflects the probability of sharing the same ancestral allele. 
Computed in a sliding window along the genome and fol-
lowed by a clustering method, the genomic similarity allows 
the local clustering of the parent haplotypes. Our assump-
tion is that the haplotypes belonging to the same class trans-
mit the same ancestral allele. So their putative QTL allelic 
effects can be modeled with the same parameter, leading to 
a parsimonious model, that is plugged in MCQTL. Intensive 
simulations using three maize data sets showed the signifi-
cant gain in power and in accuracy of the QTL mapping with 
the ancestral allele model compared to the classical MCQTL 
model. MCQTL_LD (clusthaplo outputs plug in MCQTL) is 
a versatile and powerful tool for QTL mapping in multiple 
related families that makes use of linkage and linkage dis-
equilibrium (web site http://carlit.toulouse.inra.fr/MCQTL/).

Abstract 
Key message  We enhance power and accuracy of 
QTL mapping in multiple related families, by cluster‑
ing the founders of the families on their local genomic 
similarity.
Abstract  MCQTL is a linkage mapping software applica-
tion that allows the joint QTL mapping of multiple related 
families. In its current implementation, QTLs are mod-
eled with one or two parameters for each parent that is a 
founder of the multi-cross design. The higher the number of 
parents, the higher the number of model parameters which 
can impact the power and the accuracy of the mapping. We 
propose to make use of the availability of denser and denser 
genotyping information on the founders to lessen the number 
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Introduction

Since the work of Lander and Botstein (1989), the detec-
tion and the mapping of loci affecting quantitative traits 
(Quantitative Trait Loci or QTL) using genetic markers 
have led to a number of interesting results in the dissection 
of the genetic architecture of complex traits. For decades, 
especially in plant populations where genetic crosses can 
be easily controlled, the QTL analyses were largely con-
ducted within large bi-parental family. However, as high-
lighted by Blanc et al. (2006), the use of multiple descend-
ants and particularly multiple connected populations 
allows to explore a larger allelic diversity and to address 
complex behavior of the QTL within different genetic 
backgrounds.

The first attempt to model QTL effect in multiple con-
nected or related populations was by Rebai and Goffinet 
(1993) in a diallel design within a frequentist framework. 
The QTL was assumed to be a fixed effect and a diallel 
modeling served for its allelic effects. This type of model 
was further extended to any multi-cross design in Jourjon 
et al. (2005) by the use of a so-called connected model that 
assumes that the allelic effect of the founders of the mul-
tiple connected populations is identical over the popula-
tions. In this framework, the marker regression approach 
(Haley and Knott 1992) allows a robust linear model for 
QTL detection and a fast computation task while having 
asymptotically all the qualities of a maximum likelihood 
approach (Rebai et  al. 1995). Multiple QTL models can 
be studied using cofactor-based methods, MQM (Jansen 
1994), MIM (Kao et al 1999) or iQTLm algorithm (Char-
cosset et al. 2001). Within the Bayesian framework, a hier-
archical modeling allowing to analyze any known pedi-
gree was proposed nearly simultaneously for multi-allelic 
QTLs (Yi and Xu 2001) or biallelic ones (Bink et  al. 
2002). However, the MCMC algorithm that is computa-
tionally demanding and difficult to prune is necessary to 
detect and estimate multiple QTLs. Despite its simplicity, 
the use of the identical-by-descent (IBD) status of the QTL 
alleles between descendants, that was proposed by Xie 
et al. (1998) within the mixed model framework for inde-
pendent families, was the last to be adapted to connected 
populations in Crepieux et  al. (2005). In this framework, 
the single QTL variance is estimated using ASREML (Gil-
mour et al. 1995). However, extension to multiple QTLs is 
not fully developed.

A way to enhance the feasibility of QTL fine mapping 
is to combine linkage mapping with linkage disequilibrium 
analysis of the founders of the multi-cross designs. Several 
statistical methods that include population genetics con-
cepts to model the evolution of the linkage disequilibrium 
between markers and the causal mutation appear simulta-
neously in combined methods of linkage disequilibrium 

and linkage analysis (LDLA mapping). Meuwissen et  al. 
(2002) used the evolution model to predict the IBD prob-
abilities of the parents at the QTL and plugged these prob-
abilities within the mixed linear model for linkage map-
ping. Perez-Enciso (2003) used the same evolution model 
in a full Bayesian framework. In a frequentist framework, 
Farnir et al. (2002) proposed a model based on the Wright–
Fisher evolution of the QTL and marker allelic frequencies 
that was plugged within the usual mixture model of linkage 
analysis. However, software applications of these above 
methods were largely developed for the half-sib design of 
animal breeders and were not adapted to the plant breeding 
designs.

In parallel, new populations that allow to enhance QTL 
fine mapping have been developed as the maize nested 
association mapping (NAM) population (Yu et al. 2008) or 
the Arabidopsis Thaliana multi-parent advanced generation 
intercross (MAGIC) (Kover et  al. 2009). However, until 
recently, the NAM population has been analyzed with the 
joint linkage model which has a mean family parameter and 
intra-family hierarchical QTL parameters (Li et  al. 2011) 
giving as many QTL parameter as founders. The MAGIC 
population has also been analyzed with one QTL parameter 
per founder. These models did not take advantage of shared 
IBD alleles of the founders that should be predicted using 
the linkage disequilibrium and thus did not combine link-
age mapping and linkage disequilibrium analysis.

With the lower cost of genotyping, all the descendants 
of a multi-cross design could be genotyped for a highly 
dense marker map, even if this will cause high redundancy 
information due to the small expected number of recombi-
nations. With highly dense map, the inference of the QTL 
alleles by linkage within a cross is no longer necessary or 
it can be approximated by a simple imputation on missing 
marker genotypes. So, the data can be analyzed with the 
unified mixed model of association (Yu et al. 2005). In this 
model, the QTL is assumed to be bi-allelic and identity-by-
state alleles at the QTL position are assumed to be identi-
cal over all the populations. This is the most parsimonious 
model but it has been showed that it is not always the most 
powerful model and that complex traits should be analyzed 
by different multi- or bi-allelic QTL models to capture the 
complexity of allelic variation (Bardol et al. 2013).

MCQTL (Jourjon et al. 2005) is a software application 
dedicated to QTL mapping in multi-population design. 
It implements the tools of the frequentist framework (the 
marker regression approach (Haley and Knott 1992), the 
multiple QTL detection by iQTLm algorithm (Charcos-
set et al. 2001), the threshold by permutation (Doerge and 
Churchill 1996). It has been applied to the dissection of the 
architecture of a number of traits these two recent years 
(see Cadic et al. (2013) for sunflower, Fournier-Level et al. 
(2013) for A. Thaliana, Lagunes Espinoza and Julier (2013) 
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and Moreau et al. (2012) for Medicago, Pauly et al. (2012) 
for ray-grass, Lariepe et al. (2012) for maize, among oth-
ers). In the MCQTL model, the number of model parame-
ters is directly related to the number of parental alleles. The 
goal of the MCQTL_LD extension is to reduce the number 
of these parameters. This goal is important from a statis-
tical point of view, since the power of a statistical test is 
inversely related to the number of parameters. Fortunately, 
it is a reasonable goal from a genetics point of view, since 
plant breeding populations were created from a small base 
of ancestors, so only a small number of ancestral alleles is 
segregating in these populations.

To achieve this goal, we developed clusthaplo, an R 
package (R Development Core Team 2008), that permits 
to group the parent lines of multi-cross designs using a 
genomic similarity that reflects the probability of sharing 
the same ancestral allele. Computed using a sliding win-
dow along the genome and followed by a classical method 
of clustering, the genomic similarity allows the local clus-
tering of the parents. Our assumption is that the parents 
belonging to the same class transmit the same ancestral 
allele. So their putative QTL allelic effects can be modeled 
with the same parameter, leading to a parsimonious model 
that should be powerful and accurate. We also extended 
MCQTL (Jourjon et al. 2005), a stand-alone Java and C++ 
software application that runs on Linux operating system, 
to allow it to be fed by clusthaplo outputs. This extension 
was named MCQTL_LD and it was developed to lessen the 
number of model parameters following the clustering com-
puted by clusthaplo.

To reach conclusions on the effective interest of the par-
ent clustering, intensive simulations were conducted on 
real multi-cross designs, reflecting the extent of variation 
between a design composed with few large families and a 
design composed with many small families.

Method

The MCQTL connected model is the marker regres-
sion model (Haley and Knott 1992) with genetic cofac-
tors, previously detected QTL for example, and a scanned 
putative QTL. The genetic effects of QTL and cofactors 
are assumed to be identical over the families which corre-
sponds to a genetic assumption of no interaction between 
allelic effect and genetic background.

Let d denote the descendant family of two parent lines 
i,  j,  the phenotypic value Ydn of the nth individual in this 
family is modeled by

Ydn = µd +

L
∑

l=1

∑

ij

pl
dn,ij(α

l
i + αl

j ) + ǫdn

where  μd is the global mean of the descendant family 
d,  L  −  1 is the number of genetic cofactors, pl

dn,ij is the 
probability of the dnth individual having genotype ij at 
the QTL or cofactor locus l given marker information, αi

l 
and αj

l are the additive effects of the ith and jth parent at 
locus l, and ǫdn the residual error. The model is presented 
as a purely additive QTL model but a more complex model 
involving dominance is implemented in MCQTL.

Clusthaplo is an R package (R Development Core Team 
2008). It is designed to perform clustering of haplotypes 
that ought to share a ancestor. It is based on a pairwise sim-
ilarity measure computed for every pair of haplotypes using 
a sliding window along the genome. For the markers inside 
a window, we build a weighted graph having the haplotypes 
as nodes and the pairwise haplotype similarities as edge 
weights. Then, the haplotype clustering for the position at 
the center of the window is obtained by building the transi-
tive closure of the filtered graph. We propose two different 
methods for the graph filtering step. One is based on Hid-
den Markov model (HMM) and the second on computing a 
threshold by simulations.

After the clusthaplo analysis, at each scanned locus 
l, each parent i is assigned to a cluster cl that is assumed to 
be an ancestral allele. Let fl be the function that assigns the 
parent lines at their corresponding cluster at position l, i.e. 
fl(i) = cl. The MCQTL_LD model is obtained by plugging 
the function in the MCQTL model leading to

Clusthaplo outputs are illustrated in the Fig.  1 which 
presents an example along a chromosome with the number 
of ancestral alleles found at each locus and the clustering of 
16 parent lines.

The Fisher test is the most usual test for QTL detection 
in a linear model. However, due to the local clustering of 
parent lines which changes along the genome, the degrees 
of freedom of the Fisher test change from place to place.

The implication in an MCQTL_LD detection scan is that 
QTL will have more chance to be detected on loci with a 
local clustering with few classes. To avoid this problem, 
we changed the QTL detection test in MCQTL. Instead of 
comparing the Fisher tests between scanned positions, we 
compared their p values. We transformed the p value with 
the −log10() function for practical and readability reasons.

Clusthaplo and MCQTL can be run using, each, a differ-
ent marker map. That of clusthaplo is the one used to geno-
type the parent lines and is generally a high-density map. 
That of MCQTL is the genetic consensus map that allows 
the joint QTL linkage mapping of the multiple families.

To link both analyses, the two marker maps are aligned, 
so at least two markers per chromosome are mandatory to 

Ydn = µd +

L
∑

l=1

∑

ij

pl
dn,ij(α

l
f l(i)

+ αl
f l(j)

) + ǫdn
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anchor the map alignment. In case of multiple anchors they 
have to be roughly colinear between the two maps. The 
QTL scan positions along the genome are defined by the 
consensus map and a fixed progression step as per MCQTL. 
The scanned positions are the loci where clusthaplo com-
putes the similarity score between the parent haplotypes 
and provides a clustering of them. Clusthaplo outputs XML 
files suited for MCQTL_LD.

The only change to perform an MCQTL_LD analysis 
is to add in the parameter file an XML tag specifying the 
names of these XML files.

Li and Jiang’s similarity score

Li and Jiang (2005) proposed a new haplotype similarity 
measure that generalizes several haplotype similarity measures 
already published. It combines through weight functions the 
number of alleles alike-in-state between a pair of haplotypes, 
and the length of their longest common genome segment.

Let t be a particular locus of the genome and the center of 
the sliding window. We denote by hi

t and hj
t the part of two 

haplotypes hi and hj that belongs to the sliding window, and 
by ht

i_k with k ∈ [1, K] the alleles of the haplotype i at the kth 
markers within the sliding window (respectively, for haplo-
type hj). Assuming that the genetic or physical marker map 
is known, let xk

t be the distance of the marker k to the locus t. 
Then, the Li and Jiang’s similarity score at the locus t is:

where I(a,b) = 1 if allele a and b are alike-in-state and I(a, 
b) = 0 otherwise. w1(x) and w2(x) are two non-increasing 

st
i,j =

K
∑

1

w1(x
t
k)I(h

t
ik

, ht
jk
) +

r′
∑

k=l′

w2(x
t
k)

weight functions (except for w2 in the vicinity of x  =  0 
since Li and Jiang (2005) imposed w2(0) = 0 to resemble 
to a length measure previously defined) and l′ and r′ are the 
marker indexes located at the left and the right of the locus 
t that mark the boundary of the longest common segment 
within the sliding window.

Notice that we slightly modified the Li and Jiang’s simi-
larity score to be able to compute the similarity at a locus 
t which is not necessarily a marker position. This is moti-
vated by the use of this similarity score during the whole 
genome scan for QTL detection that can be performed any-
where on the genome.

As highlighted by Li and Jiang (2005), due to the two 
weight functions, the similarity score definition is very 
flexible. It gives a score that is robust against recent marker 
mutations and genotyping/haplotyping errors. It is also able 
to apprehend partial sharing from a ancestral haplotype in 
common due to historical recombination events.

Let st
map be the maximum value of the similarity score in 

the window t which is equal to the similarity of an haplo-
type with itself (st

i,i) assuming no missing data. The similar-
ity score is normalized to the interval [0, 1] using st

map so 
it does not increase with the length of the sliding window 
and the number of markers within the window, leading to 

s̃t
i,j =

st
i,j

st
map

.

Extended Li and Jiang’s similarity score

While it presents good properties, the major flaw of the 
similarity score is that it offers poor reliability when it is 
calculated upon regions with too few markers. When the 
sliding window does not include enough markers, it is nec-
essary to get the missing information about the haplotype 

Fig. 1   Clusthaplo outputs along 
a chromosome. Top: number 
of estimated ancestral alleles 
at each locus, bottom: color-
coded representation of the 
chromosome of the 16 studied 
parent lines (in row) at each 
locus. Each distinct ancestral 
allele is given a single color 
when it is shared by at least 
two haplotypes, otherwise a 
thick black line is drawn. Note 
that the occurrence of the same 
color at two different loci does 
not imply anything on the 
relatedness of the corresponding 
alleles (color figure online)

0255075100125150175200

0
2

4
6

8

EXL0042
EXL0079
EXL0021
EXL0023
EXL0082
EXL0024
EXL0063
EXL0083
EXL0084
EXL0044
EXL0085
EXL0087
EXL0088
EXL0001
EXL0030
EXL0043

0 50 100 150 200

Map (cM)



925Theor Appl Genet (2014) 127:921–933	

1 3

relatedness from another source. Hence, we extended the Li 
and Jiang’s similarity score to incorporate prior knowledge 
on the relatedness of the haplotypes. If the pedigree of all 
haplotypes is known, the kinship coefficient can be a good 
information to incorporate in the score. When the pedigree 
is unknown, this coefficient can be estimated using all the 
markers in the genome.

The new similarity score St
i,j ∈ [0, 1] is computed using 

both kinship and marker information. Let Ki,j ∈ [0, 1] be the 
kinship coefficient between the haplotypes i and j,  s̃t

i,j the 
normalized Li and Jiang’s similarity score at the scanned 
position t and Pt ∈ [0, 1] a weight function depending on 
locus t, the new similarity score is defined by:

While the Li and Jiang’s similarity score is varying with 
the locus t, the kinship is an average estimate of the genetic 
correlation between the haplotypes that does not depend on 
t. Since the kinship does not stress the similarity variations 
along the haplotype, the Li and Jiang’s similarity score is 
considered as the most accurate estimation of the local sim-
ilarity between haplotypes when enough marker informa-
tion is available.

The Pt function rates the reliability of the Li and Jiang’s 
similarity score. When the similarity score is highly reli-
able, we want Pt ≈ 1 so St

i,j ≈ s̃t
i,j, otherwise when the Li 

and Jiang’s similarity score is highly unreliable, since com-
puted on very few markers, Pt should be close to 0 and so 
St

i,j ≈ Ki,j.
Li and Jiang’s similarity score is judged reliable when 

computed on a window with a high density in markers. 
We suggest to use the similarity score st

map as a measure 
of this reliability. Indeed, when both the weight function 
w1(x) and w2(x) are constant, the marker density within the 
sliding window is proportional to st

map. Moreover, as w1(x) 
and w2(x) are assumed to be non-increasing functions, for 
a given density within the window, st

map increases as the 
markers are closer to the locus t. So, the similarity score 
st

map is a good candidate to rate the reliability of the Li and 
Jiang’s similarity score and its capacity to estimate a local 
similarity.

Let s*
map = maxt s

t
map be the overall maximum value of 

the similarity score along the genome. Hence, we choose 
to measure the reliability of Li and Jiang’s similarity score 
Pt ∈ [0, 1], with respect to the test position t, by:

Pt is the function of the markers map, the test position 
t,  the length of the sliding window and the choice of the 
weight functions w1(x) and w2(x).

(1)St
i,j = Pt × s̃t

i,j + (1 − Pt) × Ki,j

(2)Pt =
st

map

s∗
map

Given the Eqs. (1) and (2), the new similarity score 
St

i,j ∈ [0, 1], with respect to the test position t, is:

This similarity score is a generalization of the Li and 
Jiang’s similarity score. It ensures an optimal use of the 
available information: the prior knowledge contained in 
the kinship coefficients and the local similarity score with 
respect to each test position. Moreover, the use of the Pt 
reliability score introduces an accurate balance in the use 
of both scores. However, when a part of the genome is very 
densely marked, the parts of the genome that are consider-
ably less dense get a reliability weight close to zero. The 
similarity scores between haplotypes are then close to their 
kinship coefficients and so do not reflect the local similar-
ity. To avoid this type of problem, we sightly transform the 
extended score by computing the maximum of st

map only 
on sparse windows. The Pt reliability function is computed 
using only the sparse density windows and let equal to 1 
within the non-sparse windows. The required number of 
markers within the sliding window cuts the windows in 
these two groups. It is a parameter controlled by the user. 
The kinship coefficients can be provided by the user. How-
ever if they are not, the default kinship coefficient between 
two haplotypes is the alike-in-state measure using the 
whole genome marker information.

There are different weight functions implemented in 
clusthaplo for w1 and w2. The simplest are the 1 and 0 con-
stant functions. The other functions are probability density 
functions that are adapted to the window length in such a 
way that the total weight of the window is 0.95. The Expo-
nential density function was chosen because the linkage 
disequilibrium between two loci decreases at an exponen-
tial rate at each generation. Its λ parameter is calculated 
to have 0.475 probability on the window positive part. 
Then, the function is symmetrized leading to 0.95 for the 
whole window. The Laplace density function that has the 
same form but does not put a weight equal to 1 at the mid-
dle of the window is implemented and its λ parameter is 
used to fit the function to the window length. The Gaussian 
density function with its variance parameter and the uni-
form density function with its support parameter are also 
implemented.

Clustering the haplotypes

Clustering of the haplotypes is performed at each locus 
along the chromosome by building the transitive closure of 
a filtered weighted graph which is a method similar to the 
threshold IBD model of Bink et al. (2012). At each locus, 
we build a complete connected graph the nodes of which 

(3)St
i,j =

st
map

s∗
map

× s̃t
i,j +

(

1 −
st

map

s∗
map

)

× Ki,j
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are the haplotypes. Its edges are weighted by either the 
similarity score of the haplotype pair or their (0, 1) state 
obtained by HMM that is described below. Given a thresh-
old, the filtering step is performed by removing the edges 
with a weight below the threshold or a 0 state in the HMM. 
Then the transitive step is performed by putting in the same 
class all the haplotypes that are still linked in the graph. 
The number of classes is varying along the genome from 
1 (all haplotypes in the same class) to the initial number of 
haplotypes (no clustering). Each class of haplotypes is then 
assumed to transmit the same ancestral allele.

Hidden markov models

For a pair of haplotypes, we can look at the observation 
series St

i, j for t = 1, . . . , T  as the outputs of an HMM with 
hidden states 1 when the pair of haplotypes shares the same 
ancestral allele and 0 when it does not. Assumptions for a 
HMM are not fulfilled by the observation series St

i,j . Indeed 
the conditional independence of St

i,j given the hidden state 
is correct if the windows used to compute the similarity 
measure do not overlap which is not the case for a sliding 
window. Moreover, the stationary assumption that the tran-
sition from the hidden state 0 to the hidden state 1 (recipro-
cally from 1 to 0) does not depend on t is correct only if the 
locations t are regularly spaced. This can be slightly false 
since the test positions in clusthaplo are computed given a 
fixed step progression but are forced to be located at each 
marker of the MCQTL consensus map. Despite these illicit 
assumptions, we performed a number of HMM analyses 
and found that they gave very interesting classification 
results. However, we observed that a two-state HMM gave 
sometimes very poor fit compared to models with three or 
four states. So, we decided to fit the data with a HMM hav-
ing two, three or four hidden states and to choose the best 
model according to their BIC score. Whatever the model 
chosen, the output of the HMM analysis is 0 or 1 for an 
haplotype pair at each locus. The loci having the state with 
the highest similarity scores are put in the 1 class, the oth-
ers in the 0 class.

Threshold computation methods

Two methods using intensive simulations are proposed 
to compute a threshold that controls the risk of deciding 
that two haplotypes are related though they are not. Each 
method proceeds in the same way. A set of haplotypes is 
simulated and the similarity scores for all the pair of hap-
lotypes are computed using the same marker map, scanned 
loci and window length as the analysis on the initial data 
set. The process is repeated a number of times and all the 
computed score values are pooled to form an empirical dis-
tribution that mimics the null distribution of the similarity 

scores for a set of independent haplotypes. This empirical 
null distribution is used to find the empirical quantile asso-
ciated to a given type I error. The two methods differ on 
how they simulate the unrelated or independent haplotypes.

Equilibrium sampling

The equilibrium sampling simulates random haplotypes 
assuming that all the markers are at equilibrium with equi-
frequencies of their alleles.

The equilibrium assumption could lead to a inaccurate 
threshold when the marker density is very high and particu-
larly when a lot of markers share the same locus. Indeed, 
with more and more markers in equilibrium sharing the 
same locus, the similarity score between two random hap-
lotypes has a high probability to be equal to zero, so the 
null distribution is largely skewed toward zero, and the (say 
95 %) quantile is then small, resulting in too much cluster-
ing of the haplotypes.

Mosaic sampling

The equilibrium assumption is too strong with dense 
marker map and the assumption of equifrequency is always 
wrong. However, in most case, the limited number of hap-
lotypes does not permit to get an accurate estimate of allele 
frequencies. Moreover, haplotypic blocks should be consid-
ered in a dense map. The mosaic sampling is the method 
proposed to solve these two problems. The mosaic method 
mimics the evolution of an isolated population from found-
ers that are the set of initial haplotypes. With no mutation 
and no migration, the allele frequencies do not change. 
With a long-time evolution, the isolated population tends to 
be composed of nearly unrelated individuals if the number 
of initial founders is high. We model the crossing-over by 
the usual Poisson law. Assuming the independence of the 
crossing-overs along the genome and along the genealogy, 
the numbers of breaks in a chromosome of length Lc Mor-
gan during NG generations is a Poisson law of parameter 
equal to NG Lc. This law is used to sample the number of 
breaks per chromosome. The break positions are sampled 
using an uniform law along the chromosome. Then, each 
block between breaks (considering that the start and the 
end of the chromosome are special breaks) is formed by the 
marker information of an equivalent block randomly drawn 
from the founders. This sampling process is repeated to 
generate a new set of haplotypes that are a mosaic of initial 
founder haplotypes.

Treatment of missing marker data

Clusthaplo provides three ways of dealing with miss-
ing data, false, true or non-assigned options. During the 
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computation of the similarity score, when the comparison 
between the allele carried by each haplotype at a given 
locus involves a missing data, the result of the comparison 
is always false, the locus weight is not added to the simi-
larity, true, the locus weight is added, or non-assigned, the 
locus weight is not added. So, for the part of the similarity 
score concerning the alike-in-state allele comparison, the 
false and non-assigned options give the same result. The 
limits of the longest common segment between two hap-
lotypes are defined by successive identical alleles around 
the center of the window. Differences between the false and 
non-assigned options occur when missing data are encoun-
tered at the center of the window, the false option gives a 
longest common segment of null length whereas the non-
assigned option begins the longest common segment at an 
informative position close to the window center.

Material

Three maize (Zea mays L.) data sets served to compare 
QTL detection using MCQTL to the same analysis using 
the clusthaplo plug-in and MCQTL_LD. These three sets 
represent three contrasted designs from a small number of 
large-size families to a huge number of medium-/small-size 
families: 

1.	 The Syngenta design was a complete half-diallele of 
four parent lines with six F3 families of large size. 
There were in average 144 genotyped individuals per 
family (minimum size 141, maximum size 148). The 
family consensus map had a marker density of about 
one marker per 3.1 cM, 514 markers in total for a map 
of 1,584 cM. One SNP every 1.65 cM in average was 
used to genotype the parent lines.

2.	 The Euralis2007 design was a partially connected 
design with 12 parent lines and 8 F2 families of size 
ranging from 60 to 182 (124 in average).

3.	 The Euralis2005 design was a connected design of 16 
parent lines and 21 families of both F2 and F3 types 
(18 F3 families and 3 F2 families). A total of 928 
observed individuals were obtained with small- to 
medium-size families (minimum size 21, maximum 
size 87).

For the Euralis designs, the family consensus map had 
511 markers with a marker density of about 1 marker every 
4 cM. The genetic map of the parent lines had 4,005 mark-
ers with an average one marker every 0.5  cM. The three 
designs, the crosses made between parent lines and the 
number of genotyped and phenotyped individuals within 
each cross are presented in the Supplementary data.

The comparison between MCQTL and MCQTL_LD 
was based on simulated data. Before the simulation, each 

design was analyzed by clusthaplo, and the local clustering 
obtained with a progression step of one cM was used both 
to simulate the QTL and for the MCQTL_LD analysis. A 
single biallelic QTL was simulated and a single chromo-
some was used for the comparative study. Given a QTL 
locus, we used the local clustering to assign to the par-
ent lines belonging to the biggest class the mutated QTL 
allele; all other parent lines received the wild-type allele. 
In case of two or more biggest classes, we randomly chose 
one class. For each descendant family, we assigned to 
each descendant a QTL genotype given its parental alleles 
using a random draw that follows the probabilities of its 
QTL genotype given its markers. The phenotype of each 
descendant was simulated with a Gaussian law of mean 
0 and variance 1 and an additive QTL effect linked to the 
mutated allele is added to the phenotype value. We simu-
lated a single QTL at 100 loci on the densest chromosome 
of the descendant genetic map. We replicated each QTL 
locus 200 times. For each design, two values for the QTL 
mutated allele were used (0.15, 0.25 for Syngenta and 
Euralis2007; 0.25, 0.35 for Euralis2005). In total we ana-
lyzed 120,000 data sets with the two methods.

The QTL detection was conducted with the iQTLm 
method (Charcosset et  al. 2001) using an additive QTL 
model. The 10 % detection threshold of each method was 
obtained using 5000 permutations (Doerge and Church-
ill 1996). The window length around the scan position to 
avoid spurious close QTL was set to 10 cM.

We calculated the precision of each method as the pro-
portion of replicates where a detected QTL was located 
around the simulated QTL; replicates with no detected 
QTL were not included. We used four values for this sur-
rounding interval (1, 2, 5, and 10  cM) and computed the 
precision for 100 simulated positions from the beginning 
of the chromosome. The p value of a one-side paired t-test 
between the precisions of the methods for the simulated 
positions was used to conclude for the significant superior-
ity of MCQTL_LD in mapping QTL. We investigated the 
correlation of the difference in precision between MCQTL 
and MCQTL_LD at each QTL position with the fact of 
being on a marker or not, the empirical power of each 
method, the variability of the locus information at the puta-
tive QTL and the number of ancestral alleles which is pro-
portional to the decrease in model parameters.

Results

Clusthaplo

Results for clusthaplo were obtained with the Euralis2007 
data set that represents an intermediate design between a 
few families of large size and many families of small size. 
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We investigated the impact of clusthaplo parameters on 
the average number of ancestral alleles and the number of 
changes in haplotype clustering (Table 1).

As expected, the window length had the strongest 
impact on the clustering result. Other parameters only 
showed small differences. It is difficult to highlight a clear 
impact of the window length. However, the smaller was the 
length, the less stable was the clustering along the genome. 
Concerning the average number of ancestral alleles, the 
behavior of the Li and Jiang’s similarity score is simpler 
to explain than the extended one. With medium to large 
window, this average number decreased with the window 
length for the former. And it tends to the average marker 
alleles when the window becomes tiny. On the opposite, 
with the extended Li and Jiang’s similarity score, the aver-
age number of ancestral alleles fluctuated with the window 
length. And it tends to a number of ancestral alleles  that 
is linked to the average relatedness when the window 
becomes tiny. The policies to handle missing marker data 
did not exhibit differences between non-assigned and 
false options for the allele comparisons. This was due to 
the marker data set which did not contain long segment of 
missing data. Indeed, when missing data occur isolated, 
the non-assigned and false options give the same similarity 
score. When the choice for na.replace was true, the aver-
age number of ancestral alleles decreased while the number 
of clustering increased. Between the w1 weight functions 
that have an exponential decay, the Exponential, Gaussian 
and Laplace functions ranged from the stronger clustering 
to the weaker when the w2 weight function was uniform. 
However, when the w2 weight function was constantly 
equal to 1, the above w1 weight functions did not show dif-
ferences for the average of ancestor alleles and only small 
differences for the number of clustering changes. This 

is expected since, a 1 w2 weight is high compared to the 
Exponential, Gaussian and Laplace w1 weight, so these 
combinations give much more importance to the longest 
common segment compared to the alike-in-state alleles.

The extended Li and Jiang’s similarity score led to a 
decrease in average number of ancestral alleles compared 
to the non-extended score. The reason of this decrease is 
due to the Euralis2007 data set that is composed of highly 
related parent lines. The alike-in-state kinship on sparse 
windows tends to increase the similarity score for highly 
related haplotypes. On the contrary, it is an identity kinship 
matrix that models the independence for the computation 
of the threshold by the equilibrium sampling. This iden-
tity kinship matrix had an opposite effect on the similar-
ity score compared to the Euralis2007 kinship matrix. Both 
effects were added to produce stronger clustering.

We then analyzed the difference between the thresh-
old computation methods. It is clear that the equilibrium 
sampling gives the smallest threshold and thus increases 
the clustering, since the equilibrium between markers and 
the equal allele frequencies are assumptions that produce 
the most entropic situation. The mosaic sampling is more 
adapted to the haplotype data set. Its behavior is illus-
trated by Fig. 2. We showed that the mosaic threshold con-
verges to a limit when the number of generations of the 
mosaic sampling increased. This limit was attained with 
about 500 generations in the Euralis2007 design. We also 
showed that the equilibrium and the mosaic thresholds 
became close together with increasing generations, when 
the size of the initial haplotype population is large enough 
and the map is cleaned of non polymorphic markers and 
markers located at the same position. Indeed, these above 
markers could not be mixed up by the mosaic sampling, 
so they induced differences between the equilibrium and 

Table 1   Influence of theclusthaplo parameters on the average number of ancestor alleles and the number of clustering changes, defined by the 
change of at least one haplotype in the clustering result from locus to locus (373 clustering points in total)

a  Comparison of alleles involving missing data gives always a true result
b  Comparison of alleles involving missing data gives a non-assigned result
c  Comparison of alleles involving missing data gives a false result

Parameters Default

w1 Exp. Exp. Exp. Exp. Exp. Exp. Exp. Laplace Gauss Unif. Exp. Laplace Gauss

w2 Unif. Unif. Unif. Unif. Unif. Unif. Unif. Unif. Unif. Unif. 1 1 1

Window length 20 15 10 5 1 20 20 20 20 20 20 20 20

Na.replace Truea True True True True Nab Falsec True True True True True True

Li and Jiang’s score, threshold by equilibrium sampling

 Nb alleles 4.25 4.89 5.52 5.91 3.70 4.62 4.68 4.50 4.43 4.15 4.66 4.70 4.68

 Nb changes 138 155 135 143 175 131 133 143 146 144 163 154 162

Extended Li and Jiang’s score, threshold by equilibrium sampling

 Nb alleles 4.14 4.52 4.22 4.55 4.17 4.50 4.51 4.40 4.33 4.04 4.61 4.64 4.64

 Nb changes 138 168 177 220 198 127 130 148 143 140 159 152 154
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the mosaic thresholds. This is highlighted in Fig. 2, by the 
increasing of the initial haplotype population size (from 
12 to 192). We simulated a F5 population which is a pop-
ulation of strong relatedness and we sampled 6 or 96 dip-
loid individuals to create the initial haplotype population. 
With 12 haplotypes, the mosaic threshold did not con-
verge to the equilibrium threshold whereas with 192 hap-
lotypes the equilibrium and the mosaic thresholds became 
close together with increasing generations in the mosaic 
sampling.

Figure  3 illustrates the difference between the three 
clustering methods on an haplotype pair. Although we 
observed an overall consistency, it is clear that HMM 
method tends to make longer shared segments than equi-
librium and mosaic methods. This was confirmed by 91.2 
clustering changes in average over the parameter cases 
studied in Table 1 (limited to a window length of 20 cM 
and for the extended score) compared to 143.4 for the 
equilibrium clustering method. Adding that the HMM 
method is much faster to compute, it should be the cho-
sen clustering method for its stability. However, we do 
not chose it as the default method to limit the dependency 
of our package to another R package since we used the 
RHmm package (http://www.r-project.org, http://r-forge.r-
project.org/projects/rhmm/) to estimate the HMM models 
and to cluster the haplotypes. The second reason is that 
RHmm has huge difficulty to estimate the HMM models 
when the window length is small since the similarity score 
fluctuates too much and thus is far from a HMM signal in 
that cases.

MCQTL_LD

The comparison between MCQTL and MCQTL_LD was 
based on 120,000 simulated data sets: 100 QTL loci, each 
with 200 replications, two values for the QTL mutated 
allele for each design (0.15, 0.25 for Syngenta and Eura-
lis2007; 0.25, 0.35 for Euralis2005).

The parent clustering gave in average 3.39 ancestral 
alleles for four parent lines with the Syngenta data set 
which was coherent to the pedigree information we got. 
Indeed, only two of the four parent lines share a close 
ancestor. The Euralis designs which contained more related 
parent lines gave very different numbers: 5.83 (5.93) ances-
tral alleles for 12 (16) parent lines with the Euralis2007 
(respectively, Euralis2005).

The thresholds of the 10 % type I error, obtained by 
5,000 permutations, were equal to 2.47, 2.27, and 2.12, 
respectively, for Syngenta, Euralis2007, and Euralis2005 
designs using MCQTL. They increased, respectively, to 
2.54, 2.64, and 2.64 using MCQTL_LD. This is due to a 
test process that has a less autocorrelation function with 
MCQTL_LD compared to that of MCQTL. Indeed, the 
change in the number of parameters from locus to locus 
in MCQTL_LD has a tendency to lessen the correlation 
between consecutive tests. So, as the Bonferroni correc-
tion increases with the number of independent tests, the 
genome-wide threshold increases in MCQTL_LD.

Table 2 presents the precision averaged over the simu-
lated positions and the p value of one-side paired t-test 
between the precisions of the two methods as well as the 
detection power. The results clearly showed that there 
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was a gain both in precision and power as we analyzed 
the data with MCQTL_LD instead of MCQTL. This gain 
was limited while significant in a design with a small 
number of large families but was high in a design with 
a large number of small families. The highest gains were 
for surrounding intervals of 2  and 5  cM. The increase 
was around 8 % points for a surrounding interval of 
2 cM in the Syngenta design and jumped to 25 % points 
for a surrounding interval of 5  cM in the Euralis2005 
design.

Table 2 presents average results that hide a high variation 
from position to position. This fact is illustrated by Fig. 4 
where the precision gain of MCQTL_LD over MCQTL 
is plotted for the Euralis2007 design and a value of the 
mutated allele of 0.25 (similar behaviors were obtained for 
the other designs and other mutated allele values). It was 
then of interest to find the main features that could explain 
this high variability over positions of the precision gain. 
We investigated the correlation of the precision gain at 
each position with the fact of being on a marker or not, the 
empirical power, the variability of the locus information at 
the putative QTL and the number of ancestral alleles which 
is proportional to the decrease in model parameters. The 
number of ancestral alleles was a significant explanation 
for both the gain in power and the gain in precision (see 
Table 3). However, none of the other features were corre-
lated to the above gains for small surrounding intervals (1 
and 2 cM) and there was no clear picture for the other sur-
rounding intervals and the gain in power (see Supplemen-
tary data).

Discussion

We have presented a method and an R package, named 
clusthaplo. Its aim is to use a pairwise similarity measure 
locally along the genome. This measure reflects the alike-
in-state status of alleles and the length of the longest com-
mon segment to cluster the haplotypes and to assign to each 
haplotype a probable ancestral allele corresponding to its 
class in the clustering. Clusthaplo outputs are readable by 
MCQTL and the ancestral alleles are plugged in the model 
replacing the parental alleles. Hence, the number of model 

Table 2   Average precision of 
MCQTL and MCQTL_LD as 
the average over 100 simulated 
positions of the proportion of 
replicates where a detected 
QTL was located around the 
simulated QTL given that at 
least one QTL was detected, for 
a surrounding interval of 1, 2, 5 
and 10 cM

a  Average of the detection 
power of each method over 100 
simulated positions
b  p value of a one-side paired 
t test for the significant 
superiority in precision and 
power of MCQTL_LD

Design Allele value Method 1 cM 2 cM 5 cM 10 cM Powera

Syngenta 0.15 MCQTL 11.14 22.89 46.24 62.79 41.23

MCQTL_LD 15.08 28.81 51.89 66.36 43.50

Pvalb 9 × 10−5 1 × 10−8 1 × 10−7 2 × 10−5 2 × 10−5

0.25 MCQTL 20.61 41.53 72.50 88.09 88.13

MCQTL_LD 26.84 49.44 78.09 89.57 89.30

Pval 2 × 10−5 3 × 10−9 3 × 10−8 2 × 10−3 1 × 10−3

Euralis2007 0.15 MCQTL 4.47 9.76 22.77 38.04 22.48

MCQTL_LD 8.14 16.98 36.49 50.39 26.17

Pval 5 × 10−4 4 × 10−7 7 × 10−18 2 × 10−17 5 × 10−12

0.25 MCQTL 8.26 20.57 45.12 67.71 59.14

MCQTL_LD 17.62 33.61 62.84 78.37 68.08

Pval 2 × 10−7 5 × 10−10 9 × 10−21 2 × 10−18 9 × 10−24

Euralis2005 0.25 MCQTL 4.96 11.10 26.00 44.81 43.51

MCQTL_LD 13.87 26.87 48.21 64.29 57.43

Pval 4 × 10−8 1× 10−12 3 × 10−25 1× 10−29 1× 10−33

0.35 MCQTL 7.03 16.77 38.85 62.87 75.35

MCQTL_LD 21.48 39.12 64.31 80.04 85.66

Pval 2 × 10−10 4 × 10−15 2 × 10−26 6 × 10−27 8 × 10−26
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parameters is lessened and a significant boost in the detec-
tion accuracy is achieved.

The pairwise similarity measure is based on the one 
proposed by Li and Jiang (2005). Its flexibility is allowed 
by the use of two weight functions, one for the alike-in-
state allele comparison and one for the longest common 
segment. As the genetic population theory predicts an 
exponential decay of the linkage disequilibrium per gen-
eration, we have implemented in clusthaplo three different 
functions with exponential decay, an Exponential, Gauss-
ian and Laplace function. These functions should be used 
in the computation of the alike-in-state part of the simi-
larity score since they are adapted to the decay of link-
age disequilibrium and so could not put strong weight 
on a allele that appears to be identical in two haplotypes 
by chance or by genotyping errors. The two other weight 
functions give the same weight (1 or a constant differ-
ent to 1 for the Uniform function) to all the marker loci. 
They should be used to the longest common segment part 
of the similarity score to reflect the length of this shared 
segment. We showed that the choice of the weight func-
tions led to few differences in clustering. We implemented 
by default Exponential and Uniform functions as they led 
to one of the strongest and more stable clustering of the 
haplotypes.

We extended the similarity measure of Li and Jiang 
(2005) to increase its reliability when computed with few 
markers by making use of known information on the hap-
lotype relatedness as the kinship coefficients. By default, 
the kinship coefficients are computed by the average of the 
alike-in-state alleles with all the marker information. We 
showed with a highly related population that this extended 
similarity measure led to a stronger clustering compared to 
the Li and Jiang’s one.

The pairwise similarity measure is computed by sliding 
a window along the genome. We showed that the length 
of the window has a strong impact on the clustering. This 
length should be chosen regarding the relatedness of the 
haplotypes. A highly related population is known to share 
long haplotype blocks, so the window should span large 
segments to exhibit local differences in the genome. On the 

opposite, independent haplotypes should be studied with 
smaller window length.

At each scan locus, haplotypes are assigned a class by 
the transitive closure of a weighted filtered graph whose 
nodes are the haplotypes and weights, the pairwise simi-
larities. Two methods are proposed to filter the graph; a 
threshold computed by simulations of nearly independent 
haplotypes to control the risk of false link between haplo-
types or a fitted HMM. We showed that the HMM method 
is more stable in the clustering leading to longer common 
blocks than the threshold method. Two sampling strate-
gies are implemented to compute a threshold, the equi-
librium and the mosaic sampling. The mosaic sampling 
depends on a parameter that should be chosen around 500 
to achieve convergence. We showed that the equilibrium 
sampling gives always a smaller threshold value than the 
mosaic sampling as the equilibrium sampling mimics the 
most entropic situation with independent and equifrequent 
bi-allelic markers. This threshold value should be preferred 
if the goal is to cluster the haplotypes as much as possible.

The current implementation of MCQTL_LD was devel-
oped to analyze usual type of populations derived from 
two inbred lines such as BC, HD, F2 to F7 families or 
RIL populations. For each parent lines of the multi-cross 
design, clusthaplo outputs an assignation to a class or what 
we call an ancestral allele per scan locus. This 0-1 assigna-
tion is not necessary for the marker regression model and 
its plug-in function. It is possible to feed MCQTL_LD with 
a smoother function, like for instance the local IBD prob-
abilities of having received each ancestral alleles.

When using clusthaplo with w1  =  1, w2  =  0 and a 
threshold close to 1, the clustering finds the different hap-
lotypes present within the sliding window. So with this 
rough choice, MCQTL_LD model is a multi-allelic QTL 
with one parameter per local haplotypes as was proposed 
by Jansen et al. (2003). Other choices of the weight func-
tions and clustering methods lead to cluster the local hap-
lotypes regarding their pairwise similarities and lead to the 
ancestral allele model. We can also imagine reducing the 
window length to get only one locus in it. With this type 
of tiny window and only SNP markers, bi-allelic QTLs are 

Table 3   Pearson correlation (and its p value) of the number of ancestral alleles and the gain of MCQTL_LD over MCQTL, for the precision 
within a surrounding interval of 1, 2, 5, and 10 cM and the power

Design Value of the mutated allele 1 cM 2 cM 5 cM 10 cM Power

Syngenta 0.15 0.49 (1.9 × 10−7) 0.58 (3.2 × 10−10) 0.68 (4.4 × 10−15) 0.65 (2.9 × 10−13) 0.83 (5.1× 10−27)

0.25 0.39 (4.4 × 10−5) 0.40 (3.7 × 10−5) 0.54 (5.8 × 10−9) 0.48 (4.1 × 10−7 0.78 (2.4 × 10−21)

Euralis2007 0.15 0.43 (6.8 × 10−6) 0.37 (2.2 × 10−4) 0.29 (2.8 × 10−3) 0.46 (1.9 × 10−6) 0.39 (5.7 × 10−5)

0.25 0.37 (1.7 × 10−4) 0.29 (3.9 × 10−3) 0.21 (3.6 × 10−2) 0.50 (1.7 × 10−7) 0.57 (1.1 × 10−9)

Euralis2005 0.25 0.26 (1.1 × 10−2) 0.34 (9.8 × 10−4) 0.22 (3.7 × 10−2) 0.36 (3.9 × 10−4) 0.63 (1.2 × 10−11)

0.35 0.21 (4.3 × 10−2) 0.28 (6.8 × 10−3) 0.17 (1.0 × 10−1) 0.30 (4.1 × 10−3) 0.37 (3.4 × 10−4)
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modeled by MCQTL_LD leading to a joint linkage asso-
ciation model with by-family means to model the popula-
tion structure and linkage marker regression coefficients at 
the SNP loci. Moreover, the so-called disconnected model 
in MCQTL (Jourjon et al. 2005) is the homoscedastic lin-
ear approximation of the joint linkage model used to ana-
lyze the NAM population (Yu et al. 2008; Li et al. 2011). 
It is the least parsimonious with intra-family QTL param-
eters. The clusthaplo clustering plug-in allows a wide type 
of joint linkage and association models. The association 
model can be as simple as the SNP association model or 
a little more complex when taking into account all the dif-
ferent local haplotypes or the local ancestral alleles. So 
MCQTL and MCQTL_LD, both together, can analyze for 
any multi-population design a large extent of joint linkage 
and association models. The importance of having differ-
ent complementary models to analyze complex traits was 
clearly shown by Bardol et al. (2013).

MCQTL_LD offers a QTL model featuring a versatil-
ity that is not found in other application softwares. The 
marker regression model, implemented in MCQTL_LD, 
has the general properties of linear model, which include 
the robustness to non linear residuals and it was proved to 
be asymptotically equivalent to the QTL mixture model 
(Rebai et  al. 1995). This model benefits of the robust 
method of permutation tests (Doerge and Churchill 1996). 
Finally, dominance parameters and epistasis QTLs can be 
included in the model. These interactions QTL effects are 
already implemented in MCQTL and can be analyzed more 
precisely in MCQTL_LD thanks to the clusthaplo plug-in.

Conclusion

MCQTL_LD and clusthaplo are unique software tools that 
permits to analyze multiple related families to detect and 
localize QTL. They implement a QTL mapping method 
that makes use of both linkage and linkage disequilib-
rium. The linkage disequilibrium is taking into account by 
clusthaplo that clusters the family parents and assigns to 
each of them at each position along the genome a probable 
ancestral allele. MCQTL_LD uses these probable ancestral 
alleles to lessen the number of its model parameters.

Clusthaplo uses a pairwise similarity measure computed 
in a sliding window along the genome to cluster the parent 
haplotypes. This measure reflects the alike-in-state status of 
alleles and the length of the longest common segment. We 
have implemented different options to compute this simi-
larity measure. We showed that the window length has a 
strong impact on the clustering and gave insights to chose 
this length.

We carried out intensive simulations on three real 
genetic data sets, that represent three contrasted designs 

from a small number of large-size families to a huge 
number of medium-/small-size families. We showed that 
MCQTL_LD outperforms the classical linkage mapping 
analysis of MCQTL. The maximum gain in power and in 
accuracy was obtained for the design with a huge number 
of medium-/small-size families. In that design, the number 
of detected QTL in a narrow interval of 2 cM around the 
simulated QTL was more than doubled.
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