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A large range of microorganisms can associate with plants, resulting in neutral, friendly
or hostile interactions. The ability of plants to recognize compatible and incompatible
microorganisms and to limit or promote their colonization is therefore crucial for their
survival. Elaborated communication networks determine the degree of association
between the host plant and the invading microorganism. Central to these regulations of
plant microbe interactions, phytohormones modulate microorganism plant associations
and coordinate cellular and metabolic responses associated to the progression of
microorganisms across different plant tissues. We review here hormonal regulations,
focusing on auxin and cytokinin phytohormones, involved in the interactions between
plant roots and soil microorganisms, including bacterial and fungi associations, either
beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and
differences in cytokinin/auxin functions amongst various compatible versus incompatible
associations.

Keywords: auxin, cytokinin, pathogens, endomycorrhiza, ectomycorrhiza, Rhizobium, root nitrogen fixing
symbiosis, legume nodulation

INTRODUCTION

Plant–microorganism interactions have received more and more attention due to the benefits they
confer to crop productivity by improving nutrient uptake, increasing plant growth and conferring
biotic and abiotic stress tolerance (Yang et al., 2009; de Zelicourt et al., 2013; Grover et al.,
2013). Identifying communication systems and signals that determine the beneficial or detrimental
outcomes of plant–microorganism interactions is a key to improve defense responses without
decreasing beneficial (e.g., symbiotic) associations.

Different symbiotic associations with plant roots exist, either with fungi or bacteria (Figure 1).
These symbioses are mutualistic, leading to reciprocal exchanges between fungi or bacterial
microorganisms and host plants: soil nutrients or fixed atmospheric nitrogen versus carbon
skeletons generated through photosynthesis (Udvardi and Poole, 2013; Schweiger and Müller,
2015). These interactions can be established between ectomycorrhizal (ECM) fungi from the
Basidiomycota and Ascomycota phyla and many forest trees (Anderson and Cairney, 2007; Diagne
et al., 2013; Raudaskoski and Kothe, 2015), arbuscular endomycorrhizal (AM) fungi from the
Glomeromycota phylum with most of land plants (Schüβler et al., 2001; Smith and Read, 2010;
Foo et al., 2013; Gutjahr and Parniske, 2013), and nitrogen-fixing bacteria such as Rhizobium sp.
and Frankia sp. with specific species belonging to the Rosid family, leading to the formation of
new root lateral organs called nodules (Dénarié et al., 1992; Franssen et al., 1992; Soltis et al., 1995;
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FIGURE 1 | Roles of auxins and cytokinins in different biotic interactions affecting the root system. The schematized root represents different interactions
occurring on root systems from different plant species: ectomycorrhizae, formed mainly on tree roots; arbuscular endomycorrhyzae, occurring in most land plants;
symbiotic nodulation in legumes (�rhizobia�) or actinorhizal plants (�Frankia�); galls formed in roots of some Brassicaceae plants. The effect of symbionts and
oomycete pathogens on lateral root development is also depicted. Auxin metabolism and/or response is positively associated to ECM, AM, rhizobia and Frankia
symbiotic interactions (either in relation to infections and/or to nodule organogenesis), to the interaction with several root pathogens (acting either positively or
negatively on pathogenic susceptibility), and positively associated to root gall formation in response to P. brassicae. Auxins produced by different rhizospheric
microorganisms stimulate lateral root formation. Cytokinin metabolism and/or response is associated to rhizobia nodulation, either positively in the cortex or
negatively in the epidermis, to the interaction with several root pathogens (acting mostly positively on pathogenic susceptibility), and positively associated to root gall
formation in response to P. brassicae. +, indicates a positive effect; −, a negative effect. Dark green: root hairs and epidermis; pale green, cortex; middle green,
nodule primordium; blue, endodermis; yellow, pericycle; pink, stele tissues including vascular bundles.

Perret et al., 2000; Santi et al., 2013; Svistoonoff et al., 2014)
(Figure 1). Unlike AM fungi and N2-fixing bacteria, ECM fungi
do not enter inside plant host root tissues and cells. A mycelial
mantle is formed by the fungi around short lateral roots and
develops between root epidermal and cortical cells, to form a
highly branched structure, called the Hartig net (Peterson and
Massicotte, 2004; Anderson and Cairney, 2007; Raudaskoski and
Kothe, 2015) (Figure 1).

In all symbiotic interactions, the recognition of microorg-
anisms and plant roots as symbiotic partners is the first
critical step to allow a tight beneficial metabolic association
(Bonfante and Requena, 2011; Gough and Cullimore, 2011;
Geurts et al., 2012; Singh and Parniske, 2012; Genre et al.,
2013; Raudaskoski and Kothe, 2015). In the case of nitrogen
fixing symbioses, the formation of a new organ, the root nodule,
is additionally essential to generate microaerobic conditions
allowing differentiated bacteria to fix atmospheric nitrogen

(e.g., production of leghemoglobin proteins that chelate oxygen,
preventing inhibition of the bacterial nitrogenase enzyme
ensuring nitrogen fixation; Ferguson et al., 2010; Desbrosses
and Stougaard, 2011; Oldroyd, 2013) (Figure 1). Exchanges
of molecular signals, including on the one hand flavonoids
and phytohormones produced by legume plants, and on the
other hand Myccorhization Factors or Nodulation Factors (NFs)
respectively secreted by AM fungi or rhizobia, are required for
the recognition of symbiotic partners. In addition, these signaling
pathways participate in decreasing root defense responses,
preparing root tissues for infection by the symbiont, and in
the case of nitrogen fixing bacteria, initiating root cortical cell
divisions leading to nodule organogenesis (Oldroyd et al., 2011;
Oldroyd, 2013; Gourion et al., 2015) (Figure 1).

Foiling plant defenses is therefore critical for a successful
host infection, either for symbiotic partners or pathogens
(Robert-Seilaniantz et al., 2011; Pieterse et al., 2012; De
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Vleesschauwer et al., 2014). To penetrate, colonize and hijack
nutrients from host plants, pathogenic bacteria and fungi that
infect roots have developed different strategies, including the
modification of phytohormonal responses to their advantage.
Some pathogens are able to directly synthesize phytohormones
affecting plant growth and development, forming new sinks
in which nutrients are easily accessible (e.g., Agrobacterium
tumefaciens galls, or Plasmodiophora brassicae clubroot galls;
Figure 1). Therefore, keeping the control over hormonal pools
and signaling pathways is crucial for host plants to both establish
beneficial microorganism interactions and prevent pathogenic
invasions.

Auxin and Cytokinin Regulations in
Plant – Fungus Symbioses
The two types of plant-fungal symbioses, AM and ECM, display
different hormonal regulation requirements, notably regarding
auxins and cytokinins. A production of cytokinins (isopentenyl
and cis-zeatin) by ECM fungi was identified (Morrison et al.,
2015). In addition, ECM fungi, such as Laccaria bicolor, Tuber
borchii and T. melanosporum, produce measurable amounts of
auxin (indole-3-acetic acid; IAA), resulting in morphological
changes of host roots (Cistus incanus) either depending on a
direct (contact) or indirect (diffusible signal) interaction with
the fungus (Karabaghli et al., 1998; Felten et al., 2009; Splivallo
et al., 2009). Accordingly, the presence of fungal mycelia reduces
root growth and increases root branching of the host plant, as
observed in C. incanus and Populus trichocarpa, and similarly
as an exogenous auxin treatment does (Felten et al., 2009;
Splivallo et al., 2009). Interestingly, in Arabidopsis thaliana, the
ectomycorrhizal truffle mycelium also promotes root hair growth
as well as lateral root formation, indicating that these may not
be symbiosis-specific traits (Splivallo et al., 2009). In addition to
the production of auxins, L. bicolor is able to release ethylene
which activates the plant auxin synthesis pathway (Splivallo
et al., 2009). The production of these two hormones is required
to promote root hair growth to an equivalent level as the
truffle mycelium does. Altogether, these observations suggest
that ethylene production by the ECM fungi may induce auxin
production in the host plant, therefore reinforcing the effect
of direct auxin production on root development and notably
on the promotion of lateral root formation which will then
be infected by new mycelia (Figure 1). The local activation
of auxin responses in the first tier of root tip columella cells
of poplar and Arabidopsis in response to an indirect contact
with L. bicolor has been documented using the auxin-response
reporter construct DR5::GFP, and this activation was inhibited
by a Polar Auxin Transport inhibitor (PAT; Splivallo et al., 2009).
In addition, transcriptomic analyses in poplar roots inoculated
with the ECM fungus L. bicolor revealed an increased expression
of auxin-related genes such as members of the GH3 (Gretchen
Hagen3) gene family involved in auxin conjugation, as well as of
P. trichocarpa PtaPIN4 and PtaPIN9 auxin efflux carriers essential
for PAT (Felten et al., 2009). Interestingly, L. bicolor inoculation
induces lateral root formation in wild-type A. thaliana but not
in the pin2 mutant (AtPIN2 is the closest Arabidopsis relative of

PtaPIN9 in poplar). This result is consistent with the essential
role of PAT in controlling lateral root development induced by
the presence of the symbiotic ECM fungus (Felten et al., 2009).

In contrast to the ECM symbioses, no comprehensive
change was observed in auxin levels in Tropaeolum majus
upon inoculation with different AM strains (Jentschel et al.,
2007). Nevertheless, a role of auxins in the AM symbiosis
was proposed notably in relation to the stimulating effect of
the AM inoculation on lateral root formation (Fusconi, 2014).
Indeed, several mutants affected in auxin-related developmental
responses, such as the Pisum sativum bushy mutant that
displays a lower IAA concentration in shoots and roots and
the tomato (Solanum lycopersicum) diageotropica auxin-resistant
and polycotyledon hyperactive PAT mutants show a reduced
mycorrhizal colonization (Hanlon and Coenen, 2011; Foo, 2013)
(Figure 1). However, the expression of the strigolactone (SL)
biosynthetic PsCCD8 (Carotenoid Cleavage Dioxygenases 8)
gene is decreased in the bushy mutant (Foo et al., 2013),
suggesting that the auxin effect on AM symbiosis may be at least
partly due to a decrease in the SL biosynthesis. Several auxin-
responsive genes were identified as induced in AM roots, such
as a specific GH3 tomato gene expressed in cells colonized by
fungi (Liao et al., 2015). As the symbiotic expression of this
marker could be disconnected from its auxin-induction, this
suggests that an AM signaling GH3-related response may have
evolved at least partially independently of auxin signaling. The
expression of the DR5 auxin response reporter was additionally
detected in S. lycopersicum, Medicago truncatula, and Oryza
sativa root cells containing arbuscules (Etemadi et al., 2014).
Finally, although no analysis of the AM colonization capacity of
mutants directly affected in auxin perception or polar transport
is yet available, overexpression of a microRNA (miR393) that
indirectly downregulates the expression of auxin receptor genes
(i.e., Transport Inhibitor Response1 and Auxin-related F-Box
genes) led to the formation of underdeveloped arbuscules in
S. lycopersicum, M. truncatula, and O. sativa roots, suggesting
that hampering auxin perception in arbuscule-containing cells
negatively affects their formation (Etemadi et al., 2014).

Cytokinins were also proposed to be involved in the AM
symbiosis since an increase of cytokinin levels in leaves and roots
was detected in AM infected plants (Allen et al., 1980). However,
it remains unclear if the cytokinins were produced by the host
plant or by the AM fungus (Allen et al., 1980; Barker and Tagu,
2000; Shaul-Keinan et al., 2002). No AM phenotype was detected
in the M. truncatula cre1 (cytokinin response 1) mutant defective
in a cytokinin receptor essential for symbiotic nodulation (Plet
et al., 2011; Laffont et al., 2015), suggesting that at least the
CRE1-dependent cytokinin signaling is not essential for the AM
symbiotic interaction.

Auxin and Cytokinin Regulations of
Nitrogen-Fixing Root Nodule Symbioses
Several studies have highlighted the involvement of auxin and
cytokinin phytohormones in the regulation of the Rhizobium
nitrogen-fixing symbiotic interaction. Allen et al. (1953) showed
that an exogenous application of a PAT inhibitor could induce
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the formation of nodule-like structures on alfalfa roots, in the
absence of Rhizobium. However, the structure of these organs
can be considered as more similar to roots than to legume
nodules. The inhibition of PAT was found to also induce
pseudonodule formation in M. truncatula roots (Rightmyer
and Long, 2011), further indicating that nodule organogenesis
involved a local auxin accumulation. It was later shown that
combined auxin and cytokinin exogenous treatment on pea
roots led to cortical cell divisions, which occur at the onset
of nodule organogenesis (Libbenga et al., 1973) (Figure 1).
The positive effect of cytokinins in the initiation of nodule
organogenesis was additionally documented in different legumes
where exogenous applications of cytokinins induce cortical
cell divisions, amyloplast accumulation, and the expression
of early nodulation markers (early nodulins; Torrey, 1961;
Dehio and de Bruijn, 1992; Bauer et al., 1996; Jiménez-Zurdo
et al., 2000; Mathesius et al., 2000; Murray et al., 2007;
Tirichine et al., 2007). In addition, the ectopic expression of
a CytoKinin oXidase/deshydrogenase gene from A. thaliana
(AtCKX3), involved in the degradation of the cytokinin bioactive
pool, or the downregulation of either a cytokinin activation gene
from M. truncatula (MtLOG1, standing for LOnely Guy 1) or
an Iso-PentenylTransferase biosynthetic gene from L. japonicus
(LjIPT3), lead to a reduced nodule organogenesis (Lohar et al.,
2004; Chen Y. et al., 2014; Mortier et al., 2014), suggesting that
endogenous cytokinins act positively on nodulation. However,
a reduced nodulation is also observed when the MtLOG1 gene
is overexpressed (Mortier et al., 2014) and in a L. japonicus
mutant affecting the NF-induced CKX3 gene (Reid et al., 2016),
indicating that a tight regulation of cytokinin levels is required
and/or that a negative symbiotic function of cytokinins exists.
As rhizobia can secrete bioactive auxins (Camerini et al., 2008;
Bianco and Defez, 2010) and cytokinins (Phillips and Torrey,
1972; Sturtevant and Taller, 1989), it was proposed that these
two hormones could contribute to the induction of nodule
formation, in addition to other bacterial symbiotic signals such
as NFs. Indeed, a Rhizobium nod− strain, unable to synthesize
NFs and form nodules but genetically modified to secrete the
trans-zeatin cytokinin, is able to induce the formation of nodule-
like structures expressing nodulation markers (Cooper and Long,
1994). The secretion of cytokinins by wild-type rhizobia does not
seem, however, essential for nodulation, even though it might
have a minor contribution (Kisiala et al., 2013; Podlešáková et al.,
2013). In agreement, van Zeijl et al. (2015) showed that cytokinins
are accumulated in wild-type roots in the absence of Rhizobium
following a 3 h NF treatment. This suggests that the cytokinin
accumulation required for nodulation mainly originates from
the host plant. Concerning auxins, the over-production of this
phytohormone in Rhizobium positively regulates nodulation and
nodule meristem size (Camerini et al., 2008), and auxin-response
reporter DR5 and/or GH3 fusions revealed that rhizobia or NFs
can locally inhibit PAT and induce a local auxin accumulation in
dividing cortical cells and nodule primordia in M. truncatula, L.
japonicus, T. repens, and Vicia sativa (Mathesius et al., 1998; Boot
et al., 1999; Pacios-Bras et al., 2003; Breakspear et al., 2014; Ng
et al., 2015) (Figure 2). Interestingly, the accumulation of auxin
(Indole-3-Acetic Acid, IAA) in Rhizobium inoculated plants was

found to be dependent on cytokinin signaling pathways (Ng et al.,
2015).

The involvement of cytokinin signaling pathways in the
regulation of nodulation was first highlighted using a RNAi
approach specifically targeting different putative cytokinin
receptors in M. truncatula roots, revealing that only the
silencing of MtCRE1 led to cytokinin insensitive roots which
developed a reduced number of nodules (Gonzalez-Rizzo et al.,
2006) (Figure 2). Similarly, the lhk1/hit1 (lotus histidine kinase
1/hyperinfected 1) mutant of L. japonicus, affecting the closest
homolog of MtCRE1, showed a strongly reduced nodulation
capacity associated with a hyperinfection phenotype (Murray
et al., 2007). Strikingly, the L. japonicus snf2 (spontaneous nodule
formed 2) mutant carrying a gain of function mutation in the
LHK1 cytokinin receptor led to the formation of “spontaneous
nodules” in the absence of Rhizobium (Tirichine et al., 2007)
(Figure 2). Altogether, these results unambiguously indicate that
cytokinins and the LHK1/CRE1 pathway play a positive role
in nodulation by inducing cortical cell divisions and nodule
organogenesis (Figures 1 and 2). The fact that the lhk1 and
cre1 mutants still form some nodules strongly suggest that a
functional redundancy exists within the cytokinin receptor CHK
family. Accordingly, mutants affecting other cytokinin receptors
than cre1/lhk1 also have reduced nodulation efficiencies, even
though to a lesser extent (Held et al., 2014; Boivin et al., 2016). In
addition, these reduced nodulation phenotypes are stronger when
LHK1 or CRE1 is affected, further indicating a predominant role
for CRE1/LHK1 in nodule initiation.

As previously mentioned, compatible rhizobia can locally
inhibit auxin accumulation and/or PAT. Accordingly, in
L. japonicus, the induction of an auxin response is observed
both in Rhizobium-induced nodules and in snf2 spontaneous
nodules (Suzaki et al., 2012, 2013), indicating that this
response is associated at least with early nodule organogenesis,
downstream of the LHK1 cytokinin signaling pathway (Figure 2).
The inhibitory effect of a Rhizobium application on PAT in
M. truncatula roots is not observed in the cre1 mutant, who
displays an increased PAT capacity and accumulate excessively
polarly localized MtPINs auxin efflux carriers (Plet et al., 2011)
(Figure 2). Recently, Ng et al. (2015) showed that the nodulation
defect of the cre1 mutant could be partially complemented by
an auxin transport inhibitor, as well as by specific flavonoids
able to inhibit PAT (such as naringenin, isoliquiritigenin,
and kaempferol; Figure 2). Overall, these data highlight that
the activation of auxin responses and flavonoid accumulation
downstream of cytokinins and LHK1/CRE1 is tightly associated
with dividing cortical cells and nodule primordia formation.

Type B Response Regulators (RRBs; Heyl et al., 2013) are
transcription factors directly regulating cytokinin primary
response genes such as the Nodulation Signaling Pathway 2
(NSP2) gene that encodes a GRAS-type transcription factor
essential for early nodulation (Kaló et al., 2005), directly
linking NF and cytokinin signaling pathways (Ariel et al.,
2012). Other direct cytokinin signaling targets are associated
to negative feedback regulations, such as the Cytokinin
Oxidase/deshydrogenase 1 (CKX1) gene involved in cytokinin
degradation and type A Response Regulators (RRAs) thought
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FIGURE 2 | Roles of auxins and cytokinins in legume-rhizobia symbiotic interactions. The scheme represents an early rhizobial infection event in a legume
(Medicago truncatula) root leading to the formation of an indeterminate nodule. Rhizobia produce specific Nod factor signaling molecules as well as auxin and
cytokinin hormones. A major contribution of Nod factor signals in establishing rhizobial infection events (i.e., symbiont recognition, infection thread formation and
progression) in root hairs has been demonstrated, whereas cytokinins produced by rhizobia may only have a minor contribution, and a role for a WT-level bacterial
production of auxins remains to be established. Plant and/or bacterial hormones lead to the activation of cytokinin and auxin responses in infected epidermal cells,
respectively, monitored by Type A RRs (RRA) genes or the TCS (Two Component output Sensor) cytokinin-response marker and the GH3 (Gretchen Hagen3) auxin
responsive gene or the DR5 auxin-response marker. The activation of cytokinin responses in the root epidermis may lead to an inhibition of Nod factor signaling
and/or rhizobial infections whereas the activation of auxin responses may promote rhizobial infections. The activation of these root epidermal cytokinin responses
depends on the CRE1 (Cytokinin Response 1) receptor (LHK1, standing for Lotus Histidine Kinase1, being its functional homolog in Lotus japonicus) whereas the
activation of the auxin epidermal responses depends on ARF16a (Auxin Response Factor 16a, a transcription factor). A cytokinin response is additionally activated in
dividing cortical cells and nodule primordia, also depending on the CRE1 (LHK1) receptor, promoting nodule organogenesis even in the absence of symbiotic signals
(rhizobia or Nod factors). An activation of auxin responses is observed in the cortex downstream of the CRE1-cytokinin pathway, involving local changes in polar
auxin transport associated to the activation of specific flavonoid metabolite production and changes in PIN (PIN-formed) auxin-efflux carriers expression and
accumulation. Ultimately, the activation of these auxin and cytokinin responses is linked to modulations of the cell cycle leading either to infection thread formation
(epidermis) or cell divisions (cortex). It remains open if the auxin and/or cytokinin hormonal pools may, in addition to originate from plants and/or bacteria, accumulate
upon rhizobial/Nod factors activation specifically in the infected epidermis, in the activated cortex, or in both root tissues. In addition, divergences in these hormonal
responses are observed between determinate and indeterminate nodule types (e.g., L. japonicus versus M. truncatula model legumes), notably regarding the role of
CRE1 versus LHK1 cytokinin receptors in regulating infections in the epidermis, the involvement of polar auxin transport in root inner tissues, and the contribution of
a local auxin biosynthesis in these different root tissues. Dark green: root hairs and epidermis; pale green, cortex; middle green, nodule primordium; blue,
endodermis; yellow, pericycle; pink, stele tissues including vascular bundles.

to act as negative regulators of cytokinin signaling. Several RRA
genes, used as markers of the activation of cytokinin responses,
are associated with symbiotic nodulation in M. truncatula,
such as MtRRA4 that is expressed in dividing root cortical
cells, nodule primordia and meristems, (Plet et al., 2011)
(Figure 2) and MtRRA9 and MtRRA11 that are upregulated
both in the root epidermis and in the root cortex in response
to rhizobia or NFs (Op den Camp et al., 2011) (Figure 2).
An RNAi construct targeting MtRRA9 as well as MtRRA4,
MtRRA5, and MtRRA11 significantly reduces nodule formation
in M. truncatula, suggesting a positive role of RRAs in nodulation
(Op den Camp et al., 2011). As observed when affecting the
cytokinin pool, the downregulation of the type A RR MtRRA9
reduces nodulation, suggesting a negative function of cytokinins
in nodulation (Op den Camp et al., 2011). Different versions
of the “Two Component output Sensor” (TCS) reporter, used
as a proxy to monitor the activation of the cytokinin primary
response, revealed either an expression only in nodule primordia

(TCS reporter, van Zeijl et al., 2015), in contrast to MtRRA9 and
MtRRA11 (Op den Camp et al., 2011), or first in the epidermis
and then in the cortex (TCSn reporter, Jardineau et al., 2016)
(Figure 2). In L. japonicus, the TCS reporter expression was
detected both in the infected root epidermis and in cortical cells
during nodule organogenesis (Held et al., 2014), consistent with
the induction of LjRRA4, LjRRA6, and LjRRA8 genes in response
to a NF treatment (Op den Camp et al., 2011), but following a
different kinetic, being first expressed in the root cortex and then
in the epidermis. The expression of several cytokinin biosynthesis
and signaling genes, including CRE1 and MtRRA2, MtRRA8,
MtRRA9 and MtRRA10, is rapidly upregulated by NFs or
Rhizobium in the M. truncatula root epidermis and/or in isolated
root hairs (Breakspear et al., 2014; Liu et al., 2015; Jardineau et al.,
2016) (Figure 2). Accordingly, ProLHK1:GUS and ProCRE1: GUS
fusions were detected in response to Rhizobium both in the root
epidermis and in dividing cortical cells (Held et al., 2014; Boivin
et al., 2016; Jardineau et al., 2016). This epidermal expression
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correlates with the Rhizobium hyperinfected phenotype observed
in the hit1/lhk1 mutant, suggesting that in addition to a positive
role in nodule organogenesis, a negative function of cytokinins
regulating epidermal infections may exist (Murray et al.,
2007; Held et al., 2014) (Figures 1 and 2). Interestingly, in
M. truncatula, the cytokinin/CRE1 pathway negatively regulates
the NF-induction of the ENOD11 epidermal infection marker
(Figure 2), and reducing the cytokinin pool specifically in the
epidermis positively impacts nodulation (Jardineau et al., 2016)
(Figure 1).

Several auxin-related genes, such as members of the Auxin
Response Factor (ARF16a), GH3 (GH3.1), Indole-3-Acetic Acid
(IAA9) and Small Auxin Up RNA (SAUR1) families, are also
induced in the root epidermis and/or root hairs by Rhizobium
and/or NFs (Breakspear et al., 2014; Jardineau et al., 2016)
(Figure 2). In agreement, the auxin-response reporter DR5 fusion
was detected in Rhizobium infected root hairs as well as the
auxin-responsive GH3.1 gene, suggesting a role for auxins in
epidermal infections (Breakspear et al., 2014; Laplaze et al.,
2015) (Figures 1 and 2). Accordingly, an arf16a mutant shows a
reduced rhizobial infection efficiency even though the number of
nodule primordia and differentiated nodules remains unchanged,
suggesting a positive role of auxins in the earliest stages of the
rhizobial infection. A local accumulation of auxins depending
on the AUX1 influx carrier was linked to Frankia nitrogen-
fixing bacterial infections in the Casuarina glauca actinorhizal
host plant forming symbiotic nodules evolutionary related to
the legume nodulation (Péret et al., 2007; Perrine-Walker et al.,
2010). Using a dominant-negative version of an auxin signaling
repressor gene expressed in actinorhizal nodules, Indole-3-Acetic
Acid7 (IAA7), to specifically inhibit auxin signaling in Frankia-
infected cells, an increased actinorhizal nodulation was observed
(Champion et al., 2015). This suggests a model where auxins,
notably produced by Frankia symbiotic bacteria, induce the
degradation of IAA7 and thus activate auxin-signaling, ultimately
leading to an inhibitory negative feedback on nodulation. Finally,
an activation of flavonoid pathways was also detected in the
root epidermis and in root hairs in response to rhizobia and/or
NFs (Breakspear et al., 2014; Chen et al., 2015; Jardineau
et al., 2016), pointing to potential connections with cytokinin
and auxin responses as recently described in early nodule
organogenesis (Ng et al., 2015). Overall, these data indicate
that in addition to their roles in nodule organogenesis, auxins,
cytokinins and flavonoids may also regulate symbiotic bacterial
infection (Figures 1 and 2).

Cytokinins and potentially auxins additionally likely regulate
later symbiotic nodulation stages such as the nitrogen fixation
metabolism, as suggested by transcriptomic analyses of laser-
dissected differentiated nodule zones (Roux et al., 2014).
Concerning auxins, it was recently reported that an auxin-
overexpressing S. meliloti free-living strain showed transcriptome
changes reminiscent of a differentiated nitrogen-fixing bacteroid,
suggesting that auxins may affect bacteria differentiation
depending on an unknown signaling pathway (Defez et al., 2016).
Changes in auxin metabolism and response occurring in a wild-
type Rhizobium strain during its differentiation within nodules
however remain to be demonstrated. Concerning cytokinins,

the downregulation of the Iso-PentenylTransferase 3 (LjIPT3)
gene in L. japonicus differentiated nodules, decreases nodule
nitrogenase activity (Chen Y. et al., 2014). Recent studies,
respectively using a ckx3 mutant or cre1 and related chk cytokinin
receptor mutants, indicate that cytokinins affect nitrogen fixation
efficiency both in L. japonicus and in M. truncatula (Boivin
et al., 2016; Reid et al., 2016). Interestingly, a genomic clone
corresponding to the closest CHK cytokinin receptor from
the Arabidopsis non–symbiotic plant, AHK4/CRE1, is able
to rescue early cre1 nodulation defects (i.e., the number of
nodules per plants) but not to complement the nitrogen fixation
deficiency (Boivin et al., 2016). Noteworthy, three L. japonicus
hemoglobin encoding genes (LjGLB161, LjGLB2 and LjGLB3-1)
are transcriptionally regulated by cytokinins (Bustos-Sanmamed
et al., 2011), and in O. sativa, the expression of some hemoglobin
genes may be directly regulated by RRB cytokinin signaling
transcription factors (Ross et al., 2004). This may imply that a
potential direct connection between cytokinins and the nitrogen
fixation metabolism exists. Finally, it was recently proposed that
cytokinins could be involved in a systemic shoot-to-root negative
regulation of nodulation (Sasaki et al., 2014). More detailed
analyses are therefore required to understand and integrate the
various roles of auxins and cytokinins at these different symbiotic
nodulation stages.

Auxin and Cytokinin Regulations in
Plant–Pathogen Interactions
In the past decades, most of the studies on plant pathogen
interactions have focused on how the pathogens infect plant
aerial organs (e.g., leaves). Auxins and cytokinins have been
recently highlighted to act in defense responses either depending
on other defense-related hormones such as Salicylic Acid and
Jasmonic Acid, or independently (reviewed in Naseem and
Dandekar, 2012). It should be noted that the function of
auxins and cytokinins in defense and immunity responses
largely depends on the plant and organ involved, probably
because of their divergent developmental roles notably in
shoots versus roots. It is only recently that data have been
gained using root pathosystems (Chen Y.C. et al., 2014). Some
root pathogens are able to synthesize auxin- and cytokinin-
like molecules (Estruch et al., 1991; Argueso et al., 2009),
indicating that the production of these two hormones is
not restricted to either beneficial (symbiotic) or detrimental
(pathogenic) microorganisms. Amongst the best described
examples, Agrobacterium tumefaciens and A. rhizogenes are
soil pathogenic bacteria targeting dicot plants (Smith and
Townsend, 1907; Costantino et al., 1980). These bacteria carry
a plasmid containing a Transfer-DNA (T-DNA) region that
can be integrated into the plant genome (Liu and Kado,
1979; Kutáček and Rovenská, 1991; Lee et al., 2009). The
A. tumefaciens T-DNA encodes two transcripts, named iaaH
and iaaM, encoding auxin biosynthetic enzymes (Wood et al.,
2001), and the trans-zeatin synthesizing (tzs) gene involved in
cytokinin biosynthesis (Akiyoshi et al., 1984, 1987; Hwang et al.,
2010). The integration of genes encoding these phytohormonal
biosynthetic enzymes into the host plant genome leads to cell
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proliferation and a gall formation in the case of A. tumefaciens,
or to root organogenesis in the case of A. rhizogenes “hairy
roots”. Another well studied root pathogen is P. brassicae, which
causes the clubroot disease in cruciferous plants such as Brassica
napus (rapeseed) and A. thaliana (Hwang et al., 2012). The
clubroot disease is characterized by the formation of galls on
infected roots (Figure 1), leading to plant premature senescence.
A microarray transcriptomic analysis performed on infected
A. thaliana plants versus non-infected plants identified amongst
differentially expressed genes, phytohormone-associated genes
such as members of the auxin-related GH3 gene family,
or genes involved in the cytokinin biosynthesis (AtIPT3
and AtIPT8), cytokinin degradation (AtCKX1 and AtCKX6),
cytokinin perception (AHK4/CRE1) and cytokinin signaling
(ARR5 and ARR10; Siemens et al., 2006). Cytokinins and auxins
were additionally functionally associated with early steps of
the P. brassicae – Arabidopsis interaction in relation to the
re-initiation of cortical cell divisions to form root galls, since
an accumulation of isopentenyladenine and an enhanced auxin
and cytokinin-related gene expression were identified (Ando
et al., 2006; Devos et al., 2006; Schuller et al., 2014) (Figure 1).
Interestingly, a link with flavonoid metabolic pathways was
additionally highlighted since an accumulation of three types
of flavonoids (naringenin, kaempferol and quercetin) was
detected during clubroot gall formation (Päsold et al., 2010).
Strikingly, an endophytic fungus, Heteroconium chaetospira, was
described as a competitor for root cortical cell colonization,
suppressing clubroot disease in rapeseed, and upregulating an
auxin biosynthesis gene (BnAAO1 for Ascorbic Acid Oxidase;
Lahlali et al., 2014).

Amongst well-described plant pathogens infecting the root
system, Aphanomyces euteiches is an oomycete causing strong
damage to legume crops (Gaulin et al., 2007). Infected roots
become brown and necrotic, leading to a reduction in water
and nutrient uptake, and later, to leaf chlorosis and plant death
(Gaulin et al., 2007). Interestingly, the resistance against this
root pathogen is correlated with an increased capacity of the
host plant to form lateral roots (Djébali et al., 2009) (Figure 1).
The M. truncatula mutant affecting the MtCRE1 cytokinin
receptor show an increased rate of survival in response to the
pathogen, and this tolerance is correlated with the higher ability
of this mutant to form lateral roots (Laffont et al., 2015), a
developmental phenotype also observed in Arabidopsis cytokinin
receptor mutants (Chang et al., 2013). In addition, a high-density
Genome Wide Association Study (GWAS) revealed that a locus
linked to Aphanomyces tolerance was potentially encoding an IPT
cytokinin biosynthetic enzyme (Bonhomme et al., 2014), further
suggesting the involvement of cytokinins in plant-pathogenic
interactions (Figure 1).

Fusarium oxysporum is an ascomycete fungus belonging to
a broad group containing non-pathogenic as well as pathogenic
species. Root pathogenic strains are able to infect a wide range
of plants including cotton, tomato, banana and Arabidopsis
(Chen Y.C. et al., 2014). A microarray transcriptomic analysis
performed in cotton infected roots (Dowd et al., 2004) and a
RNAseq analysis performed on F. oxysporum infectedArabidopsis
root tissues revealed changes in auxin-related gene expression,

such as members of the GH3, PIN, IAA and ARF gene families
(Lyons et al., 2015). Both in vitro and in vivo exogenous
applications of auxins improve tomato root growth but also
prevent F. oxysporum spore germination, suggesting a positive
role of auxins in the plant resistance to F. oxysporum (Sharaf and
Farrag, 2004).

Finally, one of the most famous and destructive soil-borne
bacteria is Ralstonia solanacearum, causing a rapid vascular wilt
disease to more than 200 species, including legumes, tomato,
potato, tobacco, banana, and Arabidopsis (Genin and Denny,
2012; Peeters et al., 2013; Huet, 2014; Yuliar et al., 2015).
A putative plant resistance gene to this pathogen is WAT1 (for
Walls Are Thin1), required for secondary cell-wall deposition
in M. truncatula (Ranocha et al., 2013). WAT1 is involved
in auxin homeostasis in relation to vacuolar auxin transport,
and the inactivation of WAT1 confers a broad spectrum
resistance to several vascular pathogenic bacteria including
R. solanacearum and Xanthomonas campestris (Denancé et al.,
2013). Transcriptomic and metabolomic analyses demonstrated
a repression of several genes linked to auxin metabolism in wat1
mutant roots, correlated with a decrease of a major form of
auxin (indole glucosinolate) and to a reduction in the amount
of the auxin precursor tryptophan. Interestingly, crossing of the
wat1 mutant with a trp5 mutant carrying a mutation of an
anthranilate synthase (ASA1) provokes an over-accumulation of
tryptophan, and restores wat1 susceptibility to R. solanacearum.
Altogether, these results suggest a positive role of auxins in
secondary wall formation, as well as in the susceptibility to
pathogenic R. solanacearum infections. In addition to auxins, an
upregulation of cytokinin response genes, such as CKX and a
few RRAs, was identified in M. truncatula by a transcriptomic
approach in response to R. solanacearum (Moreau et al., 2014).
This notably includes the MtRRA4 Response Regulator, which is
transcriptionally upregulated by both cytokinins and Ralstonia,
depending on the MtCRE1 cytokinin receptor. Accordingly, the
cre1 mutant shows an increased resistance to R. solanacearum,
indicating a role of cytokinins in promoting root susceptibility to
the pathogen.

CONCLUDING REMARKS

Rhizospheric beneficial and detrimental microbes penetrate
into root systems and tissues and trigger major modifications
at organ, cellular and molecular levels, notably through
modifications of developmental phytohormonal balances. The
Table 1 summarizes roles of auxins and cytokinins in different
root–microbe interactions. A main feature is that as auxins and
cytokinins are critical to regulate cell division and differentiation,
these hormones are therefore tightly associated with the
formation of new organs such as lateral roots, nodules on legume
roots in response to rhizobia, as well as galls for example in
response to A. tumefaciens or to P. brassicae infection (Figure 1;
Table 1). Most of the rhizospheric microbes, either symbiotic
or pathogenic, affect the root system architecture, generally by
altering lateral root formation and/or root hair growth (e.g.,
Laccaria bicolor and rhizobia; Table 1). In agreement, NFs and
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Myc Factors, and the associated N2-fixing and AM symbionts,
induce lateral root development as part of the symbiotic response
(Oláh et al., 2005; Maillet et al., 2011) (Figure 1). However,
links likely existing with hormones controlling lateral root
development, and notably auxins, remain to be identified.
Auxins, cytokinins, and their associated signaling pathways are
also required for inducing root cortical cell divisions, either
in legume plants to generate nodule primordia in response to
rhizobia, or in Brassicaceae plants to form galls in response
to the P. brassicae pathogen (Figure 1; Table 1). Interestingly,
in these distantly related host plants, cortical cell divisions
are similarly associated with the accumulation of naringenin
and kaempferol flavonoids. Results reported in this review
highlight a positive role of auxins and cytokinins in plant
root susceptibility to pathogens, except for F. oxysporum,
as well as to rhizobia symbiotic bacteria (Table 1). Using
competitors of root cortical colonization such as endophytic
fungi and/or rhizobia may then be a strategy to prevent root
pathogen colonization. Understanding the different pathways

used by beneficial and detrimental microbes to alter root
system development, invade the root cortex, and sometimes to
generate new organs, is a crucial challenge to develop integrated
strategies to promote crop protection without altering symbiotic
capacities, in the frame of sustainable agriculture and agro-
ecology practices.
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Kutáček, M., and Rovenská, J. (1991). Auxin synthesis in Agrobacterium
tumefaciens and A. tumefaciens-transformed plant tissue. Plant Growth Regul.
10, 313–327. doi: 10.1007/BF00024591

Laffont, C., Rey, T., André, O., Novero, M., Kazmierczak, T., Debellé, F.,
et al. (2015). The CRE1 cytokinin pathway is differentially recruited
depending on Medicago truncatula root environments and negatively regulates
resistance to a pathogen. PLoS ONE 10:e0116819. doi: 10.1371/journal.pone.01
16819

Lahlali, R., McGregor, L., Song, T., Gossen, B. D., Narisawa, K., and Peng, G. (2014).
Heteroconium chaetospira induces resistance to clubroot via upregulation of
host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS
ONE 9:e94144. doi: 10.1371/journal.pone.0094144

Laplaze, L., Lucas, M., and Champion, A. (2015). Rhizobial root hair
infection requires auxin signaling. Trends Plant Sci. 20, 332–334. doi:
10.1016/j.tplants.2015.04.004

Lee, C.-W., Efetova, M., Engelmann, J. C., Kramell, R., Wasternack, C., Ludwig-
Müller, J., et al. (2009). Agrobacterium tumefaciens promotes tumor induction
by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948–
2962. doi: 10.1105/tpc.108.064576

Liao, D., Chen, X., Chen, A., Wang, H., Liu, J., Liu, J., et al. (2015). The
characterization of six auxin-induced tomato GH3 genes uncovers a member,
SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant Cell
Physiol. 56, 674–687. doi: 10.1093/pcp/pcu212

Libbenga, K. R., van Iren, F., Bogers, R. J., and Schraag-Lamers, M. F.
(1973). The role of hormones and gradients in the initiation of cortex
proliferation and nodule formation in Pisum sativum L. Planta 114, 29–39. doi:
10.1007/BF00390282

Liu, C.-W., Breakspear, A., Roy, S., and Murray, J. D. (2015). Cytokinin responses
counterpoint auxin signaling during rhizobial infection. Plant Signal. Behav.
10:e1019982. doi: 10.1080/15592324.2015.1019982

Liu, S. T., and Kado, C. I. (1979). Indoleacetic acid production: a plasmid function
of Agrobacterium tumefaciens C58. Biochem. Biophys. Res. Commun. 90, 171–
178. doi: 10.1016/0006-291X(79)91605-X

Lohar, D. P., Schaff, J. E., Laskey, J. G., Kieber, J. J., Bilyeu, K. D., and Bird,
D. M. (2004). Cytokinins play opposite roles in lateral root formation, and
nematode and rhizobial symbioses. Plant J. 38, 203–214. doi: 10.1111/j.1365-
313X.2004.02038.x

Lyons, R., Stiller, J., Powell, J., Rusu, A., Manners, J. M., and Kazan, K.
(2015). Fusarium oxysporum triggers tissue-specific transcriptional
reprogramming in Arabidopsis thaliana. PLoS ONE 10:e0121902. doi:
10.1371/journal.pone.0121902

Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M.,
et al. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular
mycorrhiza. Nature 469, 58–63. doi: 10.1038/nature09622

Mathesius, U., Charon, C., Rolfe, B. G., Kondorosi, A., and Crespi, M. (2000).
Temporal and spatial order of events during the induction of cortical cell
divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation
or localized cytokinin addition. Mol. Plant Microbe Interact. 13, 617–628. doi:
10.1094/MPMI.2000.13.6.617

Mathesius, U., Schlaman, H. R., Spaink, H. P., Of Sautter, C., Rolfe, B. G.,
and Djordjevic, M. A. (1998). Auxin transport inhibition precedes root
nodule formation in white clover roots and is regulated by flavonoids and
derivatives of chitin oligosaccharides. Plant J. 14, 23–34. doi: 10.1046/j.1365-
313X.1998.00090.x

Moreau, S., Fromentin, J., Vailleau, F., Vernié, T., Huguet, S., Balzergue, S., et al.
(2014). The symbiotic transcription factor MtEFD and cytokinins are positively
acting in the Medicago truncatula and Ralstonia solanacearum pathogenic
interaction. New Phytol. 201, 1343–1357. doi: 10.1111/nph.12636

Morrison, E. N., Knowles, S., Hayward, A., Thorn, R. G., Saville, B. J., and Emery,
R. J. N. (2015). Detection of phytohormones in temperate forest fungi predicts

consistent abscisic acid production and a common pathway for cytokinin
biosynthesis. Mycologia 107, 245–257. doi: 10.3852/14-157

Mortier, V., Wasson, A., Jaworek, P., De Keyser, A., Decroos, M., Holsters, M., et al.
(2014). Role of LONELY GUY genes in indeterminate nodulation on Medicago
truncatula. New Phytol. 202, 582–593. doi: 10.1111/nph.12681

Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., and Szczyglowski, K.
(2007). A cytokinin perception mutant colonized by Rhizobium in the absence
of nodule organogenesis. Science 315, 101–104. doi: 10.1126/science.1132514

Naseem, M., and Dandekar, T. (2012). The role of auxin-cytokinin
antagonism in plant-pathogen interactions. PLoS Pathog. 8:e1003026. doi:
10.1371/journal.ppat.1003026

Ng, J. L. P., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F., et al.
(2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation
in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell 27,
2210–2226. doi: 10.1105/tpc.15.00231

Oláh, B., Brière, C., Bécard, G., Dénarié, J., and Gough, C. (2005). Nod factors
and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root
formation in Medicago truncatula via the DMI1/DMI2 signalling pathway.
Plant J. 44, 195–207. doi: 10.1111/j.1365-313X.2005.02522.x

Oldroyd, G. E. D. (2013). Speak, friend, and enter: signalling systems that promote
beneficial symbiotic associations in plants.Nat. Rev.Microbiol. 11, 252–263. doi:
10.1038/nrmicro2990

Oldroyd, G. E. D., Murray, J. D., Poole, P. S., and Downie, J. A. (2011). The rules of
engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144.
doi: 10.1146/annurev-genet-110410-132549

Op den Camp, R. H. M., De Mita, S., Lillo, A., Cao, Q., Limpens, E., Bisseling, T.,
et al. (2011). A phylogenetic strategy based on a legume-specific whole genome
duplication yields symbiotic cytokinin type-A response regulators1. Plant
Physiol. 157, 2013–2022. doi: 10.1104/pp.111.187526

Pacios-Bras, C., Schlaman, H. R. M., Boot, K., Admiraal, P., Langerak,
J. M., Stougaard, J., et al. (2003). Auxin distribution in Lotus japonicus
during root nodule development. Plant Mol. Biol. 52, 1169–1180. doi:
10.1023/B:PLAN.0000004308.78057.f5

Päsold, S., Siegel, I., Seidel, C., and Ludwig-Müller, J. (2010). Flavonoid
accumulation in Arabidopsis thaliana root galls caused by the obligate
biotrophic pathogen Plasmodiophora brassicae. Mol. Plant Pathol. 11, 545–562.
doi: 10.1111/j.1364-3703.2010.00628.x

Peeters, N., Guidot, A., Vailleau, F., and Valls, M. (2013). Ralstonia solanacearum, a
widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol.
14, 651–662. doi: 10.1111/mpp.12038

Péret, B., Swarup, R., Jansen, L., Devos, G., Auguy, F., Collin, M., et al. (2007).
Auxin influx activity is associated with Frankia infection during actinorhizal
nodule formation in Casuarina glauca. Plant Physiol. 144, 1852–1862. doi:
10.1104/pp.107.101337

Perret, X., Staehelin, C., and Broughton, W. J. (2000). Molecular basis
of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180–201. doi:
10.1128/MMBR.64.1.180-201.2000

Perrine-Walker, F., Doumas, P., Lucas, M., Vaissayre, V., Beauchemin, N. J., Band,
L. R., et al. (2010). Auxin carriers localization drives auxin accumulation in
plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant
Physiol. 154, 1372–1380. doi: 10.1104/pp.110.163394

Peterson, R. L., and Massicotte, H. B. (2004). Exploring structural definitions of
mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82,
1074–1088. doi: 10.1139/b04-071

Phillips, D. A., and Torrey, J. G. (1972). Studies on cytokinin production by
Rhizobium. Plant Physiol. 49, 11–15. doi: 10.1104/pp.49.1.11

Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees,
S. C. M. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev.
Biol. 28, 489–521. doi: 10.1146/annurev-cellbio-092910-154055

Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., et al. (2011).
MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to
coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65,
622–633. doi: 10.1111/j.1365-313X.2010.04447.x

Podlešáková, K., Fardoux, J., Patrel, D., Bonaldi, K., Novák, O., Strnad, M.,
et al. (2013). Rhizobial synthesized cytokinins contribute to but are not
essential for the symbiotic interaction between photosynthetic Bradyrhizobia
and Aeschynomene legumes. Mol. Plant Microbe Interact. 26, 1232–1238. doi:
10.1094/MPMI-03-13-0076-R

Frontiers in Plant Science | www.frontiersin.org 11 August 2016 | Volume 7 | Article 1240

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01240 August 16, 2016 Time: 13:38 # 12

Boivin et al. Auxin/Cytokinin in Root/Microbe Interactions

Ranocha, P., Dima, O., Nagy, R., Felten, J., Corratgé-Faillie, C., Novák, O.,
et al. (2013). Arabidopsis WAT1 is a vacuolar auxin transport facilitator
required for auxin homoeostasis. Nat. Commun. 4, 2625. doi: 10.1038/ncomms
3625

Raudaskoski, M., and Kothe, E. (2015). Novel findings on the role of signal
exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza 25, 243–
252. doi: 10.1007/s00572-014-0607-2

Reid, D. E., Heckmann, A. B., Novak, O., Kelly, S., and Stougaard, J.
(2016). CYTOKININ OXIDASE/DESHYDROGENASE3 maintains cytokinin
homeostasis during root and nodule development in Lotus japonicus. Plant
Physiol. 170, 1060–1074. doi: 10.1104/pp.15.00650

Rightmyer, A. P., and Long, S. R. (2011). Pseudonodule formation by wild-type
and symbiotic mutant Medicago truncatula in response to auxin transport
inhibitors. Mol. Plant Microbe Interact. 24, 1372–1384. doi: 10.1094/MPMI-04-
11-0103

Robert-Seilaniantz, A., Grant, M., and Jones, J. D. G. (2011). Hormone crosstalk
in plant disease and defense: more than just jasmonate-salicylate antagonism.
Annu. Rev. Phytopathol. 49, 317–343. doi: 10.1146/annurev-phyto-073009-
114447

Ross, E. J. H., Stone, J. M., Elowsky, C. G., Arredondo-Peter, R., Klucas, R. V., and
Sarath, G. (2004). Activation of the Oryza sativa non-symbiotic haemoglobin-2
promoter by the cytokinin-regulated transcription factor, ARR1. J. Exp. Bot. 55,
1721–1731. doi: 10.1093/jxb/erh211

Roux, B., Rodde, N., Jardinaud, M.-F., Timmers, T., Sauviac, L., Cottret, L.,
et al. (2014). An integrated analysis of plant and bacterial gene expression in
symbiotic root nodules using laser-capture microdissection coupled to RNA
sequencing. Plant J. 77, 817–837. doi: 10.1111/tpj.12442

Santi, C., Bogusz, D., and Franche, C. (2013). Biological nitrogen fixation in
non-legume plants. Ann. Bot. 111, 743–767. doi: 10.1093/aob/mct048

Sasaki, T., Suzaki, T., Soyano, T., Kojima, M., Sakakibara, H., and Kawaguchi, M.
(2014). Shoot-derived cytokinins systemically regulate root nodulation. Nat.
Commun. 5, 4983. doi: 10.1038/ncomms5983

Schuller, A., Kehr, J., and Ludwig-Müller, J. (2014). Laser microdissection coupled
to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora
brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell
Physiol. 55, 392–411. doi: 10.1093/pcp/pct174

Schüβler, A., Schwarzott, D., and Walker, C. (2001). A new fungal phylum, the
Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413–1421. doi:
10.1017/S0953756201005196

Schweiger, R., and Müller, C. (2015). Leaf metabolome in arbuscular mycorrhizal
symbiosis. Curr. Opin. Plant Biol. 26, 120–126. doi: 10.1016/j.pbi.2015.
06.009

Sharaf, E. F., and Farrag, A. A. (2004). Induced resistance in tomato plants by IAA
against Fusarium oxysporum lycopersici. Pol. J. Microbiol. 53, 111–116.

Shaul-Keinan, O., Gadkar, V., Ginzberg, I., Grünzweig, J. M., Chet, I., Elad, Y., et al.
(2002). Hormone concentrations in tobacco roots change during arbuscular
mycorrhizal colonization with Glomus intraradices. New Phytol. 154, 501–507.
doi: 10.1046/j.1469-8137.2002.00388.x

Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., et al. (2006).
Transcriptome analysis of Arabidopsis clubroots indicate a key role for
cytokinins in disease development. Mol. Plant Microbe Interact. 19, 480–494.
doi: 10.1094/MPMI-19-0480

Singh, S., and Parniske, M. (2012). Activation of calcium- and calmodulin-
dependent protein kinase (CCaMK), the central regulator of plant
root endosymbiosis. Curr. Opin. Plant Biol. 15, 444–453. doi:
10.1016/j.pbi.2012.04.002

Smith, E. F., and Townsend, C. O. (1907). A plant-tumor of bacterial origin. Science
25, 671–673. doi: 10.1126/science.25.643.671

Smith, S. E., and Read, D. J. (2010). Mycorrhizal Symbiosis. Cambridge, MA:
Academic Press.

Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., Dowd,
J. M., et al. (1995). Chloroplast gene sequence data suggest a single origin of
the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl.
Acad. Sci. U.S.A. 92, 2647–2651. doi: 10.1073/pnas.92.7.2647

Splivallo, R., Fischer, U., Göbel, C., Feussner, I., and Karlovsky, P. (2009). Truffles
regulate plant root morphogenesis via the production of auxin and ethylene.
Plant Physiol. 150, 2018–2029. doi: 10.1104/pp.109.141325

Sturtevant, D. B., and Taller, B. J. (1989). Cytokinin production by Bradyrhizobium
japonicum. Plant Physiol. 89, 1247–1252. doi: 10.1104/pp.89.4.1247

Suzaki, T., Ito, M., and Kawaguchi, M. (2013). Induction of localized auxin
response during spontaneous nodule development in Lotus japonicus. Plant
Signal. Behav. 8:e23359. doi: 10.4161/psb.23359

Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., and Kawaguchi, M.
(2012). Positive and negative regulation of cortical cell division during root
nodule development in Lotus japonicus is accompanied by auxin response.
Development 139, 3997–4006. doi: 10.1242/dev.084079

Svistoonoff, S., Hocher, V., and Gherbi, H. (2014). Actinorhizal root nodule
symbioses: what is signalling telling on the origins of nodulation? Curr. Opin.
Plant Biol. 20, 11–18. doi: 10.1016/j.pbi.2014.03.001

Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S.,
Sato, S., et al. (2007). A gain-of-function mutation in a cytokinin receptor
triggers spontaneous root nodule organogenesis. Science 315, 104–107. doi:
10.1126/science.1132397

Torrey, J. G. (1961). Kinetin as trigger for mitosis in mature endomitotic plant cells.
Exp. Cell Res. 23, 281–299. doi: 10.1016/0014-4827(61)90038-6

Udvardi, M., and Poole, P. S. (2013). Transport and metabolism in legume-rhizobia
symbioses. Annu. Rev. Plant Biol. 64, 781–805. doi: 10.1146/annurev-arplant-
050312-120235

van Zeijl, A., Op den Camp, R. H. M., Deinum, E. E., Charnikhova, T.,
Franssen, H., Op, et al. (2015). Rhizobium lipo-chitooligosaccharide signaling
triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant 8,
1213–1226. doi: 10.1016/j.molp.2015.03.010

Wood, D. W., Setubal, J. C., Kaul, R., Monks, D. E., Kitajima, J. P., Okura,
V. K., et al. (2001). The genome of the natural genetic engineer Agrobacterium
tumefaciens C58. Science 294, 2317–2323. doi: 10.1126/science.1066804

Yang, J., Kloepper, J. W., and Ryu, C.-M. (2009). Rhizosphere bacteria
help plants tolerate abiotic stress. Trends Plant Sci. 14, 1–4. doi:
10.1016/j.tplants.2008.10.004

Yuliar, Nion, Y. A., and Toyota, K. (2015). Recent trends in control methods for
bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30,
1–11. doi: 10.1264/jsme2.ME14144

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Boivin, Fonouni-Farde and Frugier. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 12 August 2016 | Volume 7 | Article 1240

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions
	Introduction
	Auxin and Cytokinin Regulations in Plant – Fungus Symbioses
	Auxin and Cytokinin Regulations of Nitrogen-Fixing Root Nodule Symbioses
	Auxin and Cytokinin Regulations in Plant–Pathogen Interactions

	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


