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Phytases catalyze the hydrolysis of
phytic acid in a stepwise manner to

lower inositol phosphates, myo-inositol
(having important role in metabolism
and signal transduction pathways), and
inorganic phosphate. These enzymes
have been widely used in animal feed in
order to improve phosphorus nutrition
and to decrease pollution in animal
waste. Compared to previously described
phytases, the phytase (PhyL) from
Bacillus licheniformis ATCC 14580 has
attractive biochemical properties which
can increase the profitability of several
biotechnological procedures (animal
nutrition, humain health. . .etc). Due to
its amino acid sequence with critical sub-
stitutions, the PhyL could be a model to
enhance other phytases features, in terms
of thermal stability and high activity.
Otherwise, an engineered PhyL, with
low pH optimum, will represent a chal-
lenge within the class of b- propeller
phytases.

Phytate, the principle storage form of
phosphate and inositol in cereals, legumes,
oil seeds and nuts, strongly chelates
charged proteins, minerals and amino
acids whitin digestive tract.1 Phytate phos-
phorus is largely unavailable to monogas-
tric animals due to the luck or insufficient
amount of phytate degrading enzymes in
their gastrointestinal tract.2 Degradation
of phytate is catalysed by phytase (myo-
inositol hexakisphosphate phosphohydro-
lase; EC 3.1.3.8 and EC 3.1.3.26) which
releases a series of lowers isomers of myo-
inositol phosphates.3 This hydrolytic reac-
tion plays an important role in energy
metabolism, metabolic regulation and sig-
nal transduction pathways in biological
system.4 Hence, phytases have been

studied intensively due to its potential
application as feed additives, processing
and manufacturing of human food to
improve mineral nutrition.5 In fact,
b-Propeller phytases, a class to which
belong Bacillus phytases were shown to
entirely abrogates the ability of phytate to
chelate metal ions.6 In addition to that,
phytase use protects the environment
against phosphorus pollution.7 This phos-
phohydrolase has different possible sour-
ces: plant phytases, microbial phytases
(fungal and bacterial phytases), Mucosal
phytases derived from small intestine and
gut microfloral phytases.8

The phytate-hydrolysing enzyme has
many applications in food industries. It
has a potential for producing low phytin
bread.9 Addition of phytase improves also
the nutritional value of bread through the
reduction of phytate content and enhances
the activation of endogenous alpha-amy-
lase by making more calcium available.10

Phytase can also be added for the produc-
tion of phytate-free soymilk.11 Phytase
plays a crucial role for various inositol
phosphate preparations, especially in
immobilized forms.12,13 The myo-inositol
phosphates have various beneficial effects
on health, as enzyme stabilizers,14 inhibi-
tors of enzymes and thus as potential drug
blockers.15 In animal nutrition, phytases
are used in aquaculture feed and additive
to ensure proper degradation of the phy-
tate present in animal diets during diges-
tion in the stomach.16 For improved
phosphorus utilization in animal agricul-
ture, several transgenic plants overexpress-
ing bacterial phytases were generated,
including alfalfa, soybean, potato, rice and
wheat.17-21

Given that phytases deliver economic
benefits through their ability to replace
added inorganic phosphorus, many works

Keywords: Bacillus licheniformis, biotech-
nological applications, enzyme engineer-
ing, phytase, protein biochemistry

*Correspondence to: Moez Rhimi; Email: moez.
rhimi@jouy.inra.fr

Submitted: 04/06/2015

Revised: 04/24/2015

Accepted: 04/29/2015

http://dx.doi.org/10.1080/21655979.2015.1048050

Addendum to: Borgi MA, Khila M, Boudebbouze
S, Aghajari N, Szukala F, Pons N, Maguin E, Rhimi
M. The attractive recombinant phytase from
Bacillus licheniformis: biochemical and molecular
characterization. Appl Microbiol Biotechnol. 2014
Jul;98(13):5937-47. doi: 10.1007/s00253-013-
5421-9. Epub 2013 Dec 13.

www.tandfonline.com 233Bioengineered

Bioengineered 6:4, 233--236; July/August 2015; © 2015 Taylor & Francis Group, LLC
ADDENDUM



were undertaken with the aim to improve
phytase features and make it more suitable
for industrial uses. Several studies were
focused on the enhancement of thermal
stability to preserve the enzyme activity
during the heat step of feed pelleting
under high temperature.22 In this field,
the PhyL is well suited due to its remark-
able thermal stability. According to Far-
hat-Khemakhem et al. (2013)23, it seems
to be interesting to substitute the residue
Ala 257 into Pro inside PhyL. This muta-
tion should enhance more and more the
thermal stability of PhyL.

The phytase of Bacillus licheniformis
ATCC 14580 gathers the best features to
be involved in animal feed formulation.24

Its high specific activity toward phytic
acid is a major parameter to be used for
myo-inositol phosphates production.

Unlike other phytases from Bacillus
strains, the low Ca2C requirement of
PhyL for its optimal activity seems to be
explained by the fact that Ca2Cions are
not involved alone ovoid the on the main-
tain of the enzyme leading to an active
state.25

Due to their atypical features compared
to other phytases, the phyL from Bacillus
licheniformis ATCC14580 could be prom-
ising to overcome the inhibitory effect of
phytic acid and polyphenols as they che-
late minerals in feeds. Such fact was dem-
onstrated to be useful to limit zinc

deficiency and ovoid the fortification pro-
cess of cereals staples with zinc.26 Supple-
mentation of phyL in feeds should
improve growth performance and nutrient
digestibility as well as the increase of gene
expression encoding for the peptide trans-
porter.27 In the same context, Zeng et al.
(2014)28 described the use of higher phy-
tase amount produced from E. coli (having
lesser interests then PhyL) to further
improved mineral use, protein use and
performance of young pigs.

Otherwise, the high thermal stability
of PhyL compared to phytases from
Bacteria, Fungi and Yeast (Table 1) is
especially of interest for pelleting pur-
poses. In fact, Park et al. (2003)29 dem-
onstrated the suitability of the phytase
from Bacillus amyloliquefaciens (which is
less thermostable compared to PhyL) in
this field. Thereby, we believe that
using PhyL in pelleting process is an
attractive strategy.

On the basis on the works of Sanz-
Penella et al. (2009)30 and Haros et al.
(2007)31, it will be interesting to explore
the PhyL genes within Bifidobacteria for
bread fermentation technology. Taking
into account the high specific activity of
PhyL, such feature constitutes a promis-
ing way to reduce the content of InsP(6)
in rich fiber products for human con-
sumption, in favor of InsP(3) produc-
tion. Dephosphorylation of other

phosphorylated molecules could also be
performed by using PhyL.

Engineered PhyL with low pH opti-
mum can constitute a remarkable per-
spective since the obvious drawback of
phytase from Bacillus is their inability to
act at acidic conditions. Even so, no
truly reliable methods for modifying the
pH activity profile of an enzyme are yet
available and the decrease of the pH
optimum of phytases from Bacillus
became a challenge. In this context, dif-
ferent strategies could be applied in
order to modify the enzyme pH feature.
The first is the mutation of ionizable
groups that are implicated in substrate
binding or catalysis by nonionizable
ones or by amino acids having different
charge or pK values.32 The second is the
replacement of residues interacting with
Alanine residues by forming hydrogen
bonds and/or salt bridges. Substitution
of such residues may disturb the hydro-
gen- bonding network in the active site
or alter the electronic environment of
Alanine residues.33,34 The third is the
modification of the enzyme surface
charge, which can be achieved by chemi-
cal modification of residues located at
the protein surface.35,36 In fact, making
the surface more positively charged low-
ers the pKa values of ionizable groups
and, thus the pH optimum. Such fact is
favoured at low ionic strength.36

Table 1. The PhyL properties compared to those from other previously described phytases

Phytase source
Optimal temperature (�C)/
Activity at low temperaturea pH optimum

Specific activity
(U.mg¡1)

Molecular
weight (kDa)

Ca2C demand
(mM) Reference

Bacillus
B. licheniformis ATCC 14580 75/40% at 4�C 6.5–7.0 316 42 0.6 24
B. subtilis US417 55/50% at 37�C 7.5 25 41 1.0 40
B. subtilis 168 55/>5% at 25�C 7.0 36.9 44 5.0 37
B. licheniformis 65/>10% at 25�C 7.0 23,6 47 5.0 37
B. subtilis VTT E-68013 55/>20% at 37�C 7.0 88 43 1.0 41
B. sp MD2 67–73/- 6–7 39 47.5 2.0–5.0 38
B. laevolacticus 70/30% at 30�C 7.0–8.0 12.69 46 5.0 42
B. sp KHU-10 60/20% at 20�C 6.5–8.5 36 44 10.0 43

Fungi
Buttiauxella sp. GC21 55/40% at 30�C 4.5 1180 45 No effect 44
Aspergillus ficuum NTG-23 67/40% at 30�C 1.3 150.1 65.5 No effect 45

Yeasts
Hansenula fabianii J640 50/>20% at 20�C 4.5 25.67 49 No effect 46
Kodamaea ohmeri BG3 65/>20% at 30�C 5.0 16.5 51 No effect 47
S. cerevisiae CY 40/>20% at 20�C 3.6 71.06 55 inhibited 48
Debaryomyces castellii CBS 2923 60 4.0–4.5 182 51.2 — 49

arelative activity is indicated.
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The inspection of the PhyL amino acid
sequence in comparison with previously
reported phytases from Bacillus genus
showed some original substitutions. It was
found that more than 40 substitutions
were encountered inside the PhyL, com-
pared to the most related phytase from
B. licheniformis previously characterized
by Tye et al. (2002).37 In spite of their
high sequence homology, the two phytases
have significant differences in their specific
activity, thermostability and efficiency at
low temperature and requirement of Ca2C

ions. Among the 40 substitutions the
N86/K, N139/S, N239/D, G251/D,
D302/E could impact the performance of
PhyL. Site-directed mutagenesis, crystalli-
zation and enzyme modeling procedures
should certainly shed light on the role of
these substitutions. These observations
increasingly confirmed by the works of
Tran et al. (2010)38, which introduced
the E229V and S283R mutations in phy-
tase from Bacillus sp. MD2 and the recent
work of Xu et al. (2015)39 who concluded
that the mutations D148E and S197E
increased activity and thermostability of
the phytase of Bacillus amyloliquefaciens
DSM 1061. It is worthy to note that all
newly introduced residues already existed
or had their homologous ones inside PhyL
amino acid sequence. Finally, amino acid
sequence originality of PhyL gave it better
physicochemical and kinetic properties,
compared to phytases derived from bacte-
rial, fungal and yeast species.40-49
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