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Abstract
The involvement of ethylene in fruit ripening is well documented, though knowledge regard-

ing the crosstalk between ethylene and other hormones in ripening is lacking. We discov-

ered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling

component, functions in the control of ripening. ARF2A expression is ripening regulated and

reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous applica-

tion of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted

in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening.

ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhi-

bition delayed their ripening phenotype, suggesting ethylene dependency. Both green and

red fruit regions showed the induction of ethylene signaling components and master regula-

tors of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression

in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid

and auxin metabolites were unaffected. Silencing of ARF2A further validated these obser-

vations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a

disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts

with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking

ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects

signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initi-

ate the complex ripening process.
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Author Summary

The hormone ethylene is known to be involved in fleshy fruit ripening, although the role
of other hormones is less well studied. Here we investigated the role of AUXIN
RESPONSE FACTOR 2A (ARF2A) in tomato fruit ripening and suggest that it may be
involved in the crosstalk between ethylene and other hormones. We show that over-
expression of ARF2A (ARF2-OX) causes the fruit to ripen in an uneven, blotchy manner.
The timing of ripening in ARF2-OX fruit is affected by applying exogenous ethylene, but
the variegated appearance of ripening regions is independent of ethylene. In agreement
with findings in ARF2-OX fruit, silencing of both ARF2 paralogs, ARF2A and ARF2B
(ARF2as), delayed the ripening process. Comprehensive hormone profiling revealed that
altered ARF2 expression in fruit significantly impacted abscisates, cytokinins and salicylic
acid while gibberellic acid and auxin metabolites were unaffected. Transcriptome analysis
of ARF2-OX fruit patches revealed that normal ripening does occur, however, the timing
and co-ordination is affected. These observations were reinforced in ARF2as fruit that dis-
played the opposite gene expression and metabolic phenotypes. Finally, we show that
ARF2A homodimerizes as well as interacts with the known ABA STRESS RIPENING
(ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent rip-
ening. Our results reveal that ARF2A may interconnect signals of ethylene and additional
hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening
process.

Introduction
The significance of the gaseous hormone ethylene in the ripening of fleshy fruit has been recog-
nized for almost sixty years [1]. Whether direct or not, it is now evident that ethylene influ-
ences the ripening of both climacteric and non-climacteric fruit [2, 3]. Though ethylene is
considered to be the major hormonal regulator in climacteric fruit ripening, other hormones,
such as auxin and abscisic acid (ABA), were shown to take part in this process [4, 5]. In non-
climacteric fruit such as strawberry and grape, auxin and ABA, but not ethylene, are considered
to play major roles in mediation of the ripening process [6, 7]. Hitherto, in fruit belonging to
either class, our current knowledge regarding the crosstalk between ethylene and other hor-
mones during ripening is very limited.

In tomato, mutants altered in pathways of hormone biosynthesis or signaling such as the
auxin pathway mutant diageotropica (dgt) and the gibberellic acid (GA) pathway mutant par-
thenocarpic fruit (pat), provided evidence for the role of hormones other than ethylene in fruit
development and ripening [8, 9]. These studies pointed towards the involvement of a multi-
hormone signaling pathway in fruit ripening, for instance, tomato fruit with reduced ABA bio-
synthesis also displayed reduced ethylene emission [10]. Furthermore, exogenous ABA treat-
ment was shown to promote various characteristics of the fruit ripening process [11]. The
involvement of auxin in ripening was implicated by down-regulation of ARF4 which resulted
in dark green immature fruit, blotchy ripening and altered pectin structures [12, 13]. A direct
effect with respect to fruit development and ripening was demonstrated in banana and tomato,
where fruit treated with exogenous auxin displayed an increase in ethylene biosynthesis and
accelerated ripening [14, 15]. The cross-regulation of auxin and ethylene was demonstrated in
other organs in tomato as it was shown to have an effect on both root development [16] and in
the process of abscission [17]. Finally, auxin movement was shown to be inhibited in transgenic
tomato plants with reduced levels of the ethylene receptor ETR1 [18].
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The auxin response pathway in plants involves two major protein families, namely AUXIN
RESPONSE FACTORS (ARFs) and AUXIN-INDUCED proteins (Aux/IAAs) [19, 20]. Mem-
bers of the Aux/IAA family suppress expression of genes in the auxin signaling pathway by
interfering with ARF activity. This is carried out via their carboxy-terminus dimerization
domain which interacts with the dimerization domain in the ARF proteins in an auxin-depen-
dent manner [21]. In addition to the carboxy-terminus dimerization domain, ARF proteins
contain an amino-terminus DNA-binding domain which binds to auxin responsive elements
(AuxREs) in promoter regions of auxin-responsive genes. The central region of ARF proteins
indicates whether it will act as an activator or repressor of gene expression [22]. It is generally
accepted that some ARF proteins affect transcription when bound to AuxREs as dimers but are
inactive when bound to Aux/IAA proteins. Once auxin accumulates to significant levels, Aux/
IAA proteins are directed to proteosomal degradation in a ubiquitin-dependent manner. Upon
Aux/IAA degradation, ARFs are released and suggested to homo- or hetero-dimerize to regu-
late downstream gene expression [23]. Since there is a large number of Aux/IAA and ARF
encoding genes, it was further suggested that a complex network of auxin response signaling
exists and each or several ARF and Aux/IAA proteins regulate different processes involving a
different set of auxin responsive genes [24]. In addition, ARF transcripts have been shown to
be regulated by small RNAs, for example ARF2, ARF3 and ARF4 were shown to be cleaved by
trans-acting short-interfering RNA (tasi-RNA) through sequence-specific recognition [25, 26].

The role of ARF2 in diverse developmental processes has been demonstrated previously. In
Arabidopsis, the arf2mutant displayed large and dark green rosette leaves, late flowering, dis-
turbed flower morphology, sterility and abnormal organ size such as larger seeds and elongated
sepals [27, 28]. The ARF2 protein was also reported to be involved in vegetative phase change
in maize and Arabidopsis in which arf2mutant plants exhibited delayed senescence in many
parameters such as chlorophyll content, initiation of flowering, floral organ abscission and
silique maturation [29, 30]. Moreover, it was suggested that in tomato and Arabidopsis, ARF2
activity is modulated by Aux/IAA3 and is associated with the auxin—ethylene crosstalk and
apical hook formation [31, 32]. This suggests that ARF2 may stand at the core of a regulatory
network bringing ethylene, auxin and light signaling together in these model plant species. A
recent study revealed that two tomato ARF2 paralogs (i.e. ARF2A and ARF2B), are part of the
ripening regulatory network [33]. Downregulation of both ARF2 genes was shown to have a
marked negative effect on tomato fruit ripening and expression of key ripening regulators was
reduced.

In this study we provide complementary evidence that ARF2A plays a role in mediating the
intricate hormonal interaction triggering the ripening process in fruit. Our findings were
largely based on over-expression of ARF2A in tomato that resulted in a blotchy ripening pat-
tern in fruit and accelerated ripening. The involvement of ARF2A in ethylene-dependent ripen-
ing is supported by its expression during fruit development, in the background of ripening
mutants and in the earlier emission of ethylene in ARF2A over-expression fruit. In addition,
exogenous application of both ethylene and auxin induced ARF2A expression and inhibition of
ethylene receptors with 1-methylcyclopropene (1-MCP) reduced ARF2A levels. ARF2A tran-
scripts in the fruit were also responsive to abscisic acid application. Multi-class hormone profil-
ing revealed a significant impact of ARF2A over-expression and silencing on abscisates,
cytokinins and salicylic acid while levels of GAs and auxin were unchanged. Additionally, pro-
tein interaction assays revealed that in addition to homo-dimerizing, ARF2A interacts with the
known ripening-associated protein ABA STRESS RIPENING 1 (ASR1). Taken together, the
results provide diverse lines of evidence that ARF2A interconnects signals of auxin, ethylene
and likely additional hormone classes to prime the fruit tissue capacity to ripen by altering its
sensitivity to ethylene.

ARF2 Involvement in Tomato Fruit Ripening
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Results

ARF2A expression is ripening-regulated in tomato fruit
To discover regulatory proteins associated with the shift to ripening we mined previously gen-
erated tomato transcriptome data for ripening-regulated genes [34]. The transcript of AUXIN
RESPONSE FACTOR 2 (ARF2A) displayed increased expression during ripening and we there-
fore selected it for deeper investigation. The expression level of ARF2A increased at the orange
(Or) and red (R) fruit stages (Fig 1A). We next analyzed ARF2A transcript levels in the ripen-
ing impaired ripening inhibitor (rin) and non-ripening (nor) mutants and found that it was sig-
nificantly reduced at 50 days post anthesis (dpa), a point in development where wild type
(WT) fruit are red and ripening occurs (Fig 1B). However, no difference was observed between
the WT and mutant fruit at an earlier time point, 32 dpa, a stage equivalent to the mature
green (MG) stage in WT fruit. Four putative RIN-binding motifs [35] were identified at 956,
788, 623 and 498 base pairs upstream to the ARF2A start codon. ARF2A was recently reported
to be a potential direct RIN target in ChIP-chip experiments [36], therefore reinforcing the
possibility that ARF2Amay be regulated by this ripening regulator. Moreover, its expression
level was upregulated in both green and red stages of fruit over-expressing TOMATO AGA-
MOUS-LIKE 1 (TAGL1; Fig 1C), a MADS-box transcription factor reported to act as a positive
regulator of tomato fruit ripening [37, 38]. The ARF2A expression profile, its down-regulation
in the rin and nor ripening mutants, its direct binding by RIN and increase in the TAGL1 over-
expression lines associated ARF2A to the fruit ripening process in tomato.

ARF2A expression responds to changes in ethylene levels and signaling
as well as other hormonal cues
We used several mutants and treatments to examine the impact of ethylene and additional hor-
mones on ARF2A expression levels in fruit. The tomato Never-ripe (Nr) mutant contains a
mutation in the ethylene receptor ETR3 (NR). As in the rin and normutant fruit (Fig 1B),
ARF2A expression was not altered at 32 dpa (i.e. MG fruit stage), but was significantly reduced
in the Nrmutant at 50 dpa fruit (R stage) (Fig 1D). Fruit treated with the ethylene receptor
inhibitor 1-methylcyclopropene (1-MCP) exhibited a significant reduction in ARF2A tran-
script levels when treated at the MG, breaker (Br) and orange (Or) stages (Fig 1E). Neverthe-
less, ethylene treatment of fruit at the same developmental stages did not have an effect on
ARF2A transcripts (Fig 1F). In order to verify the efficacy of the ethylene treatment, the levels
of 1-AMINO-CYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE4 (ACS4) expression were
analysed (S1 Fig). Since ACS4 expression is positively regulated by ethylene [39], a significant
elevation in the expression levels of ACS4 in the ethylene-treated MG and Br fruit indicated
that the ethylene treatment was efficient. Hence, we can conclude that the lack of ARF2A
response to the treatment was not due to experimental factors. We subsequently examined
ARF2A expression in response to ethylene in a single developmental stage (MG) at several
timepoints post-treatment. Application of the ethylene-releasing chemical ethrel [40], resulted
in increased ARF2A transcript level only at six days post-treatment (Fig 1G). The relatively
slow response of ARF2A expression to ethylene suggests that this response could be indirect, or
might depend on other signals rather than merely exposure to ethylene.

The impact of abscisic acid (ABA) and 1-naphthaleneacetic acid (NAA) on ARF2A expres-
sion was also examined by treating fruit at the MG, Br and Or stages with these hormones and
measuring ARF2A levels at three days post-treatment. An increase in ARF2A expression levels
was observed after treatment with both NAA and ABA at the Or stage (Fig 1H–1J). In addition,
a reduction in ARF2A levels was seen after NAA treatment at the MG stage (Fig 1H). We
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Fig 1. ARF2A expression in tomato fruit.Relative expression levels of ARF2A analyzed by qRT-PCR, in (A) WT fruit at five developmental stages; (B) rin
and normutants; (C) TAGL1 over-expressing fruit (35S:TAGL1); and (D) nrmutant. Relative expression levels of ARF2A in fruit at three developmental
stages, treated with (E) 1-MCP; (F) ethylene; (H) NAA; and (J) ABA. Relative expression levels of ARF2A in fruit at the MG stage, at 0, 2, 4 and 6 days post-
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subsequently measured ARF2A expression at later timepoints post-treatment of the MG stage
fruit with NAA or ABA. While no significant change was observed in its transcript level up to
six days post ABA treatment (Fig 1K), NAA induced upregulation of ARF2A at four to six days
post-treatment (Fig 1I). The results suggest that an association between ethylene, auxin and
ABA signaling and the control of ARF2A expression.

Silencing of ARF2 in tomato supports its involvement in the tomato fruit
ripening process
In order to further study the role of ARF2 in tomato fruit ripening, we generated transgenic
plants with reduced ARF2 levels, using an antisense expression vector (ARF2as). The ARF2as
construct was designed to downregulate both ARF2A as well as its close homolog ARF2B (S2
Fig). Expression analysis indicated that indeed both ARF2A and ARF2B were down-regulated
in the red fruit of three of the seven ARF2as lines obtained (Figs 2A, 2B and S3). Fruit of the
ARF2as lines exhibited delayed fruit ripening process, and the time from anthesis to breaker
was significantly extended relative to WT fruit (Fig 2C). In addition, the fruit were either par-
thenocarpic or contained only a few seeds (Fig 2D and 2E).

A related study [33] performed in parallel to our study here investigated the role of ARF2A
in tomato fruit ripening by down-regulating ARF2A and its homolog ARF2B using an RNAi
approach. The authors describe a similar delayed ripening phenotype in their RNAi lines as we
do here in with an antisense construct (Fig 2C and 2D). They conducted extensive gene expres-
sion analysis demonstrating reduced expression of many ripening-related genes. To comple-
ment this work, we examined the expression level of seven key ripening regulators in ARF2as
fruit: RIN; AP2a; NOR; TAGL1; NR; ETHYLENE RESPONSE FACTOR E1 (ERF.E1); and COL-
ORLESS NON-RIPENING (CNR; S4 Fig). All of these ripening regulators were downregulated
in the ARF2as fruit at the red stage. The gene expression data obtained correlated with the
delayed-ripening phenotype observed in the ARF2as fruit.

Fruit with reduced ARF2 levels display altered ripening-associated
metabolism
Metabolite analysis using high-resolution LC-MS was performed with extracts derived from
WT and ARF2as fruit at the green and red stages. A PCA plot in which the entire LC-MS pro-
files of the different samples were represented was generated. While no separation was
observed between the green tissues, the WT and the ARF2as fruit samples could be clearly sep-
arated from each other at the red stage (Fig 2F and S1 Table).

We subsequently performed targeted analysis of fruit ripening associated secondary metab-
olites in the WT and ARF2as red fruit samples, mostly those belonging to the phenylpropanoid
and steroidal glycoalkaloid classes. Nineteen putative metabolites were identified as having sig-
nificantly different levels between the ARF2as andWT red fruit, in all of the three lines ana-
lysed (S2 Table), six of which are presented in Fig 3A. Ripening-associated secondary
metabolite accumulation in ARF2as red fruit corresponded to their typical accumulation in a
less advanced ripening stage than the WT red fruit. For example, seven naringenin derivatives
from the phenylpropanoid pathway that were previously shown to accumulate upon ripening
[41], accumulated to reduced levels in ARF2as fruit. Similarly, the ripening-associated glycoal-
kaloid, esculeoside B, exhibited reduced levels in ARF2as fruit (Fig 3A). Furthermore,

treatment with (G) ethrel; (I) NAA; and (K) ABA. Error bars represent SE. Statistical significance was evaluated using a student’s t-test, *p-value<0.05, **p-
value<0.01 and ***p-value<0.001; dpa: days post anthesis; IG: immature green; MG: mature green; Br: breaker; Or: orange; and R: red.

doi:10.1371/journal.pgen.1005903.g001
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Fig 2. Phenotype and expression levels of ARF2 genes in ARF2as transgenic lines. Fruit of ARF2as lines were analysed for relative expression levels
by qRT-PCR of (A) ARF2A; and (B) ARF2B. (C-D) The ripening of ARF2as fruit is delayed as compared to WT. (D-E) ARF2as fruit were parthenocarpic or
nearly parthenocarpic with reduced number of seeds. (F) Principle component analysis (PCA) plot from untargeted analysis of metabolites. DPA: days post
anthesis; error bars represent SE; Statistical significance was evaluated using a student’s t-test, **p-value<0.01.

doi:10.1371/journal.pgen.1005903.g002
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Fig 3. Metabolic analysis of ARF2as transgenic fruit. Accumulation in WT and ARF2as fruit of metabolites from the classes: (A) phenylpropanoids and
glycoalkaloids (in red stage fruit); (B) isoprenoids (in red stage fruit, undetectable in green fruit); and (C) phytohormones (abscisates are presented in the two
left graphs, and cytokinins in the middle and right panels; at both green and red stages of fruit ripening). WT samples are displayed as black bars and ARF2as

ARF2 Involvement in Tomato Fruit Ripening
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compounds that are normally reduced upon ripening, such as the alkaloid dihydroxytomatine,
chlorogenic acid and the polyamine N-feruloylputrescine, showed higher levels in the ARF2as
fruit, in line with the inhibited ripening phenotype.

Employing a different analytical platform we also examined carotenoid and other isopren-
oid levels in WT and ARF2as red fruit. Levels of phytoene, phytofluene and lycopene were all
reduced in the red fruit of ARF2as as compared to WT (Fig 3B). Taken together, the results of
altered ripening-related metabolite analysis and reduced gene expression of key ripening regu-
lators are in line with the delayed ripening phenotype that ARF2as fruit possess.

We subsequently examined the hormonal profile in green and red fruit of the ARF2as fruit
(Fig 3C and S3 Table). A total of 41 hormone metabolites belonging to five classes (CKs, IAAs,
GAs, ABAs and SA) were examined. Both dihydrophaseic acid and abscisic acid glucose ester
accumulated to higher levels in ARF2as red fruit (Fig 3C, leftmost panels). In addition, cytoki-
nins were a major class of hormones altered in the ARF2as fruit. The levels of cis-zeatin and
metabolites of the trans-cytokinins branch (dihydrozeatin riboside, dihydrozeatin-9-glucoside
and N6-isopentenyl adenosine) were reduced in the red fruit of ARF2as (Fig 3C).

Tomato fruit over-expressing ARF2A display accelerated and uneven
ripening
To examine other aspects of ARF2A and to further investigate the mechanism by which it is
involved in fruit ripening together with its relation with hormone signaling, we generated
tomato plants with constitutive ARF2A over-expression. The ARF2A coding sequence contains
a trans-acting small interfering RNA (tasi-RNA) recognition site which may counteract over-
expression of the gene (Fig 4A). Hence, to achieve robust over expression, we introduced silent
mutations into the coding sequence to avoid tasi-RNA targeting while maintaining the amino
acid sequence. Expression of the mutated ARF2A gene in tomato plants was driven by the
CaMV 35S promoter and hereafter referred to as ARF2-OX. Eight independent transgenic lines
were generated, five of which were evaluated for ARF2A gene expression. Three of these five
were found to have upregulated expression levels of the ARF2A gene (S5 Fig). All three
ARF2-OX lines with confirmed over-expression displayed a clear fruit phenotype (as described
below; Fig 4B–4D). An additional three lines (out of the eight generated) were not evaluated
for ARF2A expression, yet two of them displayed the same phenotype in fruit.

Fruit of ARF2-OX lines were markedly affected as they exhibited an accelerated ripening
rate, reaching the Br stage an average six days prior to the WT fruit (Fig 4B). In addition,
ARF2-OX fruit displayed an unusual, blotchy ripening pattern (Fig 4C); these patterns of fruit
pigmentation were observed in both skin and flesh tissues; and in most cases the green regions
turned red and became ripe while some failed to fully ripen and remained yellow. The yellow
colour of the ripe regions resembled the inhibited ripening phenotype of known tomato ripen-
ing mutants, such as: rin, nor and Nr [42]. Unripe yellow regions stayed firm post-harvest and
did not wrinkle with time, in contrast to the ripe, red regions (Fig 4D). The typical ripening of
WT tomato fruit does not occur at once over the entire fruit but rather through a gradual, pat-
chy process, as demonstrated by lycopene accumulation in selected regions during the Br to R
stage transition (lower panel, Fig 4D). The phenotype observed in the ARF2-OX fruit was dif-
ferent as the regions were either green or red almost from the onset of ripening, with a clear
margin. These results suggested that ARF2A could be involved in the co-ordination and regula-
tion of signals that promote the process of fruit ripening.

as grey bars; error bars represent SE; statistical significance was evaluated using a student’s t-test, *p-value<0.05, **p-value<0.01, ***p-value<0.001; and
DPA: days post anthesis.

doi:10.1371/journal.pgen.1005903.g003
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Fig 4. Over-expression of ARF2A in transgenic tomato plants. (A) Silent mutations in the tasi-RNA recognition site introduced into the ARF2A open
reading frame; (B) days from anthesis to breaker stage in WT and ARF2-OX fruit (Error bars represent SE); (C) blotchy ripening phenotype observed in
ARF2-OX fruit (DPA: days post anthesis); and (D) blotchy ripening occasionally observed in WT fruit which eventually all turn red in comparison with the
ARF2-OX lines which have regions which remain yellow; (E) A scheme representing the sampling of tissues fromWT and ARF2-OX fruit at 39, 42 and 53
dpa, in this study; when patches were visible at 42 and 53 dpa, they were harvested and treated separately. Relative expression levels of ARF2A variants
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The ARF2-OX fruit ripening phenotype is a result of genuine over-
expression of the ARF2A transgene
The blotchy ripening phenotype in the ARF2-OX fruit might have been a result of uneven
expression of the ARF2-OX transgene. This could have occurred through either uneven silenc-
ing of the endogenous ARF2A in the form of variegated co-suppression or due to uneven over-
expression of the ARF2-OX transgene by the 35S CaMV promoter driving it. To exclude these
possibilities, and to demonstrate that the blotchy phenotype was a result of genuine ARF2A
over-expression in an even manner over the entire fruit, we performed a detailed expression
analysis of WT and ARF2-OX fruit. The following tissues were harvested and treated sepa-
rately: ARF2-OX fruit at 39 dpa before patches are visible (ARF2-OX-39) and green and red
patches from fruit at 42 dpa (ARF2-OX-42G and ARF2-OX-42R, respectively; Fig 4E). As con-
trol, WT fruit harvested at the same time points (39 and 42 dpa) were included. Transcript spe-
cific qRT-PCR assays were carried out with specific primers to independently analyze the
endogenous ARF2A (i.e. endo-ARF2A) and the ARF2-OX transgene transcript (i.e. trans-
ARF2A; Fig 4F and 4G). Analysis of trans-ARF2A expression showed that there was no signifi-
cant difference between the various regions and across timepoints in the transgenic fruit (Fig
4F) and it was not detected in WT fruit, suggesting uniform over-expression. The endo-ARF2A
transcript levels were not significantly different between the ARF2-OX and the corresponding
WT fruit (Fig 4G). We also examined if other tomato ARF genes could have been variably co-
suppressed in the ARF2-OX transgenic fruit. Of the four closest ARF family members, only the
expression of ARF4 was significantly downregulated in the ARF2-OX fruit, however, its expres-
sion was uniformly affected in both red and green patches (S6 Fig). In addition, the expression
level of ARF4 was not affected in fruit aged 39 dpa, prior to the appearance of the blotchy phe-
notype. Therefore, the reduced level of ARF4 is more likely to be ripening-related and not a
result of co-suppression. We cannot exclude that ARF4 could potentially be regulated by
ARF2A, however, it appears that variable expression of ARF genes in the patches, is not respon-
sible for the uneven ripening pattern. These results corroborate our conclusion that the blotchy
fruit phenotype is a genuine process that occurs when the entire fruit exhibits equally high lev-
els of the ARF2A gene expression.

ARF2-OX fruit display earlier ethylene emission and their phenotype is
ethylene-dependent
In order to examine the effects of ethylene on the ARF2-OX blotchy fruit phenotype, we treated
fruit with either the ethylene releasing chemical ethrel or with the ethylene signaling inhibitor
1-MCP. Ethrel treatment enhanced the appearance of red, ripening regions (Fig 5A) while
1-MCP treatment delayed the appearance of red patches (Fig 5B). The overall pattern of the
patches was not affected by the treatments but rather the rate of change in pigmentation. This
implies that ARF2-OX fruit do exhibit normal ethylene-dependent ripening that can be acceler-
ated or inhibited through ethylene manipulation, suggesting that the action of ARF2A is
through the ethylene signaling pathway.

Ethylene emission was measured in WT and ARF2-OX fruit harvested at 39 dpa (MG stage)
prior to the appearance of ripening regions. Interestingly, while the first clear rise in ethylene
emission was observed at 9 days post-harvest (dph) in WT fruit, a rise in emission was seen

were analyzed by qRT-PCR inWT and patches of ARF2-OX fruit at 39 and 42 dpa, using oligonucleotides specific to (F) the transgene (trans-ARF2A); and
(G) the endogenous ARF2A gene (endo-ARF2A). Black bars represent WT, hatched bars ARF2-OX at 39 dpa, white bars ARF2-OX green patches at 42 dpa
and grey bars ARF2-OX red patches at 42 dpa. Error bars represent SE. DPH: days post-harvest; n.d.: not detected; dpa: days post anthesis.

doi:10.1371/journal.pgen.1005903.g004
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four days earlier at 5 dph in the ARF2-OX fruit (Fig 5C). Emission of ethylene correlated with
the initial observation of color change in fruit, further associating the accelerated blotchy ripen-
ing phenotype with ethylene emission and signaling.

Transcriptome analysis of ARF2-OX fruit suggests acceleration of fruit
ripening
Transcriptome analysis was performed with samples from red and green regions of ARF2-OX
42 dpa fruit (ARF2-OX-42R and ARF2-OX-42G, respectively) as well as WT fruit at 42 dpa
(WT-42G; MG stage) and 53 dpa (WT-53R; R stage; Fig 4E). Principal component analysis
(PCA) indicated that ARF2A over-expression had a significant effect on the transcriptome of
42 dpa fruit not only in the red regions but also in the green ones (Fig 6A). Notably, the green
tissues of WT (WT-42G) and ARF2-OX-42G fruit were separated from each other, indicating a
difference already at this stage. The red region ARF2-OX-42R samples were projected together
with the red WT ripening control samples (WT-53R) and both were projected apart from the
WT-42G samples. Thus, the green patches in ARF2-OX lines are at a more advanced ‘ripening
state’ than WT green fruit, but not as advanced as WT red fruit or ARF2-OX red patches.

Fig 5. Altering ethylene signaling in ARF2-OX transgenic fruit. ARF2-OX fruit at the mature green (MG)
stage, before the visual appearance of patches, were treated with either (A) ethrel, or (B) 1-MCP, and
phenotypes were observed at (A) 10 and 16, or (B) 7 and 10 DPT. (C) Ethylene emission was measured from
WT and ARF2-OX fruit harvested at the MG stage, every 1–3 days for 16 days, the red bars and arrows
indicate the breaker stage. Error bars represent SE. DPT: days post treatment.

doi:10.1371/journal.pgen.1005903.g005
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Fig 6. Microarray analysis of ARF2-OX fruit.Gene expression was analyzed in WT at 42 dpa (mature
green stage; WT-42G) and 53 dpa (red stage; WT-53R) and green (ARF2-OX-42G) and red (ARF2-OX-42R)
patches from ARF2-OX fruit at 42 dpa by microarray analysis. Results are displayed as (A) a principal
component analysis (PCA) and (B) a Venn diagram of the differentially expressed genes in the comparisons:
ARF2-OX-42G to WT-42G; ARF2-OX-42R to WT-42G; andWT-53R toWT-42G. P-value<0.01 and
FDR<0.05; dpa: days post anthesis.

doi:10.1371/journal.pgen.1005903.g006
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We subsequently performed detailed analyses of differentially expressed genes comparing
ARF2-OX-42G, ARF2-OX-42R and WT-53R to the WT-42G samples through a 5-way
ANOVA analysis (S1 Table). Overall, 4263 genes were significantly up or down-regulated in
one or more samples (Figs 6B and S7; S4 Table). A total of 1002, 3522 and 3393 genes were dif-
ferentially expressed between ARF2-OX-42G, ARF2-OX-42R andWT-53R compared to the
WT-42G samples, respectively. Using the set of 4263 differentially expressed genes we per-
formed hierarchical clustering analysis (HCA; S7 Fig). Similarly to observations from the PCA
using the global transcriptome data, the WT-53R and ARF2-OX-42R clustered together and
away from the green samples in the HCA. Yet again, the ARF2-OX-42G sample exhibited an
intermediary pattern between the WT-42G and the red region samples, as when the whole
transcriptome data was used.

Of these 4263 differentially expressed genes, 2793 were differentially expressed in the
ARF2-OX samples (either in the green, red or both regions) and in the red WT fruit, when
compared to the WT-42G sample. The observation that the same genes exhibited changes in
the expression levels also in the WT-53R sample, suggested that they could be ripening-related
(Fig 6B). With the exception of six genes, changes in gene expression were in the same direc-
tion in all samples, i.e. genes were either all up-regulated (2098 genes) or all down-regulated
(2159), not both. In addition, although the ARF2-OX-42R and WT-53R samples clustered
together and shared more than two thirds of the differentially expressed genes, we found a
large number of genes with differences in expression between them. This set might represent
subtle differences in the ripening stage between these tissues, or non-ripening related genes
that are associated with ARF2A over-expression.

We further characterized the set of 4263 differentially expressed genes by functional classifi-
cation (S5 and S6 Tables). The distribution of Gene Ontology (GO) terms for each cluster was
evaluated by functional enrichment analysis for carotenoid- and ethylene-related genes that
could serve as markers of ripening (S8 and S9 Figs; S7 and S8 Tables). In the case of caroten-
oid-related genes, as expected most of the differentially expressed genes were up-regulated in
red samples (ARF2-OX-42R and WT-53R) and not in ARF2-OX-42G (S8 Fig; S7 Table). An
additional group of genes was up-regulated in the ARF2-OX-42G tissue which were mainly
related to carotenoid cleavage and ABA biosynthesis. In the case of ethylene genes, HCA indi-
cated that ethylene-related genes in the ARF2-OX-42G samples showed an intermediate
expression level between the one in WT-42G fruit and the red samples (ARF2-OX-42R and
WT-53R; S9 Fig; S8 Table).

The microarray results were validated for ripening-related genes and other genes of interest
by qRT-PCR assays (either using the high-throughput Fluidigm qRT-PCR technology or stan-
dard assays). Several genes were significantly upregulated before the appearance of patches at
39 dpa in ARF2-OX green fruit, including GOLDEN2-LIKE (GLK2), ETHYLENE RECEPTOR 2
(ETR2), 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 4 (ACS4) and the ripen-
ing regulator APETELA2a (AP2a; Fig 7A–7D). At 42 dpa when the pigmented regions were
visible and ripening advanced, ACS4, ETR3 (NEVER-RIPE; NR), PHYTOENE SYNTHASE
(PSY) and RIPENING INHIBITOR (RIN) were elevated in both regions (Fig 7C and 7E–7G),
although to a greater extent in the red region, while ACS2 was increased to a similar level in
both green and red ones (Fig 7H). Table 1 summarizes the significant changes in expression of
ripening-associated genes in ARF2-OX-42R (i.e. the red region of the transgenic fruit at 42
dpa) compared to the WT-42G samples (analyzed by microarray, Fluidigm or standard
qRT-PCR assays). It can be seen that the majority of ripening-related regulators such as RIN,
AP2a, NOR, TAGL1, FRUITFULL-LIKE 1 (FUL1) and GLK2 are upregulated as well as the eth-
ylene biosynthesis genes ACO1 (1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE
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1), ACS2 and ACS4; ethylene receptors ETR2, ETR3 (NR), ETR4 and ETR5; and the carotenoid
biosynthesis genes PHYTOENE DESATURASE 1 (PDS1) and PSY (Table 1).

The transcriptome analysis complements and reinforces the previous findings in the
ARF2as fruit that suggested a role for ARF2A in the regulation of tomato fruit ripening. They
provide strong evidence that over-expression of ARF2A induces the ethylene-dependent ripen-
ing process at the transcriptional level, largely through the activation of ethylene signaling and

Fig 7. Expression of ripening-related genes in ARF2-OX fruit.Relative expression levels of ripening-related genes analyzed by qRT-PCR inWT and
ARF2-OX fruit at 39, 42 and 53 dpa. (A)GLK2; (B) ETR2; (C) ACS4; (D) AP2a; (E)NR; (F) PSY; (G) RIN; (H) ACS2; Black bars represent WT, hatched bars
ARF2-OX at 39 dpa, white bars ARF2-OX green patches at 42 and 53 dpa and grey bars ARF2-OX red patches at 42 and 53 dpa. Error bars represent SE.
Statistical significance was evaluated using a student’s t-test, *p-value<0.05; dpa: days post anthesis.

doi:10.1371/journal.pgen.1005903.g007
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master regulators associated with fruit ripening. It also suggests that the ripening-associated
transcriptome is induced earlier in green regions than in WT green fruit, even prior to the
visual appearance of distinct red and green regions.

Fruit over-expressing ARF2A display altered ripening-associated
specialized metabolism
As changes in the production of secondary or specialized metabolites are a hallmark of the fruit
ripening process, we carried out metabolic analysis of ARF2-OX fruit through a method that
primarily detects semi-polar metabolites (mostly specialized metabolites) employing high-reso-
lution mass spectrometry. A clear separation between the WT and transgenic fruit samples was
observed in principle component analysis (PCA) of the metabolite data (Fig 8A; S9 and S10
Tables). The red pigmented samples (i.e. ARF2-OX-42R, ARF2-OX-53R and WT-53R) clus-
tered together while the green ones (i.e. ARF2-OX-42G and WT-42G) were clearly separated,
both from the red samples and from each other. The yellow sectors of the transgenic fruit
(ARF2-OX-53Y) clustered separately, in between the red and green clusters.

Targeted analysis of selected flavonoids and glycoalkaloids was subsequently performed on
the ARF2-OX fruit samples. Flavonoids generally accumulate during ripening as observed for
naringenin chalcone, naringenin and phloretin-di-hexose in the WT-53R samples at as com-
pared to WT-42G fruit (Fig 8B, upper row). In the ARF2-OX transgenic fruit, early accumula-
tion of these flavonoids was observed in the red patches at 42 dpa. Some of the flavonoids
exhibited early accumulation at 42 dpa in the green regions as well, but to a lesser extent than
in the red ones. Most of the flavonoids examined in the transgenic fruit, either in the yellow or
red patches, showed no difference at 53 dpa when compared to WT fruit. Similar results were
obtained in the case of the glycoalkaloid lycoperoside (putatively lycoperoside G/F or

Table 1. Summary of expression profiles of ripening-related genes in red regions of the ARF2-OX fruit at 42 days post anthesis.

Full Gene name Short Name Microarray Fluidigm or qRT-PCR

Ripening regulators RIPENING INHIBITOR RIN UP UP

APETELA 2a AP2a UP UP

NON-RIPENING NOR UP ▲
COLORLESS NON-RIPENING CNR UP ⌘

TOMATO AGAMOUS-LIKE 1 TAGL1 UP UP

FRUITFULL 1 FUL1 UP ▲
FRUITFULL 2 FUL2 ⌘ ▲
GOLDEN-LIKE 2 GLK2 ⌘ UP

Ethylene biosynthesis 1-AMINO-CYCLOPROPANE-1-CARBOXYLIC ACID OXIDASE 1 ACO1 UP UP

1-AMINO-CYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 2 ACS2 UP UP

1-AMINO-CYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE 4 ACS4 UP UP

Ethylene receptors ETHYLENE RECEPTOR 1 ETR1 ⌘ ▲
ETHYLENE RECEPTOR 2 ETR2 ⌘ UP

ETHYLENE RECEPTOR 3 (NEVER RIPE) ETR3 (NR) UP UP

ETHYLENE RECEPTOR 4 ETR4 UP ⌘

ETHYLENE RECEPTOR 5 ETR5 UP ▲
Carotenoid biosynthesis PHYTOENE SYNTHASE PSY UP UP

PHYTOENE DESATURASE 1 PDS1 UP UP

⌘ No significant change in gene expression

▲ Gene expression not analyzed

doi:10.1371/journal.pgen.1005903.t001
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Fig 8. Metabolic analysis of ARF2-OX fruit.WT and ARF2-OX fruit were analyzed at 42 and 53 dpa by UPLC-qTOF-MS in positive mode, (A) results are
visualized by a principle component analysis (PCA) plot; and displayed as histograms for (B) targeted flavonoids (upper row), and targeted glycoalkaloids
(lower row). (C) Isoprenoids were analyzed in WT and ARF2-OX fruit at 42 and 53 dpa by HPLC. Grey bars represent WT, black bars ARF2-OX green/yellow
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esculeoside A) that typically accumulates in ripe fruit (Fig 8B, lower row; S11 Table). In con-
trast, the glycoalkaloids α-tomatine and dehydrotomatine, which are normally metabolized
during fruit ripening, showed reduced levels in the red regions of the ARF2-OX fruit at 42 dpa.
No significant differences in flavonoid levels were detected between the samples at 53 dpa fruit.

Analysis of isoprenoids, carotenoids and chlorophylls revealed overall similar results to
those obtained with the flavonoids and glycoalkaloids (Fig 8C; S11 Table). Hence, metabolites
typically accumulating in fruit ripening displayed early accumulation in the transgenic fruit,
while those that decrease during WT ripening were reduced earlier than the WT fruit. Differ-
ences in the metabolite profiles in ARF2-OX-42G were minor as compared to those observed
in ARF2-OX-42R (when compared to WT-42G fruit). In contrast to the flavonoid and glycoal-
kaloid profiles at 53 dpa, both regions of ARF2-OX fruit exhibited significant changes in iso-
prenoids, as compared to the WT red fruit (Fig 8C). The red regions of the transgenic fruit
exhibited an intense ripening profile, while the yellow regions exhibited a delayed one, corre-
sponding to the unripe WT fruit (WT-42G). The results demonstrated that overall, changes in
specialized metabolism mirror those observed at the transcriptome level.

Levels of hormones belonging to different classes are altered in
ARF2-OX fruit
The absolute concentrations of hormone metabolites belonging to different classes were mea-
sured in WT and ARF2-OX fruit (sampled at 39, 42 and 53 dpa, as previously described in Fig
4E). In total, 41 hormones were detected, 37 of which could be quantified, including: sixteen
cytokinins (CKs), nine auxins (IAAs), five gibberellins (GAs), six abscisates (ABAs) and one
salicylate (SA). Both abscisic acid and salicylic acid showed reduced accumulation in ARF2-OX
fruit as early as at 39 dpa, prior to the appearance of the blotchy phenotype (Fig 9A and 9B;
S12 Table). These hormones were also reduced during ripening in WT fruit. The reduced ABA
level in ARF2-OX fruit is in correspondence with the high one observed in the ARF2as (Fig
3C). Remarkably, no significant differences were detected in the levels of auxins or gibberellins.
However, a major hormone class that exhibited significant changes in ARF2-OX was the cyto-
kinins. Cytokinins that represent the trans-zeatin biosynthesis branch including phosphory-
lated isopentenyl adenosine and phosphorylated trans-zeatin riboside were already reduced at
39 dpa (Fig 9C and 9D). Dihydrozeatin and dihydrozeatin-7-glucoside exhibited a reduction in
the later stages (Fig 9E–9G). On the other hand, metabolites representing the cis-zeatin biosyn-
thesis branch including cis-zeatin, cis-zeatin riboside, phosphorylated cis-zeatin riboside and
cis-zeatin-7-glucoside, exhibited higher levels than the WT fruit (Fig 9H–9J). The cis-zeatin
group of metabolites also accumulated upon ripening of the WT fruit. This may suggest a dif-
ferent role for the two isomers of zeatin during fruit ripening; and that the balance between cis-
and trans-zeatin could be a target for ARF2A activity.

Since significant alterations in cytokinin levels were found in both ARF2-OX and in ARF2as
lines (Figs 9C–9J and 3C), we mined the microarray data for changes in cytokinin-related
genes (S4 Table). Two genes were significantly changed, CYTOKININ OXIDASE (CKX)
responsible for cytokinin degradation (homolog of the Arabidopsis CKX7) and a LONELY
GUY (LOG) involved in cytokinin production and activation (orthologue of Arabidopsis
LOG8). CKX7 was significantly downregulated in both patches of ARF2-OX fruit at 42 dpa,
while LOG8 showed an opposite expression profile being upregulated in 42 dpa in only the
green patch (Fig 9I and 9J).

patches and white bars ARF2-OX red patches. Error bars represent SE. Statistical significance was evaluated using a student’s t-test, *p-value<0.05; dpa:
days post anthesis.

doi:10.1371/journal.pgen.1005903.g008
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Fig 9. Hormone profiling in ARF2-OX transgenic fruit.WT and ARF2-OX fruit, at 39, 42 and 53 dpa were analyzed for levels of (A) salicylic acid; (B)
abscisic acid; (C-G) cytokinins of the trans-zeatin biosynthesis branch and (H-J) cytokinins of the cis-zeatin biosynthesis branch, using UPLC-ESI-MS/MS.
Relative expression level of the cytokinin-related genes (K) CKX7-like; (L) LOG8-like was analysed by qRT-PCR. Black bars represent WT, hatched bars
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Protein-protein interaction assays indicate that ARF2A homodimerizes
and provides a further link to fruit ripening
ARF proteins comprise a DNA binding domain, a central region that can function as either an
activation or repression domain and a dimerization domain [22]. The latter domain is known
to interact with Aux/IAA proteins and other ARF proteins and it is accepted that ARFs func-
tion as either homo- or hetero-dimers with other ARFs [24]. We examined the possibility that
ARF2A homo-dimerizes using a yeast-two-hybrid system. Growth of yeast on selection media
confirmed that ARF2A indeed has the potential to homo-dimerize (Fig 10A) and that this may
represent a true in vivo interaction.

To identify ARF2A interactors, we performed a yeast-two-hybrid screen using a library gener-
ated from fruit at several developmental stages (i.e. Breaker, Orange and Red). Among all interac-
tions obtained only one exhibited an in-frame protein coding sequence that showed homology to
the ABA STRESS RIPENING-INDUCED 1 (ASR1) protein (Fig 10B). This ASR family protein
was shown previously to be ripening-related [43] and as we also observed in this study (Fig 10C).
In order to confirm the interaction between ARF2A and ASR1, we conducted a bimolecular fluo-
rescence complementation (BiFC) assay in planta [44, 45]. A positive interaction was observed
between ARF2A and ASR1 as shown by the YFP fluorescence signal which was localized to the
nucleus (Fig 10D). Taken together, these results suggest that ARF2Amay homo-dimerize as well
as interact with the ripening-associated ASR1 protein in the process of tomato fruit ripening.

Discussion

ARF2A is part of the regulatory network controlling tomato fruit ripening
Earlier work in tomato and Arabidopsis showed that ARF2A coordinates signaling cascades of
light, ethylene and auxin in apical hook formation [31, 32]. Similar environmental and hor-
monal signaling pathways possibly play a significant role in the development and ripening of
tomato fruit [8, 46]. The current study provides several lines of evidence showing that in
tomato, ARF2A is likely a key element linking the ethylene signaling pathway to the ripening
process. The expression pattern of ARF2A during the ripening process, in ripening-impaired
mutants and upon blockage of ethylene signaling is one piece of this evidence. A different set of
data supporting the primary indications was obtained through the detailed analysis of trans-
genic plants over-expressing ARF2A in tomato. A major outcome of ARF2A over-expression
was a blotchy phenotype, which consisted of variegated green and red pigmented regions on
the same fruit. The red regions exhibited an accelerated rate of ripening, as indicated by an
early pattern of accumulation of ripening-related genes and metabolites. The upregulation of
genes in ARF2-OX green fruit at 39 dpa, prior to the appearance of red pigmentation, suggested
that ripening is accelerated even before the visual manifestation of the phenotype. Genes which
are upregulated early in ARF2-OX lines include the major ethylene-related genes, ETR2 and
ACS4, and two transcription factors recently identified as ripening-regulators, AP2a [47] and
GLK2 (the UNIFORM gene) [48]. This is in line with a previous report on ARF2 in Arabidopsis
in which the expression of ACS genes was downregulated in the arf2mutant [27].

The influence of ARF2A over-expression on ripening was even more pronounced upon
examination of transcriptomic changes occurring after the initiation of the ripening process, i.
e. once red pigmentation appeared in particular regions (at 42 dpa). More than 2700 genes (out
of the 4263 differentially expressed in the entire experiment) that exhibited a change of

ARF2-OX at 39 dpa, white bars ARF2-OX green patches at 42 and 53 dpa and grey bars ARF2-OX red patches at 42 and 53 dpa. Error bars represent SE.
Statistical significance was evaluated using a student’s t-test, *p-value<0.05 and **p-value<0.01; dpa: days post anthesis.

doi:10.1371/journal.pgen.1005903.g009
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expression upon ripening in the WT fruit were also altered in both the green as well as the red
regions of the transgenic fruit (prior to the initiation of pigmentation and ripening in the corre-
sponding WT fruit). Indeed, we observed the induction of many genes considered to be ripen-
ing hallmarks in both green and red fruit regions including ripening regulators (e.g. RIN, NOR,
AP2a, TAGL1 and FUL1) as well as ethylene biosynthesis and signaling, particularly the recep-
tors (ACO1, ACS2, ACS4, ETR2, ETR3 (NR), ETR4 and ETR5 genes).

Silencing of ARF2 in tomato also delineates its involvement in the
regulatory network controlling tomato fruit ripening
To complement the results obtained by analyzing the ARF2-OX fruit we generated ARF2
silenced lines. Fruit of the ARF2as lines were parthenocarpic and exhibited delay in ripening.

Fig 10. Dimerization of the ARF2A protein and its interaction. ARF2A was cloned downstream of the DNA-binding domain (DB-ARF2A) and co-
transformed into yeast with either (A) ARF2A cloned downstream of the activation domain (AD-ARF2A); or (B) ASR1 cloned downstream of the activation
domain (AD-ASR1), yeast growth on media lacking leucine, tryptophan, histidine and adenine indicated positive protein-protein interactions. (C) Relative
expression levels of ASR1 in WT cv. MicroTom fruit at five developmental stages (IG: immature green; MG: mature green; Br: breaker; Or: orange; and R:
red), error bars represent SE; statistical significance was evaluated using an ANOVA test (JMP software, SAS) with three biological repeats based on the
average of three technical replicates, values indicated by the same letter (a,b,c) are not statistically significant, p-value<0.05. (D) A Bimolecular Fluorescence
Complementation assay (BiFC) was carried out by transient expression in tobacco leaves; ARF2A was cloned downstream of the amino-terminal region of
YFP (yellow fluorescent protein; YN-ARF2A) and ASR1 was cloned downstream of the carboxy-terminal region of YFP (YC-ASR1); leaf regions were
examined for fluorescent signal by light and confocal fluorescence microscopy. Inset zoom region shows that the ARF2A-ASR1 interaction is nuclear
localized. Scale bars in the light and confocal fluorescence microscopy represent 50 μm and 10 μm, respectively.

doi:10.1371/journal.pgen.1005903.g010
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In line with our findings with ARF2A over-expression, knockdown of both ARF2 homologs
(ARF2A and ARF2B) resulted in changes to the profiles of ripening-associated transcription
factors genes. Expression of RIN, NOR, AP2a and TAGL1, was induced in our study when
ARF2A was over-expressed while transcripts of these master regulators were down-regulated
in the ARF2as. In addition, alterations in the ripening process were also demonstrated by
changes in the metabolic profile of the ARF2as red fruit. A parallel study [33] also investigated
the consequences of down-regulating ARF2A and its homolog ARF2B in tomato fruit. Con-
firming our findings, the authors report that down-regulation of ARF2 phenocopies features of
previously identified non-ripening mutants including enhanced fruit firmness, low ethylene
production and inability to ripen upon exogenous application of ethylene. The authors sug-
gested that the reduced expression of the ripening regulators in knockdown lines were likely
the main reason for the observed ripening defects. Taking these two complementary studies
into consideration, the data suggests that ARF2A exerts its control of fruit ripening by control-
ling master regulators of the ripening in an ethylene signalling and biosynthesis-dependant
manner.

Blotchy fruit ripening and the ARF2A protein mode of action
Detailed molecular investigation of the ARF2A endogenous and transgene transcripts demon-
strated that the blotchy ripening phenotype was due to a genuine over-expression of ARF2A in
the transgenic fruit. Hence, clarifying the physiological and molecular mechanisms behind this
phenotype might shed light on the ARF2A protein mode of action. In fact, during the regular
development of tomato and additional fruit species, ripening does not ensue at once all over
the fruit (as observed by the change of fruit pigmentation during the course of ripening). It is
typically a gradual change which is probably driven by the auto-catalytic process of ethylene
signaling in climacteric fruit. The phenotype we observed in ARF2A over-expressing fruit
appears to represent acceleration as well as enhancement of what is seen in the regular process
of fruit ripening in tomato. Blotchy ripening of fruit was described already some time ago in
immature green fruit upon treatment with ethylene [49] and the authors suggested that the
ability of ethylene to initiate ripening is dependent on the stage of the fruit. Here, we put for-
ward the hypothesis that different areas on the same fruit are not synchronized in development
and are more or less susceptible to ethylene and the induction to ripening. The hypothesis of
differential sensitivity to ethylene signaling and ripening is strongly supported by the interme-
diate molecular and biochemical induction of the ripening in the green pigmented regions as
compared to the WT green fruit and the red regions in the ARF2A over-expressing fruit. In
other words, as we measured equal ARF2A transcripts in the green and red regions, fruit with
tissues having similar sensitivity to ripen were not anticipated to show the blotchy phenotype
observed here. Nevertheless, the putative molecular triggers that migrate across the fruit to
form even ripening, and the blotchy phenotype that appears as a result of different conditions,
should be addressed in future studies.

The intriguing question of what determines the level of the fruit tissue sensitivity to ethylene
and ripening remains open. The knowledge of fruit ripening to date, as well results obtained in
this study and the parallel publication [33] raise the hypothesis that the dose of active ethylene
receptors could be a major factor that will determine the capacity of a particular fruit region to
initiate ripening. With respect to this, it was reported that upon pathogen inoculation, ethylene
was emitted from tomato leaves and the expression of ethylene receptors (i.e. NR and ETR4)
were induced [50]. According to the authors, this reduces the sensitivity to ethylene in the tis-
sue since ethylene signaling is a negative regulatory process and more ethylene receptors were
synthesized. Thus, more ethylene would be required in order to inactivate the suppressors and
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to convey the ethylene signal. Moreover, in a different study, down‐regulation of the ETR4
receptor produced an ethylene hypersensitive phenotype including accelerated ripening [51].
Here, the authors suggested that ETR4 monitors receptor levels and initiates the synthesis of
new receptors as an ethylene response occurs, thus maintaining homeostasis in the ethylene
response [51]. Furthermore, treatment of immature green fruit with ethylene, results in ele-
vated levels of NR and ETR4, as well, affecting downstream ethylene signaling [52].

In this study, induction of the ethylene receptor ETR2 was observed at 39 dpa in ARF2-OX
fruit. This was followed by up-regulation of the ETR3 (NR), ETR4 and ETR5 receptors at 42
dpa in the ARF2-OX fruit, prior to their induction in WT fruit. It is thus possible that this pre-
mature and uneven induction of the ethylene receptors (in the fruit tissue) contributes to the
altered sensitivity to ethylene in different areas of the maturing fruit, resulting in the blotchy
fruit phenotype.

ARF2A is likely to play a role in the integration of hormonal cues during
fruit ripening
The ARF2A protein was previously reported to be involved in many aspects of hormonal sig-
naling pathways, in different plant species and organs [27, 29, 32, 53]. Both ABA and auxin
were previously shown to stimulate ethylene emission in tomato fruit and were suggested to
play a role in the regulation of fruit ripening [11, 15]. Here, we showed that in addition to
being stimulated by ABA and auxin, ARF2A expression in fruit is induced by ethylene, albeit at
a later time point than the ethylene biosynthesis gene ACS4. While all three hormone signaling
pathways could be acting upstream of ARF2A, multi-class hormone and global transcriptome
profiling suggests that ARF2A impacts ethylene biosynthesis and emission as well as ABA pro-
duction. Both cytokinins and salicylic acid were also significantly altered in the ARF2A over-
expression lines. In the ARF2 silenced lines, a change in the levels of cytokinins and ABA, was
observed. The two classes of cytokinins i.e. cis- and trans-zeatin metabolites are produced
through separate metabolic pathways. Both were changed in an opposite manner, in the
ARF2-OX fruit, however in the ARF2as fruit, both were reduced.

The ripening phenotype in ARF2-OX fruit could also be linked with cytokinin levels, as a
blotchy ripening phenotype was previously observed in both fruit treated with exogenous cyto-
kinin and lines over-expressing the ISOPENTENYL TRANSFERASE (IPT) gene which in turn,
causes increased cytokinin levels [54]. Moreover, it has been previously proposed that the high
levels of cytokinins observed in the tomato rinmutant contribute to its non-ripening pheno-
type and to inhibition of ripening-related processes [55]. Preliminary mining of the microarray
data and expression assays of cytokinin biosynthesis genes showed that a CYTOKININ OXI-
DASE 7 (CKX7) orthologue was significantly downregulated in both red and green regions at
42 dpa and a LONELY GUY 8 (LOG8) ortholog (putatively encoding a cytokinin riboside 5’-
monophosphate phosphoribohydrolase) was upregulated in the green region at 42 dpa. CKX
enzymes have been shown to irreversibly catabolize cytokinins while LOG enzymes are
involved in their biosynthesis [56]. Thus, simultaneously down regulating CKX and upregulat-
ing LOG would alter the levels of cytokinins as we indeed observed in the ARF2A over-expres-
sion fruit. The exact function of cytokinins in fruit ripening and with relation to ARF2A is far
from being understood. Recently, [57] showed that ectopic LOG1 expression in tomato creates
a new hormonal balance and altered hormonal signaling that result in de novo formation of
aerial minitubers from outgrowing juvenile tomato buds. Thus, it is not unconceivable that
LOG8 and CKX7 could be involved in determining the specific hormonal balance required for
the shift and induction of the fruit ripening process.
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ARF2A-ASR1 protein-protein interaction and the induction to ripening
A yeast-two-hybrid screen identified the ASR1 (ABA STRESS RIPENING-INDUCED 1) pro-
tein as a putative ARF2A interactor in tomato fruit. The interaction was further verified with a
BiFC assay that localized the interaction to the nucleus. This finding is in agreement with previ-
ous studies that localized ASR1 to the nucleus where it acts as a transcription factor [58, 59]. In
grape, an ASR protein was found to interact with an AP2-type transcription factor [60], strength-
ening the observation that ASR1 may act through interaction with other regulatory proteins, as
here with ARF2A in tomato fruit. The ASR1 protein has been studied extensively and several
studies proposed it to act as a component in the response to environmental signals, including
ABA and glucose signaling, water deficiency as well as to integrate signaling pathways [43, 61–
63]. Moreover, over-expression of the tomato ASR1 in Arabidopsis resulted in an ABA-insensi-
tive phenotype [64]. The ARF2A-ASR1 interaction consequently corresponds well with their
similar expression profile during tomato fruit development and ripening, the ABA induced
ARF2A expression in fruit and the dramatic decrease in ABA levels in the ARF2-OX fruit. The
possibility that these two proteins could be coordinating the interaction between ethylene and
ABA and the sensitivity of the fruit towards ethylene should be examined in future experiments.

The amalgamation of data provided here and in the complementary study [33], as well as
previous reports on tomato fruit ripening control and the ARF protein family, is presented in a
form of a model scheme (Fig 11). ARF2A appears to play a key role in the induction of the rip-
ening process in tomato. This factor exerts its activity through the widely studied ethylene-
dependent ripening pathway by impacting genes currently considered as ‘markers’ of climac-
teric ripening including ethylene biosynthesis and signaling, carotenoid production and tran-
scription factors of the MADS-box and AP2 protein families. ARF2A expression is significantly
reduced in the rin and normutants and at the same time induced in the TAGL1 over-express-
ing fruit, suggesting that it is part of a feedback mechanism existing in the ripening regulatory
network. While this study implies that ARF2A has a positive impact on ripening, it was sug-
gested to act as a negative regulator of transcription [20]. Thus, the activation of ripening could
very well be indirect through an additional factor which functions as ripening repressor. It
appears that ARF2A obtains input signals from at least three pathways, namely, ABA, auxin
and ethylene. Furthermore, hormone profiling suggests that it impacts ABA, cytokinins and
salicylic acid, at least in terms of biosynthesis.

Taken as whole, the ripening process in climacteric fruit is unquestionably dependent on
ethylene; nevertheless, it requires significant input from several other hormone signaling path-
ways. The unique function of ARF2A in this composite interplay likely resides in its capacity to
integrate signals and by doing so it enhances the sensitivity and thus readiness of the fruit tissue
to ripen.

Materials and Methods

Plant material
Tomato plants (Solanum lycopersicum) cultivar (cv.) Ailsa Craig (AC) (obtained from the
Tomato Genetics Resource Center; http://tgrc.ucdavis.edu), cv. MicroTom (obtained from Avi
Levy, Department of Plant and Environmental Sciences, Weizmann Institute of Science, Israel)
and cv. M82 (obtained from Yuval Eshed, Department of Plant and Environmental Sciences,
Weizmann Institute of Science, Israel) were grown in a climate-controlled greenhouse at 24°C
during the day and 18°C during the night, with natural light. The fruit stages used were imma-
ture green (IG), mature green (MG), breaker (Br), orange (Or) and red (R), which were har-
vested on average 10, 35, 38, 41 and 44 days post-anthesis in cv. MicroTom, respectively,
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unless otherwise mentioned. All fruit stages were harvested in three biological replicates (each
replicate was represented by a pool of several fruit from different plants) and frozen in liquid
nitrogen, placenta and seeds were removed.

RNA extraction
Samples were ground into fine powder under liquid nitrogen and RNA was isolated as previ-
ously described [65] using 100 mg/ml extraction buffer (38% water-saturated phenol, 0.8M
guanidine thiocyanate, 0.4M ammonium thiocyanate, 0.1M sodium acetate pH = 5, 5% glyc-
erol). The aqueous phase was subsequently extracted twice with chloroform. Follow by isopro-
panol precipitation and two 70% ethenol washes, the RNA pellet was resuspended in DDW
and stored at -20°C.

Generation of transgenic tomato plants
The ARF2-OX expression cassette was generated by cloning of tomato ARF2A ORF into the
pDRIVE vector (Qiagen, USA). Silent mutations were presented into the sequences by PCR.

Fig 11. A general scheme depicting the activity of ARF2A in the regulatory network controlling fruit ripening. Data from this study and the
complementary work [33] as well as previous reports concerning ripening control and information on tomato ARF2A and the ARF protein family was
integrated and presented in a general scheme. ARF2A exerts its activity through the ethylene-dependent ripening pathway by impacting ripening regulators
such as ones of the MADS-Box and AP2 protein families, genes associated with ethylene biosynthesis and signaling, carotenoid as well as other ripening
metabolic pathways. The induction of ripening is likely indirect through an additional factor which functions as a ripening-repressor. ARF2A functions as a
negative regulator, reducing the expression of the unknown ripening-repressor and thus activating the expression of several ‘master’ regulators and
downstream ripening genes. It appears that ARF2A obtains signals from at least three hormone pathways, including ABA, auxin and ethylene while its
activity impacts ABA, cytokinins and salicylic acid, at least at the level of hormone biosynthesis. The ASR1 protein likely interacts with ARF2A and together
they fine tune the sensitivity of the fruit tissue to ethylene and to the capacity to ripen.

doi:10.1371/journal.pgen.1005903.g011
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The mutated ORFs were cloned downstream of 35S CaMV promoter in pART7 vector and
transferred to pART27 binary vector. For the ARF2as cassette, an approximately 1.5 kb frag-
ment of the 5’ end of the ARF2A ORF was amplified. This fragment was cloned into NcoI/SacI
sites in the pFLAP vector, in reverse complement orientation, downstream of 35S CaMV pro-
moter. This fragment was transferred to the pBIN PLUS vector using PacI/AscI sites. Con-
structs were transformed to tomato plants, cv. M82, by Agrobacterium tumefaciens inoculation
as previously described [66, 67].

Ethylene and 1-MCP (1-Methylcyclopropene) and hormonal treatments
Fruit (cv. Ailsa Craig) harvested at the MG, Br and Or stages were incubated with 1 ppm of
1-MCP ("SmartFresh") for 19 h, moved to open air for 24 h, and subsequently frozen in liquid
nitrogen. MG fruit (cv. MicroTom) were incubated in 40 ppm ethylene for 16 h, followed by 8
h of aeration at room temperature before snap freezing in liquid nitrogen. Control fruit were
incubated in air instead of ethylene or 1-MCP. For other hormones treatmnets, fruit (cv.
MicroTom) harvested at the stage mentioned were injected with 0.15 ml of the following hor-
mones: 0.1 mM abscisic acid (ABA), 0.1 mM 1-naphthaleneacetic acid (NAA), 0.4% ethrel or
DDW as control, following immersion in the solution for 10 minutes. In the case of ABA, this
represents an approximately ten-fold increase in the measured physiological concentration of
this hormone. Treated fruit were incubated at room temperature for the time indicated and
then collected into liquid nitrogen and kept at -80°C until extracted.

Ethylene emission measurements
Harvested fruit at the mature green stage were kept for 1 day in 250 ml flasks at room tempera-
ture, flasks were sealed for 4 hours, and ethylene was subsequently measured in the headspace
by sampling using a syringe through a septum in the flask lid. The flasks were left open for 20
hours each day. Ethylene measurements were carried out every 1–3 days for the period of 16
days, as previously described [68] with some modifications. Ethylene was measured with a Var-
ian 3300 gas chromatograph (CA, USA) equipped with a flame ionization detector and stain-
less steel column (HayeSep-T; 100/120 mesh) held at 70°C with helium as the carrier gas.
Carbon dioxide was measured with gas chromatograph GOW-MAC 580 (Bethlehem, PA,
USA) equipped with a thermal conductivity detector with a stainless steel column (AllTech
Chromosorb 101, 80/100 mesh) held at 55°C and helium as the carrier gas. Ethylene was identi-
fied based according to the retention time of standard. Levels of ethylene were calculated
according to standard curve (R2 = 0.999) and using the following formula: C2H4 = [ethylene
(ppm) X free volume (ml)] / [fruit weight (g) X 4 (hours)].

Metabolite analysis
Hormone extraction was carried out as previously described [69, 70] with some modifications;
briefly, 200 mg of ground frozen plant tissue was extracted at -20°C with methanol/water/for-
mic acid, containing stable isotope labeled internal standards (IS). Hormones were purified
and fractionated by SPE and detected by UPLC-ESI-MS/MS operated in MRMmode. Quantifi-
cation of hormones was done against external calibration curves, using analyte/IS peak ratios.
A detailed protocol is included in S1 Method. In addition, the reproducibility of this method
was tested successfully by repeating the analysis in two different harvest seasons, in ten devel-
opmental stages of tomato fruit development and ripening (S10 Fig). Extraction and analysis of
other metabolites reported here was performed as previously described [41].
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Gene expression analysis
Three biological replicates of each RNA sample (ARF2-OX-42G; ARF2-OX-42R; WT-G; and
WT-R) were labeled and hybridized to the 34K gene EUTOM3 Exon array (http://www.eu-sol.
net/science/bioinformatics/data-and-databases/all-databases) and data were analyzed as previ-
ously described [48]. For Reverse-transcription and quantitative real-time PCR (qRT-PCR)
DNaseI-treated RNA was reverse-transcribed using the High Capacity cDNA reverse tran-
scription kit (Applied Biosystems) and cDNA was used for qRT-PCR analysis using three bio-
logical repeats per fruit stage, with three technical repeats for each sample. Gene-specific
oligonucleotides were designed using Primer Express 2 software (Applied Biosystems). Expres-
sion of the CAC gene was used as an endogenous control, with the exception of S9 Fig, where
TIP41 was used [71]. Primers used in these assays are detailed in S13 Table. Analysis of gene
expression by qRT-PCR in the Fluidigm platform was carried out in the Biological Services
Unit, Weizmann Institute of Science, Israel, according to the manufacturer’s protocol (using
EvaGreen DNA binding dye for gene expression with the 48.48 and 96.96 Dynamic Array IFCs
PN 100–1208 A5-Advanced Development Protocol). Primers used in this study are detailed in
S13 Table.

Yeast-two-hybrid assays
The ARF2A ORF was cloned into PacI/AscI sites in pENTR/D-TOPO, and was introduced
into pDEST32 vector using an LR clonase reaction (Invitrogen, USA; pDEST32-ARF2). These
vectors were transformed into PJ69-4α yeast strain [72] by standard LiAc transformation
(Yeast protocols handbook, Invitrogen, USA, July 2009) and used as the bait. The cDNA library
used as the prey represented genes expressed in tomato fruit from breaker ripening stage and
onwards. The library was cloned in pDEST22 vectors which together with the yeast strains
were obtained from Prof. Richard Immink (Plant Research International B.V., Wageningen,
The Netherlands). The interaction screenings were carried out using standard manufacturer’s
protocol (ProQuest Two-Hybrid System with Gateway Technology, Invitrogen, USA), by two
step transformation of the bait and prey vectors. Positive interactions were determined as posi-
tive growth on SD medium lacking leucine, tryptophan, histidine and adenine. Positive interac-
tions were verified in a one-on-one yeast-two-hybrid. The interactor was identified through
sequencing of the prey vector.

Bimolecular fluorescence complementation (BiFC) assay
Analysis of protein-protein interaction was carried out by bimolecular fluorescence comple-
mentation (BiFC) assay as previously described [44, 45]. The ARF2A ORF was cloned into
SalI/BamHI sites in the YN vector (YN-ARF2A), downstream of the sequence coding for the
amino-terminus of the YFP fragment. The ASR1 ORF was cloned into NdeI/BamHI sites in the
YC vector (YC-ASR1), downstream of the sequence coding for the carboxy-terminus of the
YFP fragment. The expression cassette from the YN and YC was extracted and cloned (using
HindIII sites) into pCAMBIA vector and transformed to A. tumefaciens. The transient expres-
sion assay was carried out in one month old N. tabacum leaves as previously described [45].
Positive protein-protein interactions were identified as visualization of the YFP signal observed
48 h post-inoculation in fluorescent microscopy.

Accession numbers
Sequence data from this article can be found in the EMBL/GenBank data libraries under the
following accession numbers: ARF2A (Solyc03g118290; DQ340255), ARF2B (Solyc12g042070;
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HM143940), ARF3 (Solyc02g077560; DQ340254), ARF4 (Solyc11g069190; DQ340259), ARF9
(Solyc01g096070; XM_010328837.1), ASR1 (Solyc04g071610; AK326001.1), Arabidopsis ARF2
(At5g62000; gi|30697610), CNR (Solyc02g077920; DQ672601), RIN (Solyc05g012020;
AF448523), TAGL1 (Solyc07g055920; AY098735), FUL1 (Solyc06g069430; AY306155), FUL2
(Solyc03g114830; AY306156), AP2a (Solyc03g044300; HQ586952), NOR (Solyc10g006880;
AY573802), GLK2 (Solyc10g008160; JX163897), ACO1 (Solyc07g049530; EF501822), ACS2
(Solyc01g095080; AY326958), ACS4 (Solyc05g050010; NM_001247351), ETR1 (Solyc12g011330;
AF043084), ETR2 (Solyc07g056580; AF043085), ETR3 (NR; Solyc09g075440; AY600437), ETR4
(Solyc06g053710; AY600438), ETR5 (Solyc11g006180; AF118844), ETR6 (Solyc09g089610;
AY600440), PSY (Solyc03g031860; DQ335097), PDS1 (Solyc03g123760; DQ339100), CKX7
(Solyc08g061930; NM_001279287), LOG8 (Solyc08g062820; XM_004245030), ERF.E1/ERF2b
(Solyc09g075420; NM_001247379.2).

Supporting Information
S1 Fig. ACS4 expression in altered ethylene treated fruit. Relative expression levels of ACS4
in ethylene treated fruit at three developmental stages (MG, Br and R). Error bars represent SE.
Statistical significance was evaluated using a student’s t-test, ��p-value<0.01 and ���p-
value<0.001; dpa: days post anthesis.
(TIF)

S2 Fig. Alignment of ARF2as fragment with ARF2A and ARF2B sequences. Nucleotide
alignment of the ARF2as construct with ARF2A and ARF2B genes, showing putative targeting
of both closely related genes.
(PDF)

S3 Fig. Expression levels of ARF2 genes and fruit phenotypes in ARF2as transgenic lines.
(A) Summary of ARF2A and ARF2B expression changes and fruit phenotypes in seven inde-
pendent ARF2as transgenic lines. Relative expression levels of (B) ARF2A and (C) ARF2B, ana-
lyzed by qRT-PCR in red fruit of WT cv. MicroTom and independent ARF2as transgenic lines;
error bars represent SE; statistical significance was evaluated using a student’s t-test with three
biological repeats based on the average of three technical replicates, �p-value<0.05 and ��p-
value<0.01. Error bars represent SE; statistical significance was evaluated using a student’s t-
test with three biological repeats, ��p-value<0.01.
(TIF)

S4 Fig. Gene expression analysis of ARF2as transgenic fruit. Relative expression levels of rip-
ening regulators in ARF2as red fruit, analysed by qRT-PCR. DPA- days post anthesis; cv.
MicroTom; � p-value<0.05; � �p-value<0.01
(TIF)

S5 Fig. Expression levels of ARF2A and fruit phenotypes in different independent
ARF2-OX transgenic lines. (A) Relative expression levels of ARF2A analyzed by qRT-PCR in
leaves of WT cv. M82 and five independent ARF2-OX transgenic lines; error bars represent SE;
statistical significance was evaluated using a student’s t-test with three biological repeats based
on the average of three technical replicates, �p-value<0.05 and ��p-value<0.01. (B) Summary
of ARF2A expression changes and fruit phenotypes in eight independent ARF2-OX transgenic
lines.
(TIF)

S6 Fig. Expression analyses of ARF2 homologs in ARF2-OX patches. Relative gene expres-
sion levels of ARF2 homologs (ARF2B, ARF3, ARF4 and ARF9) in WT cv. M82 and ARF2-OX
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fruit at 39, 42 and 53 dpa. Error bars represent SE; statistical significance was evaluated using
an ANOVA test (JMP software, SAS) with three biological repeats based on the average of
three technical replicates, values indicated by the same letter (a,b,c) are not statistically signifi-
cant, p-value<0.05; dpa: days post anthesis.
(TIF)

S7 Fig. Hierarchical clustering analysis of ARF2-OXmicroarray data.Hierarchical clustering
analysis of differentially expressed genes in ARF2-OX transgenic fruit, compared to WT-42G,
as analyzed by microarray analysis.
(TIF)

S8 Fig. Hierarchical clustering analysis of carotenoid-related genes in ARF2-OX fruit.Hier-
archical clustering analysis of carotenoid-related genes in ARF2-OX transgenic fruit, compared
to WT-42G, as analyzed by microarray analysis.
(TIF)

S9 Fig. Hierarchical clustering analysis of ethylene-related genes in ARF2-OX fruit.Hierar-
chical clustering analysis of ethylene-related genes in ARF2-OX transgenic fruit, compared to
WT-42G, as analyzed by microarray analysis.
(TIF)

S10 Fig. Hormone analysis during fruit development in two seasons of harvest.Hormone
levels were measured in ten fruit developmental stages (immature green to red ripe; 1 to 10) in
two sequential growing seasons (2014 and 2015). Error bars represent SD.
(TIF)

S1 Table. PCA of untargeted flavonoid analysis in negative mode from UPLC-QTOF-MS
analysis of ARF2as.
(XLSX)

S2 Table. Significantly different putative metabolites identified to in red ARF2as tomato
fruit by UPLC/qTOF-MS in positive and negative modes.
(XLSX)

S3 Table. Hormone analysis of ARF2as fruit.
(XLSX)

S4 Table. Differentially expressed genes in ARF2-OX transgenic fruit frommicroarray
analysis.
(XLSX)

S5 Table. Classification of differentially expressed genes in ARF2-OX transgenic fruit
according to molecular function (by Gene Orthology annotation).
(XLSX)

S6 Table. Classification of differentially expressed genes in ARF2-OX transgenic fruit
according to biological processes (by Gene Orthology annotation).
(XLSX)

S7 Table. Carotenoid-related genes differentially expressed in ARF2-OX fruit.
(XLSX)

S8 Table. Ethylene- related genes differentially expressed in ARF2-OX fruit.
(XLSX)
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S9 Table. PCA of untargeted flavonoid analysis in negative mode from UPLC-QTOF-MS
analysis.
(XLSX)

S10 Table. PCA of untargeted flavonoid analysis in positive mode from UPLC-QTOF-MS
analysis of ARF2-OX.
(XLSX)

S11 Table. Isoprenoids, carotenoids and glycoalkaloid in ARF2-OX fruit from HPLC analy-
sis.
(XLSX)

S12 Table. Hormone analysis of ARF2-OX fruit.
(XLSX)

S13 Table. List of oligonucleotides used for cloning, qRT-PCR and Fluidigm© analyses in
this study.
(XLSX)

S1 Method. Detailed protocol of the hormone analysis.
(PDF)
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