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Abstract

Ultraviolet C (UV-C) radiation is known for prevemg fungal decay and enhancing
phytochemical content in fruit when applied postieat. However, limited knowledge is
available regarding fruit responses to preharvesli@ation of UV-C radiation. Thus, the
effects of UV-C radiation on photosynthetic effivoy, dry matter accumulation and
partitioning, fruit yield and decay, phytochemicaontent, and relative transcript
accumulation of genes associated with these metalpathways were monitored in
strawberry Fragaria x ananassa Duch.) cv. Camarosa. A reduction in photosynthetic
efficiency was followed by a decrease in light lemting complexLhclib-1 mRNA
accumulation as well as a decrease in yield partpRhenylalanine ammonia lyase activity,
phenolic, anthocyanin, and L-ascorbic acid contevdse higher in UV-C treated fruit. In
addition, preharvest UV-C treatment reduced migganism incidence in the greenhouse and
on the fruit surface, increased the accumulationgdf3-Gluc and PR-1 mRNA, and

prevented fruit decay.

Keywords. Fragaria x ananassa Duch.; abiotic stress; antioxidants; gray mold dsse
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1. Introduction

Strawberry Fragaria x ananassa Duch.) pseudo fruit, henceforth named fruit, isric
in bioactive compounds, such as L-ascorbic aci@tds, and phenolic compounds including
anthocyanins (Giampieri et al., 2015; Tulipanilet2011). This fruit is characterized by high
respiration and transpiration rates, low mechamiesistance, and high susceptibility to gray
mold caused botrytis cinerea (Neri et al., 2014). In order to control gray mosgasonal
spraying of fungicides is carried out during frdgvelopment, and postharvest fruit are cold
stored under modified atmosphere (Barrios et 8142 Feliziani et al., 2015). However, the
use of fungicides poses significant health riskedasumers, and demand for strawberries
produced with fewer fungicides is increasing (Hahk et al, 2015).

Alternative control methods that do not leave nesg] such as postharvest UV-C
radiation, have been shown to prevent decay andowepfruit quality (Baka et al., 1999;
GonzalezAguilar et al., 2007; Maharaj et al., 1999; Sewvetral., 2015a, 2015b). In response
to postharvest UV-C, tomato fruit developed bioclwainand physical barriers against
Botrytis cinerea growth by accumulating phenolic compounds, defepseteins, and
developing fruit surface modifications (Charlesakt 2008a, 2008b, 2008c). Additionally, it
has been reported that postharvest UV-C radiatidndes secondary metabolites production
that protect fruit against abiotic and biotic stes (Pombo et al., 2011). Furthermore, these
metabolites (phenolic compounds, anthocyanins,teaoids) also play an important role in
fruit quality with impact on human health (Giampietr al., 2015).

On the other hand, few studies have investigatedamwest UV-C application, and the
mechanism of action preventing decay and improving quality is not well understood.
Tomato fruit on the vine treated with UV-C showedlayed ripening and inhibition of
Penicillium digitatum growth (Obande et al., 2011). The effects of predstr UV-C on

bioactive compounds content in strawberries appeaise cultivar dependent (Xie et al.,
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2015). In addition, excess UV-B and UV-C radiatauring growth ofArabidopsis thaliana
has deleterious effects on plant cells, includingADdamage and oxidation of cellular
components with consequent deleterious effects lwotogynthesis, phenolic metabolism,
carotenoid biosynthesis, and antioxidant defensei{Blames et al., 2000; Xie et al., 2012
Therefore, the effects of preharvest UV-C treatmmmta set of quality parameters
including microorganism occurrence and fruit degalyptosynthetic efficiency, dry matter
partitioning, yield, phytochemical accumulationdarlative transcript accumulation of genes

putatively associated with these metabolic pathvigsrawberry were monitored.

2. Material and methods
2.1 Plant material and sampling procedure

The experiment was conducted in two greenhouses I8 m) oriented in a north-
south direction and covered with low-density pdiygene film (200 um). Eight hundred
seedlings of strawberry cultivar Camarosa were graacording to a crop system described
by Portela et al. (2012). Four hundred seedlingewdesignated for control without UV-C
application and the other four hundred for UV-Gatneents. This cultivar was chosen due to
its vigorous growth habit. The spacing used wasr@lbetween plants and 40 cm between
rows. All plants were fertilized following guidels described by Sonneveld and Straver
(1999) with electrical conductivity (EC) adjustexi1.5 dSrt. When a variation greater than
10% of the EC was observed, nutrient or water wiaed, while pH was maintained between
5.5 and 6.5. During the 45 d after transplantatfoom May 7" to June 2%) all flowers were
removed until plants had between ten and twelveeleaTl hereafter, typical cultural practices
were followed, and upon development of flower bugtarting July 2%) two Jatai

(Tetragonisca angustula) bees’ boxes were installed for pollination.
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Fruit were harvested during the highest produgtipériod, which corresponded to the
45" and 8%' day after treatments were initiated. Each daytyttfiuit from each treatment
were harvested and divided into groups of 10 fregich group constituting a replicate. PAL
enzyme activity and physicochemical characteriraticere determined from fruit kept at -
80°C. Total mesophilic bacteria and incidence afgal decay were determined in fruit
harvested at 56 d after treatments were initialéé. fungal inocula present in the greenhouse
air was quantified during the production cycle 82, 56, and 80 d after treatments were
initiated). Real time PCR (gPCR) analyses wereaduwut from leaves and fruit harvested at
0, 8, 32, 56, and 80 d after treatments. At the @nthe crop cycle, five plants from each
replicate were harvested and fruit, roots, stol@ms] leaves were separated to obtain dry
matter partitioning. Experiment timeline, showimgg cycle, UV-C treatment, and sampling

dates for analysis is presented in Figure 1.

2.2 UV-C treatment

The radiation source consisted of four germicidallbs (Phillips® TUV 30
watts/G30T8) emitting light at 254 nm. Plants wplaced one meter away from the bulbs.
Irradiation was applied from flowering until thesteharvest day (July 32to November 15).
Each irradiation application lasted 2 min and argceived 0.5 kJ H(UV light meter,
Model 232-RS-203 MRUR, Instrutherm) at 7 PM eveoyrfdays, totaling 28 applications
(Fig. 1). UV-C dose and application intervals westablished from exploratory tests using O
kJ m? to 1.5 kJ rif. Just prior to each UV-C application, bees’ boxese closed and

removed from the greenhouses. Control plants didetzive UV-C application.

2.3 Leaf gas exchange and chlorophyll fluorescemedysis



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

CO, assimilation rate A; pmolnfs'), stomatal conductances nmolnfs?), and
intracellular CQ concentration@i; pmolmol ait') of leaves were monitored with a portable
gas exchange system infrared gas analyzer (IRGAzH&alz GmbH, GFS 3000 model).
Measurements were performed after the beginning\6iC treatment (July 29) following
the procedure described by Kadir and Sidhu (20CG6)orophyll fluorescence raté-/Fm)
was measured using the same equipment (Huther.,e2(3). Evaluation of chlorophyll
fluorescence rate was carried out at eight-dayvate (between 9:30 and 11:00 PM), starting

two days before the first UV-C treatment (Fig. 1).

2.4 Dry matter partitioning, fruit yield, and phgschemical characterization

At the end of the crop cycle, five plants from eaeplicate were collected and fruit,
roots, stolons, and leaves were separated to othtaimatter partitioning after drying at 70°C
for 3 d . Soluble solids (SS) content was deterthing refractometry and expressed as °Brix.
Total acidity (TA) was determined by titration aegpressed as mg citric acid per kof
fresh fruit. Fruit color was measured using a doteter as described by Severo et al.

(2015a). Firmness was evaluated as described br&eval. (2015b).

2.5 Microorganism occurrence

In order to evaluate the fungal inocula preserthm air of the greenhouse a passive
sampling was carried out. Petri plates 9 cm in @i@m (0.006359 farea) containing
Sabouraud agar, chloramphenicol, and gentamicioR&i63774) were used. In each
greenhouse, ten open plates were placed amondathis or 1 h at four intervals throughout
the production cycle (8, 32, 56, and 80 d aftemttreents were initiated). Plates were
incubated for 48 h at 26, and results were expressed as colony formint (6FU) nth™.

For total mesophilic count, twenty-five grams afifrwere sampled and added to 100 mL of
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sterile peptone water, and a one mL aliquot wasuladed in total plate count agar (PCA)
(Sigma-Aldrich 70152). Plates were incubated atC3fsft 48 h and the results were expressed
as CFU . To evaluate the incidence of fungal decay, stevibs were stored in plastic
boxes and kept at room temperature (RT, 23 + 2h@)aarelative humidity (RH, 85 + 5%) for

3 d after harvest. Results were expressed in perger{%) of decayed fruit. In order to assess
possible induction of disease resistancBptytis cinerea strain was isolated from diseased
strawberry fruit and cultured on potato dextrosard&@DA) (Sigma Aldrich 70139). As soon
as mycelial growth was evident, an agar plug wascsiltured on PDA until spore production
occurred. After 7 d the Petri dish was flooded wstierile water containing 0.02% (v/v)
Tween 20, filtered and diluted to a concentratidn16® spores per mL. After harvest, a
portion of the fruit was disinfected (NaClO, 100 kg pH 5.0) for 2 min. Strawberries were
wounded (2 mm) with a sterile probe, one woundfpet, in the equatorial zone and 20 pL
of a suspension containing “iBotrytis cinerea spores per mL water were inoculated. After
inoculation, fruits were stored at RT for 3 d aedults were expressed in % of decayed fruit.

This method was adapted from Pombo et al. (2011).

2.6 Phenylalanine ammonia lyase activity (PAL; EB.4.24)

PAL enzyme activity was determined by homogenififigen grams of fresh tissue in
15 mL of buffer containing: 20 mM-mercaptoethanol (Sigma Aldrich M3148), 0.1 M
sodium borate buffer with pH 8.8, and 5% (m/v) alywinylpyrrolidone (PVP) (Sigma
Aldrich PVP40). After filtration, the homogenate sveentrifuged at 12.000 g for 20 min.
Enzyme activity was measured by adding 1 mL ofcthiele enzyme preparation to a reaction
medium containing 1 mL of 0.2 M sodium borate buffeth pH 8.8, and 1 mL of 0.1 M L-
phenylalanine. After incubation for 1 h at 30°G teaction was stopped by adding 0.1 mL of

6 N HCI and the absorbance was determined at 29atnniervals of 20 min for at least one
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hour after the addition of phenylalanine. Enzymévdag was calculated using the molar
extinction coefficient of 1tmM™cmi’ and expressed in mmol of cinnamic acid Tgh

(Zucker, 1965).

2.7 Phytochemical content and antioxidant potential

Total phenolic content was determined using thanFolocalteau reagent (Sigma
Aldrich F9252). Total anthocyanin content was deiaed by extraction using ethanol (pH 1)
and antioxidant potential was determined usingABd'S radical scavenging assay. Total
phenolic, total anthocyanin, and antioxidant pogdranalyses were performed as described
by Severo et al. (2015b). L-ascorbic acid conteat wletermined spectrophotometrically
following Stevens et al. (2006). Folate content wlasermined by HPLC-UV based on a
method described by Delchier et al. (2012). Resuise expressed on a fruit fresh weight

basis (ffw).

2.8 RNA extraction, cDNA synthesis, and gPCR

Total RNA extraction, RNA quality evaluation, regertranscription, and qPCR were
performed following the protocols used by Severalet(2015b). Six genes were chosen
based on putative roles in strawberry photosynshekdfense responses, and phytochemical
content: photosynthesis - light harvesting comp(ekclib-1) (Xu et al., 2012), defense
responses B-1,3-glucanasesf1,3-Gluc) and pathogenesis-related proteirPR) (Pombo et
al., 2011) and phytochemical content - phenylalarammonia lyasePAL) (Galli et al.,
2014), anthocyanin synthas@&NS) (Severo et al., 2015b), angigalactosidase f(Gal)
(Severo et al., 2015a, 2015b). The histone HKDTH4) was used as an internal standard due

to its expression stability under the experimentaiditions (Galli et al., 2014). Leaves and



186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

fruit collected from control strawberries plantsrev@ised as baseline expression to establish

the relative transcript accumulation.

2.9 Experimental design and statistical analysis

The experiment was carried out in a completely oamdiesign with three replicates
using control plants without UV-C application (gnéeuse 1) and plants treated with UV-C
(greenhouse 2). Data were analyzed for normalityhgusa Shapiro-Wilk test, for
homoscedasticity using a Hartley test, and an arsbf variance (ANOVA) was conducted
(o = 0.05). A post-hoc analysis was performed usintgtest ¢ = 0.05). Percent data was

normalized before statistical analysis.

3. Reaults

3.1 Photosynthetic efficiency, dry matter partitray) yield, and basic composition

The application of UV-C radiation (0.5 kJ¥nduring cultivation resulted in the
reduction of CQ assimilation ), stomatal conductancegd], and intracellular C®
concentration (§ of strawberries leaves on average 44%, 27%, 8#tl 4espectively (Figs.
2A, B, C). A significant reduction was also observior chlorophyll fluorescence rate
(Fv/IFm) (Figs. 2D, E), indicating a possible effect of &/ on photosystem Il. UV-C
radiation during cultivation reduced leaf biomasgs 28% and fruit yield by 20%. Root,
stolon, and fruit dry matter content were not atedFigs. 2F, G, H). Although UV-C treated
fruit showed lower °Hue (control 32.3 °Hue, UV-C.30Hue), acidity (control 8.0, UV-C 7.5
in citric acid equivalent g 100g ffw) and flesh firmness (control 3.45 N, UV-G18.N) were

not affected.

3.2 UV-C effect on microorganisms
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UV-C treatment lowered fungal inocula in the airemhcompared to control samples
(Fig. 3A). Mesophilic microorganism count on thefaoe of strawberries was lower in fruit
treated with UV-C (600 CFUJY than in control fruit (1670 CFUY (Fig. 3B). The
occurrence of spontaneous decay on strawberrigstairad at room temperature for 3 d was
lower in UV-C treated fruit (39%) than control sttaerry (76%) (Fig. 3C). However, when
fruit were inoculated witlBotrytis cinerea spores, high levels of decay were detected for both
treatments (86% and 87% for UV-C and control, respely), after three days at RT (Fig.

3D).

3.3 Phytochemical content

PAL enzyme activity increased by 18% in fruit temhtwith UV-C (Fig. 4A). Total
phenolic, total anthocyanin, L-ascorbic acid cohtamd antioxidant potential (Figs. 4B, C,
D, E, F) were higher in UV-C treated fruit (43%,9229%, 39%, respectively), while total

folate content was reduced (11%).

3.4 Relative transcript accumulation

The expression profile of control and UV-C treapdahts was similar in leaf and fruit
tissues (Fig. 5). Photosynthesis-associated ddwilb-1 encoding for a light-harvesting
complex was down-regulated by UV-C whifel,3-glucanasepfl,3-Gluc), pathogenesis-
related protein 1RR-1), and phenylalanine ammonia lyagl) were up-regulated by UV-
C. Anthocyanin synthaseANS) and p-galactose dehydrogenas@Gal) gene expression

showed no clear pattern.
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4. Discussion

Postharvest UV-C radiation application increased &helf life, affects phytochemical
content, and interferes with ripening, maturatiemg senescence processes (Baka et al., 1999;
Charles et al., 2008a, 2008b, 2008c; GonzAlgailar et al., 2007; Maharaj et al., 1999;
Pombo et al., 2011; Severo et al., 2015a, 2015hy. $tudies have investigated the effects of
UV-C radiation application during cultivation (Olnet al., 2011; Xie et al., 2015). In this
study, photosynthetic efficiency, dry matter pating, fruit yield and decay, phytochemical
content, and relative transcript accumulation ofnege putatively associated with
photosynthesis, defense responses, and phytocHelmigsynthesis were monitored in
strawberries plants treated with UV-C radiationidgrcultivation. UV-C radiation had a
negative effect on leaf photosynthetic efficien®ducing CQassimilation rateX), stomatal
opening ¢s), and intercellular C@®concentration ¢i) (Figs. 2A, B, C). A fluorescence
parameter, measurement was taken when all photosystem reac@oters were opened
(plants and leaves in the dark) and a fluorescpacametef,, measurement was taken when
all reaction centers were closed (maximum lightyirfi@ani et al., 2015; Hurther et al., 2013;
Zivcak et al., 2014). Highkv/Fmvalues indicate high photosynthetic efficiency, amerefore
an increase in dry matter content is expected &8wlet al., 2009; Gurunani et al., 2015;
Zivcak et al., 2014). However, strawberry plantated with UV-C showed a decrease in
FV=Fm-F, andFv/Fm parameters, as well as a decrease in leaf dren@intent (Figs. 2D,
E, F). Concurrently, gene transcript accumulatibhlellb-1 decreased in leaves and fruit of
UV-C treated plants, confirming the impact of thébiotic stress on photosynthetic
parameters. Topcu et al. (2015) observed that Watian (280—315 nm) during broccoli
growth promoted a decrease in total carotenoidyrophyll a, and chlorophyll b contents, but

an increase in ascorbic acid, total phenolic, séavbhoid contents.
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Photosynthesis is a multi-step process with suaees®dox reactions in which
photosystem Il — light-harvesting complex (PSII kcll) is responsible for the absorption of
light energy (photons) by chlorophyll molecules (@ani et al., 2015). Under abiotic stress
conditions, reactive oxygen species (ROS) geneiatehlloroplasts lead to photoinhibition of
PSll-Lhcll (Chen et al., 2012). According to Tikkemet al. (2014), when light energy
absorbed by the PSII-Lhcll pigments is higher tki@a energy consumed severe damage to
PSIl may occur. Therefore, a down-regulatiorLb€lIb-1 in plants treated with UV-C may
have been a plant defense strategy against poskibiage to the photosynthetic machinery.
In addition, root, stolon, and fruit dry matter temts were not affected by preharvest UV-C
treatment (Fig. 2F) despite the reduction in fyigdd (20%) (Figs. 2G, H).

Strawberry is highly susceptible to gray mold dsseeaused bBotrytis cinerea (Neri
et al., 2014). Fruit from strawberry plants treatgth UV-C during cultivation showed lower
incidence of fungal decay (39%) when compared toeated strawberries (76%). In order to
further understand the cause of the decreased dwcayoted by UV-C application, the
inocula present in the air of the greenhouses hadtticrobial count on fruit surface were
monitored. In addition, strawberry fruit was alsoculated withBotrytis cinerea spores. UV-

C radiation promoted a disinfectant action in bibth greenhouse environment and the fruit
surface (Figs. 3A, B, C), and increased trans@aguumulation of defense response ggfies
1,3-Gluc and PR-1. These events combined likely contributed to theelowccurrence of
fungal decay in strawberry treated with UV-C raiatbefore inoculation wittBotrytis
cinerea spores. However, it is known that gene expressioes not always lead to
physiological responses, since many post-transonigk and post-translational events may
occur which interfere with the outcome (Mazzucotetl a., 2008). In addition, strawberry
resistance to a variety of pathogens has been tegbdo be mostly polygenic and

quantitatively inherited (Lewers et al., 2003).gleneral, a plant defense system is composed
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of cell wall structural components, phytochemicalsg PR-proteins (Amil-Ruiz et al., 2011).
Thus it becomes difficult to attribute an inhibiti@f fungal decay only to an increasefof
1,3-Gluc and PR-1 transcripts since all components of the plant defense systemy m
synergistically be playing a role in inhibition &fingal decay (Amil-Ruiz et al., 2011).
Moreover, a reduction in spore and bacterial cogain UV-C radiation was evident.

In the present study, inoculation of fruit wiBotrytis cinerea spores led to high
disease symptom development in both control andQJweated fruit (85%) (Fig. 3D). This
result differed from previous reports that showedduction of fruit decay by UV-C radiation
after inoculation wittBotrytis cinerea spores (Pombo et al. 2011; Charles et al. 2008820
2008c). However, the treatment used in the prelyouentioned studies was a strong single
dose of UV-C, applied to fruit postharvest. In gesent study, weaker doses of UV-C
radiation were applied from flowering to harvesinstituting a different stress condition. In
addition,Botrytis cinerea spore inoculation by wounding of the fruit surfamay represent an
extreme situation, whereby even the strongest defepstem may not be able to counteract.

The relationship between plant and pathogen, anchdurction of the plant defense
system by biotic and abiotic stresses appear guiie complex and are not fully understood
(Amil-Ruiz et al., 2011). Several authors have obse that cell wall thickness and softening
are correlated with pathogen resistance (Cantu l.et2808; Guidarelli et al., 2011).
Furthermore, the effect of postharvest UV-C radiatn fruit cell wall modification and flesh
firmness has also been shown (Baka et al., 199%akdga et al., 1999; Charles et al., 2008b,
2008c). In this study, no difference in flesh firess or fruit decay incidence after inoculation
with Botrytis cinerea spores were observed between control and UV-Getlesirawberries.

After pathogen inoculation, signaling and metabalh@anges due to cell wall injury
and pathogen perception may occur (Amil-Ruiz et211; Neri et al., 2014). Depending on

fruit ripening stage, innate immunity, pre-formecdeahanical barriers, and a response of
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resistance induction, the fruit would be able tarderact the disease (Amil-Ruiz et al., 2011).
However, Neri et al.,, (2014) showed that after iatton, the physical injury of tissues
creates significant changes in strawberry volatdesssion that stimulateBotrytis cinerea
growth compared to intact fruit. In the presentdgtustrawberry was submitted to a stress
condition from flowering to harvest, in addition itoculation by wounding the fruit surface,
which likely accelerated fruit metabolism resultinchigh incidence of gray mold disease.

On the other hand, UV-C treatment during cultivatipromoted antioxidant
metabolism (Fig. 4). Plants exposed to abiotiesstrconditions have increased ROS content,
which in turn can cause photoinhibition of the msynthesis photosystem Il repair process
(Gurunani et al., 2015; Lemoine et al.,, 2010). Tpe with this stress condition, plants
synthesize ROS-scavenging enzymes and antioxidguth, asi-tocopherol, L-ascorbic acid,
carotenoids, and phenolic compounds that can retheaeate of photoinhibition (Gill and
Tuteja, 2010; Gurunani et al.,, 2018 this study however, an increase in phytochemical
content was accompanied by a decrease in yieldhapip due to the stress condition
generated by UV-C application from flowering to Vest. Folate content was also lower in
UV-C treated fruit. Since many phenolic compoundsl dolate are derived from the
shikimate pathway with common intermediates suchhagismate, it is plausible that UV-C
directed one pathway instead of another (Bekaext ,€2008).

Preharvest application of UV-C radiation on straxies from flowering to harvest
increased phenylalanine ammonia lyase activity, nphe compounds, including
anthocyanins, L-ascorbic acid, and antioxidant mié However, decreased photosynthetic
efficiency and a 20% yield reduction per plant, ethcorresponded on average to 223 g of
fruit, were observed. Considering the mass balafideuit yield and phenolic concentration,

phenolic content was more than 20% higher in tce&tgt, which compensated for the yield
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reduction. Furthermore, UV-C radiation applied dgristrawberry cultivation decreased

greenhouse spore count and spontaneous developfigoitytis cinerea in fruit postharvest.
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Fig. 1. Experiment timeline with crop cycle (days aftemsplanting) and sampling timeA ( )
— UV-C applications @) — photosynthetic measuremen#, ( ) — physicnated and enzyme
activity determinations (highest productivity petjp(F ) — microorganism occurrencm ( ) —
gPCR and dates for determination of fungal inoawnlathe air, and # ) — dry matter

partitioning determination.

Fig. 2. Effect of preharvest UV-C treatment on £@ssimilation rate (A), stomatal
conductance (B), intracellular GQC), fluorescence (D), quantum yield efficiency of
photosystem Il Ev/Fm) (E), dry matter partitioning (F), fruit yield pgiant (G) and total
yield (H) in control —e— ;mmm ) and UV-C treated frui o —=). Asterisks indicate

level of significance at$£0.05. Vertical bars indicate standard deviation.

Fig. 3. Occurrence of fungi in the air (A), number of masidic microorganisms (B),
incidence of fungal decay without inoculation wibtrytis cinerea spores (C), incidence of
fungal decay with inoculation of 1®otrytis cinerea spores (D) in Control strawberr—8—
; Hm) and UV-C treated fruil- -0 C—1 ). Asterisks indicdéel of significance at+0.05.

Vertical bars indicate standard deviation.

Fig. 4. Phenylalanine ammonia lyase (PAL) activity (A)talophenolic content (B), total
anthocyanin content (C), ascorbic acid content @njioxidant activity (E) and folate content
(F) in Control strawberrymmm ) and UV-C treated fr(C——1). Asterisks indicate level of

significance at R0.05. Vertical bars indicate standard deviation.

Fig. 5. Relative transcript accumulation of genes encodemgymes associated with

photosynthesis, resistance to pathogens, phenohgpounds biosynthesis and L-ascorbic
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acid biosynthesis in leaves of control strawberaesl UV-C treated fruit. Samples were
collected at 0O, 8, 32, 56, and 80 d after treatmkeaaves and fruit collected from control
strawberries plants were used as baseline expregsicestablish the relative transcript
accumulation. Values were normalized by applying2lo Transcript accumulation is
represented in Multi Experiment Viewer software @R MeV). Green color on the left
represents the minimum expression level, blackrcwlahe middle represents the median

level and red color represents the maximum trapson level observed.
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Fig. 1. Experiment timeline with crop cycle (days afteantsplanting) and sampling
times A) — UV-C applications,®) — photosynthetic measurementsg ( ) —
physicochemical and enzyme activity determinati@righest productivity period) K )

— microorganism occurrencall( ) — qPCR and datedetermination of fungal inocula

in the air, and# ) — dry matter partitioning efebination.
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Photosynthetic efficiency and light harvest complex mMRNA accumulation were down
regulated by UV-C

Preharvest UV-C lowered yields and reduced leaf dry matter content

Preharvest UV-C promoted antioxidant metabolism activation and prevented fruit decay
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