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Abstract. The long-term response of the flood activity to

both Atlantic and Mediterranean climatic influences was ex-

plored by studying a lake sequence (Lake Foréant) of the

Western European Alps. High-resolution sedimentological

and geochemical analysis revealed 171 event layers, 168 of

which result from past flood events over the last millennium.

The layer thickness was used as a proxy of intensity of past

floods. Because the Foréant palaeoflood record is in agree-

ment with the documented variability of historical floods re-

sulting from local and mesoscale, summer-to-autumn con-

vective events, it is assumed to highlight changes in flood

frequency and intensity related to such events typical of both

Atlantic (local events) and Mediterranean (mesoscale events)

climatic influences. Comparing the Foréant record with other

Atlantic-influenced and Mediterranean-influenced regional

flood records highlights a common feature in all flood pat-

terns that is a higher flood frequency during the cold period

of the Little Ice Age (LIA, AD 1300–1900). In contrast, high-

intensity flood events are apparent during both the cold LIA

and the warm Medieval Climate Anomaly (MCA, AD 950–

1250). However, there is a tendency towards higher frequen-

cies of high-intensity flood events during the warm MCA.

The MCA extremes could mean that under the global warm-

ing scenario, we might see an increase in intensity (not in

frequency). However, the flood frequency and intensity in

the course of the 20th century warming trend did not change

significantly. Uncertainties in future evolution of flood inten-

sity lie in the interpretation of the lack of 20th century ex-

tremes (transition or stable?) and the different climate forc-

ing factors between the two periods (greenhouse gases vs.

solar and/or volcanic eruptions).

1 Introduction

Heavy rainfall events trigger mountain-river floods, one of

the most significant natural hazards, causing widespread loss

of life, damage to infrastructure and economic deprivation

(e.g. Kundzewicz et al., 2014). This is especially the case for

the Alpine area in Europe, where tourism and recent demo-

graphic development with an increasing population raise the

vulnerability of infrastructure to natural hazards (e.g. Benis-

ton and Stephenson, 2004). Moreover, the current global

warming is expected to lead to an intensification of the hy-

drological cycle and a modification of flood hazard (IPCC et

al., 2013). Hence, a robust assessment of the future evolution

of the flood hazard over the Alps becomes a crucial issue.

A main limitation for robust flood-hazard projections is

the scarce knowledge on the underlying natural climate dy-

namics that lead to these extreme events (IPCC, 2013). In-

deed, the stochastic nature and the rare occurrence of extreme

events make the identification of trends based on instrumen-

tal data alone difficult (e.g. Lionello et al., 2012). One way of

overcoming this issue is to extend flood series beyond obser-

vational data and compare these data sets with independent

climatic and environmental forcing. In this purpose, many

types of sedimentary archives have been studied (e.g. Luter-

bacher et al., 2012 and references therein). Among them lake
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sediments are being increasingly studied because they allow

to reconstruct flood records long enough to identify the natu-

ral variability at different timescales (e.g. Noren et al., 2002;

Oslegger et al., 2009; Wilhelm et al., 2012a; Czymzik et al.,

2013; Glur et al., 2013; Corella et al., 2014).

In the western Alps, many lake-sediment sequences have

been studied to better assess the response of the flood activ-

ity to climate variability. These studies revealed higher flood

frequency of mountain streams in many regions during multi-

centennial cold phases such as the Little Ice Age (Giguet-

Covex et al., 2012; Wilhelm et al., 2012a, 2013; Glur et al.,

2013; Wirth et al., 2013b; Amann et al., 2015). However, re-

garding flood intensity and/or magnitude, opposite patterns

appear with the occurrence of the most extreme events during

warmer periods in the north (Giguet-Covex et al., 2012; Wil-

helm et al., 2012b, 2013), while they occurred during colder

periods in the south (Wilhelm et al., 2012a, 2015). These

north-south opposite flood patterns were explained by flood-

triggering meteorological processes specific to distinct cli-

matic influences: Atlantic in the north versus Mediterranean

in the south. In the north-western part of the Alps, floods at

high altitude are mainly triggered by local convective events

(i.e. thunderstorms) and seem to mainly depend on the tem-

perature that would strengthen vertical processes (e.g. Wil-

helm et al., 2012b, 2013). In contrast, floods in the south are

mostly triggered by mesoscale events and may strongly de-

pend on pathways and intensity of storm-tracks (e.g. Trigo

and Davis, 2000; Boroneant et al., 2006; Boudevillain et al.,

2009). By analogy with these results over past warm peri-

ods, the mountain-flood hazard might be expected to increase

in the north-western Alps, mainly because of an enhanced

flood magnitude associated to stronger convective processes.

Hence, better assessing the spatial extent of the Atlantic-

influenced flood pattern at high-altitude appears a crucial is-

sue to appropriately establish hazard mitigation plans and

prevent high socio-economic damages.

In this context, the present study was designed to recon-

struct the flood pattern at an intermediate situation between

the north-western and south-western Alps, i.e. at the climate

boundary between Atlantic and Mediterranean influences.

This is undertaken by reconstructing a millennium-long flood

chronicle from the sediment sequence of the high-altitude

Lake Foréant located in the Queyras Massif (France).

2 Regional setting

2.1 Hydro-climatic setting and historical flood record

The Queyras massif is located in between the northern and

southern French Alps where the climate is influenced by the

Atlantic Ocean and the Mediterranean Sea (Fig. 1). As a re-

sult, the Queyras mountain range corresponds to a transition

zone of Alpine precipitation patterns in the meteorological

reanalyses (Durant et al., 2009; Plaut et al., 2009) and in

the simulations (Frei et al., 2006; Rajczak et al., 2013). In

the Queyras, heavy precipitation events are related to either

local convective phenomena (i.e. summer thunderstorms) or

mesoscale convective systems. The mesoscale systems called

“Lombarde-Type” or “East Return” events occur mainly

from late spring to autumn and result from Mediterranean hu-

mid air masses flowing northward into the Po Plain and then

westward to the Queyras Massif (e.g. Gottardi et al., 2010;

Parajka et al., 2010). The humid air masses are then vigor-

ously uplifted with the steep topography of the Queyras mas-

sif, causing an abrupt cooling of the air masses and intense

precipitations. Such mesoscale precipitation events, typical

of the Mediterranean climate (e.g. Buzzi and Foschini, 2000;

Lionello et al., 2012), affect extensive areas and may lead to

catastrophic floods at a regional scale as shown in June 1957

or October 2000 over the Queyras massif (Arnaud-Fassetta

and Fort, 2004). Other numerous past flood events were doc-

umented from studies of local historical records. These data

have been compiled in a database managed by the ONF-RTM

(http://rtm-onf.ifn.fr/). They show that the village of Risto-

las (located 8 km downstream from Lake Foréant, Fig. 1c)

has been affected at least 34 times over the last 250 years by

floods of the Guil River and its five main tributaries (see Sup-

plement).

2.2 Lake Foréant and its tributaries

Lake Foréant (2620 m a.s.l., 44◦42′20′′ N, 6◦59′00′′ E) is lo-

cated in a cirque of 3 km2 in the upper part of the Queyras

Massif, adjacent to the Italian border (Fig. 1). It is located

approximately 60 km north from Lake Allos and 100 km

south-west from Lake Blanc, whose hydro-climatic settings

are characterized by the south-western and north-western

flood pattern, respectively (Wilhelm et al., 2012a, b; Fig. 1b).

The catchment rises up to 3210 m. a.s.l. and is made up

of three lithologies from the Queyras schistes-lustrés nappe

(e.g. Schwartz et al., 2009); (i) marble in the eastern part,

(ii) calc-schist in the western part and (iii) a narrow band of

arkose in between (Fig. 1d). The main stream of the catch-

ment, the Torrent de Bouchouse, drains mainly the central

band of arkose. Before entering the lake, this stream has built

an alluvial plain (Fig. 1e). This suggests that the Bouchouse

stream is a major source of sediment entering the lake. In

addition, two minor and non-permanent streams drain the

western part of the catchment. In contrast, they enter the lake

through only small deltas compared to the Bouchouse inflow

area, suggesting limited detrital inputs. There is no evidence

that the catchment was glaciated in the past, i.e. no moraine

or other glacial deposits occur. Thereby, detrital inputs only

result from the erosion and transport of these lithologies. De-

trital inputs from these streams are limited to summer and

autumn because the catchment is covered by snow and the

lake is frozen from mid-November to the beginning of June.

The Bouchouse stream flows downstream into the Guil River

and reaches approximately 8 km further the village of Risto-

las (Fig. 1c).
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Figure 1. (a) Location of Lake Foréant in the western Alps, (b) compared to the locations of the previously studied Lake Blanc (BLB,

Wilhelm et al., 2012b; BAR, Wilhelm et al., 2013) and Lake Allos (ALO, Wilhelm et al., 2012a). (c) Location of the Foréant catchment area

in the hydrological network flowing to the village of Ristolas. (d) Geological and geomorphological characteristics of the Foréant catchment

area. (e) Bathymetric map of Lake Foréant and coring sites.

3 Method

3.1 Lake coring

In summer 2013, a bathymetric survey was carried out on

Lake Foréant and revealed a well-developed flat basin in the

centre of the lake with a maximum water depth of 23.5 m

(Fig. 1e). An UWITEC gravity corer was used to retrieve

four cores along a north-south transect in the axis of the two

main inlets of the Bouchouse stream. Cores FOR13P3 and

FOR13P4 correspond to the proximal locations of the two

different branches of the Bouchouse stream and aim at inves-

tigating their respective sediment inputs during floods. Cores

FOR13P2 and FOR13P1 correspond to the depocenter and to

the most distal position, i.e. the opposite slope to the Bouc-

house inflows, respectively.

3.2 Core description and logging

Cores were split lengthwise and the visual macroscopic fea-

tures of each core were examined to identify the differ-

ent sedimentary lithofacies. The stratigraphic correlation be-

tween the cores was then carried out based on these defined

lithofacies. The stratigraphic correlation allows identifying

the depositional pattern of the event layers within the lake

basin. Depositional patterns of event layers may help to deci-

pher their trigger, i.e. mass-movements vs. flood events (e.g.

Sturm and Matter, 1978; Wilhelm et al., 2012b; Van Daele et

al., 2015).

High-resolution colour line scans and gamma-ray atten-

uation bulk density measurements were carried out on a

GeotekTM multisensor core-logger (Institute of Geological

Sciences, University of Bern). Bulk density was used as a

proxy of event layers, e.g. flood layers, characterized by

higher density due to the high amount of detrital material

www.clim-past.net/12/299/2016/ Clim. Past, 12, 299–316, 2016
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(e.g. Støren et al., 2010; Gilli et al., 2012; Wilhelm et al.,

2012b).

Geochemical analysis and X-ray imaging were carried

out using an Itrax™ (Cox Analytical Systems) X-ray fluo-

rescence (XRF) core scanner (Institute of Geological Sci-

ences, University of Bern), equipped with a Molybdenum

tube (50 keV, 30 mA) with a 10 s count-time using sampling

steps of 1 mm (XRF) and 0.2 mm (X-ray imaging). Several

studies could demonstrate that counts received from XRF

core scanning are proportional to element concentrations

if no important matrix effects due to pronounced lithology

changes or variations of pore water volume and chemical

composition are present (e.g. Kylander et al., 2013; Russell

et al., 2014). Geochemical data were applied to identify event

layers at high resolution through their higher content in detri-

tal material (e.g. Arnaud et al., 2012; Wilhelm et al., 2012b;

Czymzik et al., 2013; Swierczynski et al., 2013) and/or as

high-resolution grain-size analysis (e.g. Cuven et al., 2010;

Wilhelm et al., 2012a, 2013). Geochemical analyses were

carried out on core FOR13P2. X-ray images highlighting the

variability of the sediment density have been acquired for the

four cores.

Grain size analyses on core FOR13P2 were performed us-

ing a Malvern Mastersizer 2000 (Institute of Geography, Uni-

versity of Bern) on sub-samples collected at a 5 mm contin-

uous interval. Before grain-size analysis, the samples were

treated in a bath of diluted (30 %) hydrogen peroxide during

3 days to remove organic matter. The disappearance of the

organic matter was checked through smear slides observa-

tions. These grain-size analyses of the detrital material were

performed to characterize event layers and, when event lay-

ers are induced by floods, to establish a proxy of flood in-

tensity. Grain-size variability is assumed to be related with

the stream flow energy of the river entering the lake and,

thereby, with the peak discharge reached during the flood

event (Campbell, 1998; Lapointe et al., 2012; Wilhelm et al.,

2015). The flood intensity may also be reconstructed based

on the amount of sediment transported and deposited during

floods (e.g. Schiefer et al., 2011; Jenny et al., 2014; Wilhelm

et al., 2015). This approach appears particularly relevant in

case of an insignificant variability of the flood-sediment grain

size (e.g. Jenny et al., 2014; Wilhelm et al., 2015). When

the depositional pattern of the flood layers within the lake

basin (assessed through the stratigraphic correlation) shows a

high variability, many cores are required for a reliable assess-

ment of the flood-sediment volumes (e.g. Page et al., 1994;

Schiefer et al., 2011; Jenny et al., 2014). However, when the

depositional pattern of the flood layers is stable over time, the

layer thickness in one core may be sufficient (e.g. Wilhelm

et al., 2012b, 2015). As a result, grain size and sediment vol-

ume of the event layers were both explored as two distinct

proxies of flood intensity.

3.3 Coprophilous fungal spores analysis

Erosion processes in high-altitude catchments may be mod-

ified by grazing activity and, thereby, the climatic signal in

flood reconstructions may be altered (e.g. Giguet-Covex et

al., 2012). The variability of grazing intensity in a catchment

area can be reconstructed from the sedimentary abundance of

coprophilous fungal ascospores, i.e. Sporormiella (HdV-113)

(e.g. Davis and Schafer, 2006; Etienne et al., 2013). To test

the potential impact of grazing intensity on the reconstructed

flood activity, Sporormiella abundance was determined in

subsamples collected all along the core FOR13P3 with an

approximate step of 3 cm. This core was chosen because it

was the sequence with the thinnest potentially erosive event

layers. During the sampling, event layers were avoided be-

cause they may correspond to layers induced by flood or

mass-movement events that may have transported unusual

quantities of Sporormiella ascospores, or induced the re-

mobilization of older sediments. Subsamples were chem-

ically prepared according to the procedure of Fægri and

Iversen (1989). Lycopodium clavatum tablets were added in

each subsample (Stockmarr, 1971) to express the results in

concentrations (number cm−3) and accumulation rates (num-

ber cm2 yr−1). Coprophilous fungal ascospores were iden-

tified based on several catalogues (Van Geel and Aptroot,

2006; Van Geel et al., 2003) and counted following the pro-

cedure established by Etienne and Jouffroy-Bapicot (2014).

3.4 Dating methods

For dating the lake sequence over the last century, short-

lived radionuclides (210Pb, 137Cs) were measured by gamma

spectrometry at the EAWAG (Zürich, Switzerland). The core

FOR13P4 was sampled following a non-regular step of

1± 0.2 cm. The non-regular step aims at matching the fa-

cies (i.e. sedimentary background or event layer) boundaries

for homogeneous samples. The 137Cs measurements allowed

two main chronostratigraphic markers to be located: the fall-

out of 137Cs from atmospheric nuclear weapon tests culmi-

nating in AD 1963 and the fallout of 137Cs from the Cher-

nobyl accident in AD 1986 (Appleby, 1991). The decrease in

excess 210Pb and the Constant Flux/Constant Sedimentation

(CFCS) allowed a mean sedimentation rate to be calculated

(Goldberg, 1963). The standard error of the linear regression

of the CFCS model was used to estimate the uncertainty of

the sedimentation rate obtained by this method. The 137Cs

chronostratigraphic markers are then used to control the va-

lidity of the 210Pb-based sedimentation rate.

To date the sequence beyond the last century, small-size

vegetal macro-remains were sampled in core FOR13P4. Ter-

restrial plant remains were isolated at the Institute of Plant

Sciences (University of Bern) and sent for AMS 14C analysis

to the AMS LARA Laboratory (University of Bern). 14C ages

were calibrated using the Intcal13 calibration curve (Reimer

et al., 2013; Table 1). In addition, palaeomagnetic chronos-

Clim. Past, 12, 299–316, 2016 www.clim-past.net/12/299/2016/
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tratigraphic markers were also used. These markers can be

obtained by comparing the characteristic declination and in-

clination of remanent magnetization (ChRM) versus depth to

global geomagnetic models or to known secular variations of

the geomagnetic field (e.g. Barletta et al., 2010; Wilhelm et

al., 2012a). Palaeomagnetic investigations were performed at

the CEREGE laboratory (University Aix-Marseille) and are

detailed in Supplement.

Using the R-code package “clam” (Blaauw, 2010), an age-

depth model was generated from the 210Pb ages, the 14C ages

and the palaeomagnetic chronological markers.

4 Results

4.1 Sedimentology

The sediment consists of a homogeneous, brown mud mainly

composed of silty detrital material and aquatic organic re-

mains (small fragments of plants and anamorphous organic

matter), representing the background hemi-pelagic sedimen-

tation. These fine grained deposits are interrupted by 171

rather coarser-grained layers, which are interpreted to repre-

sent short-term depositional events, i.e. event layers (Fig. 2).

The 171 event layers correspond to graded layers, charac-

terized by their higher density, a slight fining-upward trend

and a thin, whitish fine-grained capping layer (Fig. 2). There

is no evidence of an erosive base. According to the strati-

graphic correlation, almost all these graded layers (168 out of

171) extend over the entire lake basin with a regular deposi-

tion pattern. The thickness of these 168 graded layers is sys-

tematically larger in cores FOR13P2 and FOR13P4, and de-

creases, respectively in cores FOR13P1 and FOR13P3. This

suggests that the southern branch of the Bouchouse stream is

the main sediment input over the studied period (Fig. 1). The

grain-size of these graded layers is dominated by silt-sized

grains with only small amounts of clay and/or fine silt present

in the whitish capping layer and to coarse silt in their basal

part (Figs. 2 and S1 in Supplement). The origin of these 168

is discussed in Sect. 5.1. The three other graded layers show

a higher variability in thickness, grain size and depositional

pattern. Above all, they overlie 3 cm coarse-grained layers,

present at 75 cm in core FOR13P2 and at 9 and 42 cm in

core FOR13P4 (Fig. 2). The coarse-grained layers consist of

pebble gravels and aquatic plant remains embedded in a silty

matrix. The high porosity in the sediment due to the presence

of gravels generates a partial loss of XRF signal, preventing

a reliable geochemical characterization. X-ray images show

chaotic sedimentary structures. The stratigraphic correlation

revealed that 2 cm of sediment are missing below the thickest

coarse-grained layer in core FOR13P4, suggesting an erosive

base for this layer. The stratigraphic succession of a coarse-

grained layer overlain by a graded layer (labelled MMIL in

Figs. 2 and 3) suggests that the two layers were induced by a

single event. Their origin is discussed in Sect. 5.1.

4.2 Geochemistry

Among the core scanner output parameters, the scattered in-

coherent (Compton) radiation of the X-ray tube (Moinc) may

vary with the sediment density (Croudace et al., 2006) and,

thereby, offer a high-resolution proxy for sediment density.

Moinc values were averaged at a 5 mm resolution to be com-

pared to the density obtained at a 5 mm resolution with the

gamma-ray attenuation method. A positive and significant

correlation (r = 0.85, p< 10−4) between the two density pa-

rameters was found and allowed using Moinc as a proxy of

sediment density for identifying millimetre-scale event lay-

ers (Fig. 3).

The variability of other elements within the event layers

was then investigated to assess (i) a high-resolution grain-

size proxy and (ii) distinct sediment sources of the event lay-

ers between the littoral (i.e. mass-movement origin) and the

catchment area (i.e. flood origin). The variability of potas-

sium (K) intensities vs. sediment depth (Figs. 2 and S1)

shows increased K intensities in the capping layers of the

event layers, suggesting K enrichment in the finest sediment

fraction. Variability in silicon (Si) intensities is correlated to

K intensities (r = 0.77, p< 10−4). Variations in iron (Fe)

intensities show an opposite pattern with Fe enrichments

in the basal and coarser part of the graded beds. Interest-

ingly, Fe is the only element which elevated in event layers.

These results suggest that the Fe /K ratio may be used as a

millimetre-scale proxy for relative grain-size distribution and

hence for detecting millimetre-scale event layers. However,

since grain-size variability is insignificant, the information

that can be won from this proxy in regard to flood-intensity

reconstruction is minor.

Ca intensities are most of the time very low (< 900 counts),

except for several sharp peaks and two well-marked excur-

sions (> 1200 counts) at 30 and 75 cm in core FOR13P2

(Fig. 3). These two well-marked excursions correspond to the

two thickest graded layers (labelled MMIL2 and 3; Fig. 2). In

addition, manganese (Mn) intensities also vary within a low

value range (< 104 counts) interrupted by sharp, well-marked

peaks (up to 4.104 counts). All those Mn peaks are located at

the base of the 168 graded layers (those that not overlain a

coarse-grain layers). However not every base of graded lay-

ers corresponds to a Mn peak. To better assess the relation-

ships between those elements, the Ca intensities were plotted

against Fe, K and Mn intensities (Fig. 3). These plots clearly

highlight two groups of deposits. The background sediments

and the 168 graded layers (those labelled FIL in Fig. 3) are

characterized by (i) low Ca intensities and (ii) a high variabil-

ity in Mn intensities. The three graded layers labelled MMIL

in Fig. 2 show a distinct geochemical pattern with (i) high Ca

intensities regardless of Fe and K intensities and (ii) very low

Mn intensities.

www.clim-past.net/12/299/2016/ Clim. Past, 12, 299–316, 2016
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Figure 2. Lithological descriptions of cores and stratigraphic correlations based on sedimentary facies. For each core, a photo (left), an

X-ray image (centre) and a stratigraphic log is shown (right). 14C samples are indicated by red stars. Variability in grain-size distribution and

geochemical elements (Fe, K, Ca and Mn) is shown for the core FOR13P2. Moinc used as a high-resolution proxy of density is shown close

to the density measurements performed by gamma-ray attenuation. Variability in Sporomiella concentration is shown for core FOR13P3.
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Table 1. Radiocarbon dates of core FOR13P4. We calculated the event-free sedimentary depth by removing the graded beds, which were

considered to be instantaneous deposits. See text for explanation, nature of samples and calibration procedures.

BE nr. Core Core depth Core depth Event-free depth Material 14C yrs. BP Cal. yrs BP Cal. yrs AD

(cm) in core FOR13P2 (cm) in core FOR13P2 (cm) (±2σ ) (±2σ )

2094.1.1 FOR13P4 84–85 82–83 33 Terrestrial 650± 18 561–665 1285–1389

2095.1.1 FOR13P4 109–111 106–108 46± 0.5 plant 1052± 33 923–1052 898–1027

2096.1.1 FOR13P4 113–115 110–112 47± 0.5 remains 1242± 66 1004–1292 658–946

80 120 160
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 (103 counts)
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(103 counts)

K
(103 counts)

Mn
(103 counts)

FIL

Sed. Background

MMIL1
MMIL2
MMIL3

Graded layers:

Graded layers that overlie 
a coarse-grained layer:

Figure 3. To illustrate the different geochemical characteristics of the sedimentary background and the graded layers, their Ca intensities

were plotted against their Fe, K and Mn intensities. FIL refers to flood- and MMIL to mass-movement-induced layers. The different MMILs

are labelled according to Fig. 2.

4.3 Chronology

The down-core 210Pb excess profile for core FOR13P2 shows

a continuous decrease to low values (∼ 50 Bq Kg−1), punc-

tuated by sharp excursions to low values for three layers (2–

3.5, 7.5–10.5 and 15–17 cm) corresponding to graded lay-

ers (Fig. 4a). In line with Arnaud et al. (2002), these val-

ues were excluded to build a corrected sedimentary record

without event layers (Fig. 4b). The CFCS model (Goldberg,

1963), applied on the event-free 210Pb excess profile, pro-

vides a mean sedimentation rate of 1.3± 0.1 mm yr−1 (with-

out the event layers). Ages derived from the CFCS model

were transposed to the original sediment sequence to provide

a continuous age–depth relationship (Fig. 4c). The event-free
137Cs profile indicated two peaks at 3.5 and 5.5 cm (Fig. 4b),

interpreted as the result of the Chernobyl accident in AD

1986 and the maximum fallout of the nuclear weapon tests

in AD 1963. These independent chronological markers are

in good agreement with the 210Pb excess ages, supporting

the age-depth model over the last century (Fig. 4c).

In order to evaluate the reliability and efficiency of the

palaeomagnetic results several points need to be verified:

(i) the preservation of the sedimentary magnetic fabric, (ii)

the stability of magnetic mineralogy, and (iii) the stability

of the magnetic components. Results of Anisotropy of Mag-

netic Susceptibility for core FOR13P4 show a well preserved

sedimentary fabric, i.e. Kmin inclination close to the verti-

cal, except in the thickest event layers (labelled MMIL2 and

MMIL3, Fig. 2) where the Kmin inclination is clearly devi-

ated (Fig. S2). For the three cores, the mean destructive field

of ARM and IRM is very similar (between 20 and 30 mT)

indicating a magnetic mineralogy mainly composed of low

coercivity phase. The S ratio (Bloemendal et al., 1992) is al-

ways between 0.86 and 0.95 indicating lower coercivity and

a ferrimagnetic mineralogy. This suggests a good stability of

the magnetic mineralogy, except in event layers where other

parameters such as the relative palaeointensity (calculated as

NRM intensity divided by ARM intensity) are clearly differ-

ent, highlighting a different magnetic mineralogy. PCA have

then been performed using puffin plot software (Lurcock and

Wilson, 2012) to calculate the ChRM. A careful examina-

tion of demagnetization diagrams shows a unidirectional be-

haviour (Fig. S3). The mean angular deviation (MAD) is usu-

ally lower than 6 revealing a good stability of the magne-

tization direction. In most cases, the calculated component

is not straight to the origin. This is particularly the case in

the event layers. This implies the occurrence of a high co-

ercivity component of unknown origin. All cores show quite

large variations of the declination and inclination vs. depth.

Because of the deviation of the Kmin and changes in mag-

netic mineralogy, measurements from the thickest event lay-

ers (i.e. MMIT2 and MMIT3) have been removed to build

event-free declination and inclination signals (Fig. 5a). Based

on the stratigraphic correlation, the event-free palaeomag-

netic profiles obtained for each core were all corrected to a

reference depth, i.e. the event-free depth of core FOR13P2

(Fig. 5b). Finally, all magnetic profiles were averaged to ob-

tain unique curves of declination vs. depth and inclination vs.

depth (Fig. 5c), smoothing small artefacts and making it eas-

ier for comparison to the reference curve (ARCH3.4k model;
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Figure 4. (a) 226Ra, 210Pb and 137Cs profiles for core ALO09P12. (b) Application of a CFCS model to the event-free sedimentary profile

of 210Pb in excess (without the thick graded beds considered as instantaneous deposits). (c) Resulting age–depth relationship with 1σ uncer-

tainties and locations of the historic 137Cs peaks supporting the 210Pb-based ages. C corresponds to the historic 137Cs peak of Chernobyl

(AD 1986) and MP to the maximum 137Cs peak of the nuclear fallout (AD 1963).

Donadini et al., 2009; Korte et al., 2009). From the varia-

tions of the reference curve over the last millennium, mag-

netic declination minima and maxima can be identified at AD

1810± 20, 1540± 70 and 1365± 25 (D-1 to D-3, respec-

tively). For the inclination, two tie points at AD 1700± 30

and 1330± 40 can be used (I-1 and I-2, Fig. 5d). Further-

more the ChRM declination profile presents 3 declination

features and the ChRM inclination profile presents 2 incli-

nation features over this period, allowing the correlation pro-

posed (Fig. 5). These well-correlated declination and incli-

nation features can thus be used as additional chronological

markers.

The 210Pb and the 14C ages (Fig. 4 and Table 1) were then

combined with the palaeomagnetic chronomarkers (Fig. 5) to

construct an age-depth model covering the whole sequence

(Fig. 6). As noted above, the age-depth model was calcu-

lated on an event-free depth using a smooth spline with the

“clam” R-code package (Blaauw, 2010). This revealed that

the sequence FOR covers the last millennium with a mean

sedimentation rate of 1 mm yr−1 (without event layers).

5 Discussion

5.1 Different triggers for event layers

5.1.1 Mass movements

The unusual presence of gravel and aquatic plant remains,

in combination with the chaotic sedimentary structures and

the localized deposition areas, suggests that the coarse-

grained layers result from a mass movement originating

from sediment-charged slopes (e.g. Sauerbrey et al., 2013).

The three graded layers overlying the coarse-grained lay-

ers then result from the sediment that is transported in sus-

pension during sliding of subaquatic slope sediments and

then deposited over the coarse-grained layers and further

into the lake basin (e.g. Girardclos et al., 2007; Moernaut

et al., 2014). As a result, each stratigraphic succession of a

graded and a coarse-grained layer is interpreted as a mass-

movement-induced layer (MMIL). These MMILs are well

characterized by higher Ca intensities that suggest a dis-

tinctly different sediment source when compared to the sed-

imentary background and to the 168 graded layers that do

not overlie a coarse-grain layer. The coarse-grained layer of

MMIL3 is only present in core FOR13P3, suggesting a lit-

toral origin of the mass movement (Fig. 2). The two coarse-

grained layers of MMIL1 and MMIL2 are located in core

FOR13P4 (Fig. 2). These layers may thus originate either

from the delta or from the littoral slopes. Slope angles of

< 10◦ and ∼ 15◦ for delta and littoral slopes of Lake Foréant,

respectively, point to a littoral origin as suggested by many

studies showing that slope angles > 10◦ are favourable for the

generation of mass-movements (e.g. Moernaut et al., 2007;

Strasser et al., 2011; Van Daele et al., 2013). In addition,

higher Ca intensities are often an indicator of littoral sed-

iments as a result of increased fluxes of endogenic calcite

when compared to the open-water endogenic production.

5.1.2 Flood events

The 168 graded layers may be induced by either mass move-

ments or flood events (e.g. Sturm and Matter, 1978). Their

extents over the whole basin with a relatively homogeneous

deposition pattern, their frequent occurrence and a different

geochemical pattern suggest a distinct origin from that of the

MMIL graded layers. The low Ca intensities suggest a mi-

nor sediment contribution of the marble and calc-schists in

favour of a major contribution of the arkose band, which is

the lithology drained by the main inflow (Fig. 1). The 168

graded layers are also characterized by sharp peaks of Mn

only located at their bases. This location suggests that the
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punctual enrichment in Mn is related to the occurrence of

these event layers. Mn is a redox sensitive element and more

soluble under reducing conditions (e.g. Davison, 1993; Tor-

res et al., 2014). The punctual presence of detectable Mn at

the base of the graded layers suggests that hyperpycnal tur-

bidity currents carry oxygen to the deeper parts of the basin.

Dissolved oxygen is probably also trapped in pore waters of

the individual graded layers. Based on these considerations

we suggest that dissolved and reduced Mn is, in part due to

the rapid increase in loading from the graded layers, migrat-

ing from pore waters of the buried sediments into oxygenated

graded layers where it is oxidized and precipitated likely in

the form of an Mn-oxyhydroxide (e.g. Davison, 1993; De-

flandre et al., 2002). The fast sediment deposition during the

event-layer formation and the low reactive organic matter

concentrations would then prevent reductive dissolution of

the Mn-oxyhydroxide precipitates (e.g. Torres et al., 2014).

According to these layer characteristics, flood events are the

most probable candidate to trigger the 168 graded layers be-

cause (i) these events may be frequent (e.g. Czymzik et al.,

2013), (ii) these events may bring both high oxygen and de-

trital inputs in a short time (e.g. Deflandre et al., 2002), and

(iii) the nature of the sediment corresponds the most to the

main lithology drained by the inflow. Hence, the 168 graded

layers likely correspond to flood-induced layers (FIL).

5.1.3 Chronological controls

MMILs can be triggered by spontaneous failures due to over-

loading and/or oversteepening of sediments-charged slopes,

snow avalanches, rockfalls, earthquakes or fluctuations in

lake levels (e.g. Monecke et al., 2004; Girardclos et al., 2007;

Moernaut et al., 2014). In case of Lake Foréant, changes

in lake level can be excluded because water levels of Lake
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Foréant are well controlled by bedrock outlets. In addition,

there is no geomorphological evidence of major rockfalls in

the catchment area. Regarding earthquakes, many events oc-

curred in the region and affected the population and infras-

tructure. Historical earthquakes are well documented thanks

to the database SisFrance (http://www.sisfrance.net, Lambert

and Levret-Albaret, 1996; Scotti et al., 2004). An earthquake

trigger for the MMILs can then be investigated by comparing

ages of the MMILs to the dates of the closest and/or strongest

historical earthquakes (e.g. Avşar et al., 2014; Howarth et

al., 2014). The three MMILs are, respectively dated to AD

1963 (±6), AD 1814 (+50/−39) and AD 1456 (+19/−56)

(Fig. 6). The age of the most recent deposit is consistent

with the Saint-Paul-sur-Ubaye earthquake (AD 1959), char-

acterized by an epicentre at ca. 20 km from the lake where

the MSK intensity reached VII-VIII. The age of the second

deposit is consistent with the Piemont (Torre Pellice) earth-

quake (AD 1808), characterized by an epicentre at ca. 20 km

from the lake and an MSK intensity of VIII (Fig. 6). For

the older period of the third deposit, data of documented

earthquakes are sparser in the catalogue, precluding a reli-

able assignment. The earthquakes of Saint-Paul-sur-Ubaye

and Piemont are both the closest and strongest historically-

known earthquakes around the lake, suggesting that they are

the most probable trigger of the temporarily corresponding

subaquatic landslides. Overall, there is a good agreement be-

tween major historical events and the calculated ages of the

MMILs supporting their sedimentologic interpretation and

the chronology over the last centuries.

5.2 Palaeoflood record

A flood chronicle of the Bouchouse stream was built by

dating the 168 FILs over the last millennium. Changes in

flood frequency are highlighted through a running sum of

flood occurrences with an 11-year (Fig. 7) or 31-year win-

dow (Fig. 8). The absence of significant grain-size variability

precludes the use of grain size to assess changes in flood in-

tensity (e.g. Giguet-Covex et al., 2012; Lapointe et al. 2012;

Wilhelm et al., 2013, 2015). The relatively homogeneous

grain size of the FILs makes the sediment accumulation per

event a more suitable proxy of flood intensity (e.g. Jenny

et al., 2014). In addition, the relatively homogeneous flood-

sediment deposition pattern within the lake basin makes it

possible to use the FIL thickness as a proxy of the flood-

sediment accumulation as shown by previous calibration in

Alpine environments (Wilhelm et al., 2012b; Jenny et al.,

2014; Wilhelm et al., 2015). Hence, the FIL thickness is here

assumed to represent the flood intensity, under the condition

that erosion processes and availability of erodible materials

in the catchment did not change significantly over time.

5.2.1 Proxy validation

To control the reliability of our reconstruction, the Foréant

palaeoflood record is compared to the historical floods at Ris-

tolas located around 8 km downstream of the lake (Fig. 1c

and Supplement). The almost absence of documented flood

event for the Bouchouse stream (outlet of Lake Foréant) pre-

cludes an event-to-event comparison as undertaken with the

Lake Allos record (Wilhelm et al., 2015). Hence, the 21
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flood events having affected the village of Ristolas and oc-

curring during the ice-free season of the lake (mid-June to

mid-November) have been considered to reconstruct a his-

torical flood record (Fig. 7). This includes six floods consid-

ered as “local” because they only affected the village of Ris-

tolas (catchment area of ca. 80 km2) and 15 floods consid-

ered as “sub-regional” because they also affected other vil-

lages downstream (Abriès, Aiguilles, Chateau-Vieille-Ville,

catchment area of ∼ 320 km2). Through comparison of the

historical chronicles and the lake records, we observe that

the ranges of flood-frequency values are similar, i.e. between

0 and around 4 floods per 11 years. We also observe strong

similarities in the two flood records with common periods

of low flood frequency in AD 1750–1785, 1820–1860 and

1910–1945 and common periods of high flood frequency in

AD 1785–1820, AD 1945–1970 and AD 1985–2000. Only

a slight time lag (∼ 5 years) appears for the latter period in

the lake record. Overall, there is then good agreement with

the historical data, supporting that Lake Foréant sediments

record the variability of past flood events that impacted soci-

eties over the last 250 years relatively well. A major inconsis-

tency, however, appears from 1860 to 1910 since numerous

floods are documented in the lake record but there is missing

evidence for flood in the historical record. A high hydrologi-

cal activity is documented for the region at this time (e.g. Mi-

ramont et al., 1998; Sivan et al., 2010; Wilhelm et al., 2012a,

2015), suggesting that this may result in a historical database

which is locally incomplete.

5.2.2 Potential influences of environmental changes

The Foréant flood record may be considered as relevant over

the entire studied period if erosion processes are stable over

time. Erosion processes in the Foréant catchment may be af-

fected by modifications in the river system and/or by land-use

changes.

The main inflow, the Bouchouse stream, has built an allu-

vial plain upstream of the lake where it is divided in two main

meandering branches. An alternate activity of these branches

during floods may disturb the flood record by triggering vari-

able sediment dispersion within the lake basin (e.g. Wilhelm

et al., 2015). However, such processes seem to be unlikely

because the stratigraphic correlation highlights a stable pat-

tern of the flood-sediment deposition with the thickest FILs

in cores FOR13P2 and FOR13P4 from the depocenter and

a thinning of the FIL deposits toward cores FOR13P1 and

FOR13P3 located in the slopes (Fig. 2). The alluvial plain

may also disturb the record by acting as a sediment trap. In-

deed, the meandering river morphology and the gentle slope

of the alluvial plain may trigger a decrease of the discharge

velocity, resulting in the deposition of the coarser particles

on the plain before entering the lake. This may explain the

small variability in grain-size in the Foréant sediment record.

The grain-size ratio between the base (coarser fraction) and

the top (finer fraction) of the FILs is ∼ 1.3, while it usually

ranges from 5 to 15 in many different geological and envi-

ronmental settings (e.g. Oslegger et al., 2009; Giguet-Covex

et al., 2012; Simmoneau et al., 2013; Wilhelm et al., 2013

Amman et al., 2015; Wilhelm et al., 2015). However, fine

particles (i.e. clays and fine silts that composed the FILs) are

transported by suspension in the river (e.g. Passega, 1964).

As a result, their trapping and storage in the alluvial plain

is unlikely. A negligible storage effect on the fine fraction

is also supported by the relatively stable sedimentation rate

of the silty sedimentary background (Fig. 6) that suggests an
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uninterrupted sediment transport to the lake over the studied

period.

Erosion processes in the catchment may also be modi-

fied by land-use that mainly corresponds at this altitude to

changes in grazing intensity. An increase of grazing inten-

sity may make soils more vulnerable to erosion during heavy

rainfalls and, thereby, may induce an increased sensitivity

of the catchment-lake system to record floods, i.e. higher

flood frequency and/or flood-sediment accumulation in the

sediment record (e.g. Giguet-Covex et al., 2012). Abundance

of Sporormiella is assumed to reflect local changes of graz-

ing intensity in Lake Foréant catchment (e.g. Etienne et al.,

2013). The concentration of Sporormiella ascospores mea-

sured in core FOR13P3 oscillated from 5 to 43 number cm−3

through the sequence (Fig. 2), resulting in accumulation rates

varying from 12 to 340 number cm2 yr−1 over time (Fig. 8).

This variability in Sporormiella abundance has been com-

pared to the variability in flood frequency and flood-sediment

accumulation (see Supplementary Material). We do not find

significant relationships (p>0.05) between these parameters

(Fig. S4), suggesting that variations in pastoralism seemingly

have not had a significant impact on erosion processes in

the Foréant catchment. However, two samples covering the

period AD 1734–1760 show both high Sporormiella accu-

mulation rates and flood frequencies (Figs. 8 and S3). This

suggests that the flood frequency during this period may be

exacerbated by a punctual and very high grazing intensity.

Hence, we postulate that erosion processes did not change

drastically over the studied period, implying that climate is

likely the main factor explaining the recorded flood activity,

with the exception of the period AD 1734–1760.

5.2.3 Palaeoflood activity in the regional climatic setting

Comparison with the historical record shows that the past

flood variability is well reproduced by the Foréant record

(Fig. 7). The Foréant palaeoflood record is thus interpreted as

the recurrence of summer-to-autumn flood events triggered

by both local and mesoscale convective phenomena.

To discuss the millennium-long flood variability in regard

to both Atlantic and Mediterranean climatic influences in the

Alpine domain, the Foréant palaeoflood record is compared

to the palaeoflood records of Lakes Blanc and Allos (Figs. 7

and 8). Lakes Blanc and Allos have similar characteristics

to Lake Foréant such as the high altitude (> 2000 m a.s.l.),

the small catchment area (< 3 km2 ) and the steep catchment

slopes, making the comparison possible. Lake Blanc sedi-

ments located in the northern French Alps mainly record

Atlantic-sourced weather pattern of high altitude, i.e. sum-

mer local convective events (Fig. 1; Giguet-Covex et al.,

2012; Wilhelm et al., 2012b, 2013). In contrast, Lake Al-

los sediments located in the southern French Alps mainly

record Mediterranean-sourced weather patterns of high al-

titude, i.e. mesoscale convective events (Fig. 1; Wilhelm et

al., 2012a, 2015). The last millennium is usually divided in

three climatic periods according to the temperature varia-

tions; the warm Medieval Climate Anomaly (MCA, ca. AD

950–1250), the cold Little Ice Age (LIA, ca. AD 1300–1900)

and the warmer 20th century (e.g. Lamb, 1965; Büntgen et

al., 2011; Luterbacher et al., 2012 and references therein).

During the MCA, the Foréant flood record shows a low flood

frequency with∼ 10 floods per century and, 4 occurrences of

thick flood deposits (> 8 mm thick) that we interpret as high-

intensity flood events. During the LIA, the Foréant record

shows a higher flood frequency with ∼ 17 floods per cen-

tury and only 2 high-intensity events. The 20th century is

finally characterized by ∼ 17 floods per century and an ab-

sence of high-intensity events. The increased flood frequency

during the long and cold period of the LIA, compared to

the MCA, was also observed in the Blanc and Allos records

(Wilhelm et al., 2012a, 2013; Fig. 8), as well as in many

other records from the European Alps (e.g. Arnaud et al.,

2012; Glur et al., 2013; Swierczynski et al., 2013; Wirth et

al., 2013a, b; Amann et al., 2015; Schulte et al., 2015) and the

north-western Mediterranean area (e.g. Jorda and Provansal,

1996; Camuffo and Enzi, 1995; Jorda et al., 2002; Thorndy-

craft and Benito, 2006; Moreno et al., 2008; Benito et al.,

2015; Arnaud-Fassetta et al., 2010). This common pattern

in many flood records of southern Europe may be the re-

sult of a southward shift and an intensification of the dom-

inant westerly winds during boreal summer related to an in-

crease in the thermal gradient between low (warming) and

high (cooling) latitudes (e.g. Bengtsson and Hodges, 2006;

Raible et al., 2007). In this scenario, the Alps are likely to

experience an increase in precipitation due to an increase

in moisture advection from the North Atlantic. In contrary,

the occurrence of high-intensity floods during both the MCA

and the LIA periods is a new feature of Alpine regional pat-

terns, since the most intense floods occurred exclusively dur-

ing the MCA in the Blanc record (Wilhelm et al., 2013) or

during the LIA in the Allos record (Wilhelm et al., 2012a;

Fig. 8) and other Mediterranean records of the Alpine region

(Jorda and Provansal, 1996; Miramont et al., 1998; Jorda et

al., 2002; Arnaud-Fassetta et al., 2010). This suggests that

hydro-meteorological processes related to the Atlantic and to

the Mediterranean climatic influences may alternatively trig-

ger high- intensity events in the Foréant area during the MCA

and the LIA, respectively. However, the most intense floods

at Foréant appear 3 times more frequently during the MCA

than during the LIA, a trend that remains true when consid-

ering various thickness thresholds (8, 7, 6 or 5 mm) for high-

intensity flood events. In addition, the mean sediment accu-

mulation per flood event shows values ∼ 50 % higher dur-

ing the MCA than during the LIA (3.8 vs. 2.4 mm flood−1),

suggesting an increase of the mean flood-event intensity dur-

ing the warmer period. These two evidences of increased

flood intensity during the warm period may be related to

the strengthening of local convective processes due to higher

temperatures, as suggested for the north-western flood pat-

tern (Giguet-Covex et al., 2012; Wilhelm et al., 2012b, 2013).
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Figure 8. Comparison over the last millennium of (b) the reconstructed Foréant flood frequency (31-year running average) and intensity

(thickness of flood deposits) with (a) the Allos flood record from the southern French Alps (Wilhelm et al., 2012a), (c) the BAR flood record

from the northern French Alps (Wilhelm et al., 2013) and (d) the tree-ring-based summer temperature for the European Alps (Büntgen et

al., 2011). The reconstructed Sporomiella-type flux is also shown next to the Foréant flood record to highlight potential human impacts (i.e.

grazing) on the erosion processes that might bias the flood record. The red stars below the Foréant record show the chronological markers

with their 2-sigma uncertainty ranges.

In the Foréant area, higher temperatures seem thus to result

in a lower flood frequency but in higher flood intensity on

the multi-centennial timescale. Flood frequency and inten-

sity during the warmer 20th century, however, do not follow

these trends. The frequency is still similar to the LIA one and

high-intensity events are absent and the mean sediment accu-

mulation per flood event (2.2 mm flood−1) is also similar to

the LIA. Two hypotheses may be considered to explain this

“anomaly”. First, this may result from the relatively short pe-

riod covered by the 20th century (i.e.∼ 100 years) in compar-

ison with the multi-centennial variability documented for the

MCA (i.e. ∼ 300 years) and the LIA (i.e. ∼ 600 years) peri-

ods. Thereby, considering stable temperature–flood relation-

ships over time, the 20th century might be a transitional pe-

riod toward an MCA-like flood pattern with the global warm-

ing. This latter possibility would imply an increasing flood

www.clim-past.net/12/299/2016/ Clim. Past, 12, 299–316, 2016
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hazard in the Foréant region in the near future due to an in-

creased occurrence of high-intensity flood events. Secondly,

this may also result from a non-linearity of the flood response

to temperature, making the analogy between the MCA and

the 20th century more complex, in particular as the current

warming is caused by an unprecedented forcing (greenhouse

gases). Moreover, the other external forcing such as solar

activity, and volcanic eruptions largely varied over the last

millennium (e.g. Servonnat et al., 2010; Delaygue et Bard,

2011; Gao et al., 2012; Crowley and Unterman, 2013) and

their non-linear combination also with the greenhouse gases

may result in different time-space temperature patterns and,

thereby, in different flood responses during these two peri-

ods. In order to explore forcing-dependent impacts on the

climate-flood relationships, deeper analysis utilizing for ex-

ample advanced statistics or simulations is required.

6 Conclusions

High-resolution sedimentological and geochemical analyses

of the Lake Foréant sequence revealed 171 event layers.

Three of the 171 event layers can be differentiated by charac-

teristic geochemical features (high Ca contents and low Mn

contents) and stratigraphic succession. These three event lay-

ers are interpreted as mass-movement-induced layers. The

other 168 event layers show a geochemical pattern similar

to the sedimentary background that mainly corresponds to

detrital material sourced by the rivers. These event layers are

interpreted as flood-induced layers. Only small changes in

grain-size variability in the flood-induced layers precluded

the use of the grain size as a flood-intensity proxy. However,

the relatively homogeneous grain size and deposition pattern

within the lake basin made the flood-deposit thickness a suit-

able proxy for the reconstruction of flood intensity.

Comparison with local historical data indicates that

Foréant sediments sensitively record past flood events with

variability in frequency and intensity related to both Atlantic-

and Mediterranean-influenced hydro-meteorological pro-

cesses, i.e. local and mesoscale convective systems occur-

ring from late spring to autumn. As there is no evidence of

major changes in erosion processes due to landscape evo-

lution or grazing intensity (except maybe for the period

AD 1734–1760), we assume that climate and not land-use

changes exerts the dominant control on flood variability in

the Foréant-record over the past millennium. The compari-

son to northern and southern flood records, i.e. to Atlantic-

and Mediterranean-influenced records, highlights that the in-

crease of flood frequency during the cold period of the LIA

is a common feature of all regional flood patterns from the

European Alps. The comparison also revealed that high-

intensity events in the Foréant region occurred during both

the cold LIA and the warm MCA periods. This specific fea-

ture of the Foréant flood record likely results from its sensi-

tivity to both Atlantic and Mediterranean climatic influences.

However, high-intensity events are more frequent and the

flood intensity is higher during the warm MCA. This sug-

gests that flood hazard may increase in the Foréant region

in response to global warming. Surprisingly, the flood vari-

ability over the warm 20th century appears still similar to the

flood variability of the cold LIA period. This 20th-century

flood trend may be interpreted as the result of a transitional

period toward an MCA-like flood pattern. This would im-

ply an increasing flood hazard in the Foréant region in the

near future due to more frequent high-intensity flood events.

However, this may also result from a non-linear temperature–

flood relationship. In order to better understand the underly-

ing mechanisms deeper analyses employing advanced statis-

tics or simulations need to be applied.

The Supplement related to this article is available online

at doi:10.5194/cp-12-299-2016-supplement.
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