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ORIGINAL ARTICLE
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Abstract

Disruption of species interactions is a key issue in climate change biology. Inter-

actions involving forest trees may be particularly vulnerable due to evolutionary

rate limitations imposed by long generation times. One mitigation strategy for

such impacts is Climate matching – the augmentation of local native tree popula-

tions by input from nonlocal populations currently experiencing predicted future

climates. This strategy is controversial because of potential cascading impacts on

locally adapted animal communities. We explored these impacts using abundance

data for local native gallwasp herbivores sampled from 20 provenances of sessile

oak (Quercus petraea) planted in a common garden trial. We hypothesized that

non-native provenances would show (i) declining growth performance with

increasing distance between provenance origin and trial site, and (ii) phenological

differences to local oaks that increased with latitudinal differences between origin

and trial site. Under a local adaptation hypothesis, we predicted declining gall-

wasp abundance with increasing phenological mismatch between native and cli-

mate-matched trees. Both hypotheses for oaks were supported. Provenance

explained significant variation in gallwasp abundance, but no gall type showed

the relationship between abundance and phenological mismatch predicted by a

local adaptation hypothesis. Our results show that climate matching would have

complex and variable impacts on oak gall communities.

Introduction

Ecosystems across the world are experiencing profound cli-

mate change (IPCC, 2013), driving population responses

whose effects can influence community structure and func-

tion (Walther et al. 2002; Parmesan and Yohe 2003). Forest

ecosystems are expected to be particularly sensitive to pres-

sures imposed by climate because the long generation times

of trees result in low rates of adaptation (Lindner et al.

2010). Furthermore, because forest trees are foundation

(and also often keystone) species for associated communi-

ties of plants, animals, fungi and microbes (Kennedy and

Southwood 1984; McEwan et al. 2011; Lindenmayer et al.

2014), effects on them are expected to cascade through

associated trophic levels (Frelich et al. 2012). Conse-

quently, there is considerable interest in developing adap-

tive forest management strategies to preserve ecosystem

productivity and services in the face of climate change

(Spittlehouse and Stewart 2003; Broadmeadow et al. 2005;

Aitken et al. 2008; Bower and Aitken 2008; Bolte et al.

2009). Assisted migration, in the form of climate matching,

has emerged as one potential strategy facilitating forest

adaptation to predicted future climates (Hoegh-Guldberg

et al. 2008; Dawson et al. 2011), particularly in commercial
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forestry where potential for in situ adaptation may be lim-

ited (Broadmeadow et al. 2005; but see Cavers and Cottrell

2014). Climate matching is based on the premise that natu-

ral forest stands are locally adapted to current local climates

(Savolainen et al. 2007, 2013; Alberto et al. 2013a), and for

a given species and planting location involves the following

steps: (i) identify climate variables that predict perfor-

mance for the target tree species across its range; (ii) use

regional climate models to predict future climates at the

proposed planting site; (iii) identify locations within the

species range that currently experience the predicted condi-

tions; (iv) plant seed from tree populations in the identified

locations (termed provenances in forestry) in the expecta-

tion that resulting trees will be well matched to future cli-

mates, and contribute adaptive variation that accelerates

subsequent local adaptation (Broadmeadow et al. 2005).

As remediation strategies, climate matching and other

forms of assisted migration remain subjects of vigorous

debate (Dawson et al. 2011; Lunt et al. 2013; Cavers and

Cottrell 2014). Forests are biologically diverse ecosystems,

and the value of climate matching, or any other strategy

that modifies the genetic, physical or spatial structure of

tree populations, must be considered not only in terms of

its effectiveness in promoting forest adaptation and resili-

ence, but also its impacts on local associated biodiversity.

Community genetic research has shown that the organisms

associated with forest stands reflect the genotypes and

genetic diversity of the host trees (Dungey et al. 2000;

Wimp et al. 2005; Whitham et al. 2012), and a range of

studies have shown adaptation of plants to local herbivores

and vice versa (Sork et al. 1993; Hanks and Denno 1994;

Egan and Ott 2007; Tack and Roslin 2010; Bernhardsson

et al. 2013). As such, the introduction of new tree geno-

types as part of a climate matching strategy may drive

changes in the identity, abundance and genetics of associ-

ated species (Lefevre et al. 2014). However, it is difficult to

forecast the direction and magnitude of such changes.

While some studies predict increased abundance of herbi-

vores on non-native tree provenances (Bernhardsson et al.

2013), others suggest the opposite through local herbivore

adaptation to plant phenology (Van Asch and Visser 2007;

Visser 2008; Pearse and Karban 2013). The key issues are

the extent to which host plant provenances vary in pheno-

typic traits relevant to herbivore success, and the magni-

tude of herbivore population responses to such variation.

Here we explore the community effects of climate

matching by quantifying the impact of provenance on (i)

the phenotype (growth performance and phenology) of an

important and widespread European oak, Quercus petraea,

and (ii) the abundance of associated insect herbivores. Our

approach exploits an established INRA forestry trial at La

Petite Charnie in Northwest France, where 96 provenances

of Q. petraea grow surrounded by natural oak forest and

are exposed to native herbivores. Our study focuses on oak

cynipid gallwasps (Hymenoptera; Cynipidae), specialized

herbivores whose larvae develop in galls on their oak hosts

(Sch€onrogge et al. 2000; Stone and Sch€onrogge 2003; Har-

per et al. 2004). Gall induction requires access to host oak

tissues at the correct developmental stage (Harper et al.

2004), and oak cynipids are highly sensitive to host plant

phenology (Askew 1962; Crawley and Akhteruzzaman

1988). These aspects of gallwasp biology, coupled with a

partly parthenogenetic lifecycle, are associated with local

adaptation to specific host plant populations (Mopper

et al. 2000; Mopper 2005; Egan and Ott 2007; Tack et al.

2010) and individuals (Egan and Ott 2007) and make gall-

wasps an appropriate sentinel taxon for exploration of the

potential effects of climate matching.

We expect the performance of oak provenances to corre-

late positively with the extent to which they are adapted to

prevailing climatic conditions (Broadmeadow et al. 2005;

Lefevre et al. 2014). This hypothesis predicts that perfor-

mance of locally native provenances will decline over time

– and recent rapid climate change may mean that popula-

tions of long-lived trees are already somewhat mismatched

to the conditions in which they grow. The hypothesis also

predicts that provenances selected to match conditions fur-

thest in the future should be least well matched to current

conditions and so perform least well in the present. We test

this hypothesis using multiple performance measures for

20 provenances planted at the La Petite Charnie prove-

nance trial, selected to maximize the available range in

source latitude and longitude as well as the mismatch in cli-

mate between the provenance trial and the provenance ori-

gin. We then test two contrasting hypotheses linking

herbivorous insect abundance to observed variation in per-

formance among oak provenances. The plant stress

hypothesis predicts that herbivores should show improved

performance and abundance on physiologically stressed

plants, due to higher levels of mobilized nitrogen in

stressed plant tissues and an associated increase in resource

quality for herbivores (White 1969, 1974, 2009). In con-

trast, the plant vigour hypothesis (Price 1991; Cornelissen

et al. 2008) predicts increased herbivore performance and

abundance on more vigorous plants or plant organs (those

with high growth rates or large ultimate size relative to the

population mean) through elevated nutrient content and

reduced concentrations of defensive compounds. Here we

test both hypotheses using abundance data across prove-

nances for 20 cynipid gall types.

Phenological matching of key biological events is crucial

for many interactions between forest trees and associated

organisms. For example, synchronization of breeding with

high plant resource availability (budburst for leaf-eating

herbivores) is central to reproductive success in herbivores

and associated trophic levels. We thus expect associated
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organisms to show local adaptation to host plant phenol-

ogy (Ducousso et al. 1996; Yukawa 2000; Van Asch and

Visser 2007; Van Asch et al. 2012; Alberto et al. 2013b).

Many plants show latitudinal clines in phenological events,

such as the timing of budburst, whose onset is often deter-

mined by photoperiodic cues (Savolainen et al. 2007; Ait-

ken et al. 2008) or the interaction between photoperiod

and temperature (Laube et al. 2014). This is relevant to

climate matching because, in a warming world, it often

involves introducing plants to higher latitudes from lower

latitudes. As a result, phenological mismatches with local

herbivores might occur by disrupting any adaptation to

the local combination of thermal and photoperiod cues,

with associated impacts on the fitness of herbivores and

trophically linked taxa such as natural enemies (Visser

2008; Thomson et al. 2010; Kerstes and De Jong 2011;

Van Asch et al. 2012). Here we quantify the phenotypic

mismatch in budburst date between the same 20 prove-

nances and assess the impact of phenological mismatch on

cynipid gall abundance. Specifically, we test the local

adaptation hypothesis, that is that herbivore abundance

will decline with increasing phenological difference

between introduced and locally native oak provenances.

We distinguish phenological effects from other potential

differences between provenances (e.g., variation in chemi-

cal defences) by incorporating provenance phenology into

our analyses.

Our analytical approach recognizes that tree populations

are linked by shared common ancestry and gene flow and

hence are unlikely to represent statistically independent

replicates (Stone et al. 2011). Here we investigate the

impact of potential nonindependence by comparing the

results of analyses that incorporate the expected variance–
covariance among populations in a generalized linear

mixed model framework (Hadfield and Nakagawa 2010).

Materials and methods

Provenance trial design

Provenance effects were explored using a large experimen-

tal trial of Q. petraea at La Petite Charnie in Northwest

France (Fig. 1; 48.086° north, 0.168° west; details on the

planting and layout of the trial are provided in Data S1).

We selected 20 provenances whose origins span 15° of lati-
tude and 34° of longitude, incorporating the greatest avail-
able geographic separation and source environmental

variation (Fig. 1, Table S1 in Data S1), and included the

closest provenance to the trial site (Forêt de Berc�e, approxi-

mately 50 km from La Petite Charnie). Each sampled

provenance is planted in multiple replicate plots of 24 trees

distributed across five soil zones (see Data S1). We selected

two plots per soil zone per provenance, giving a total of

200 study plots containing 4800 trees. Previous INRA

surveys provided data for each tree for the following
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Figure 1 Location of the Petite Charnie provenance trials and the 20 selected study provenances. Sites are identified by number in Table 1. Countries

contributing provenances are indicated by their two letter ISO codes.

974 © 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 8 (2015) 972–987

Oak provenance affects on herbivore abundance Sinclair et al.



phenotypic traits (see Data S1 for illustrations of character

states):

1 Budburst – spring budburst phenology was scored on a

0–5 ordinal scale, where 0 is a dormant bud and 5 is a

fully open bud, in spring 1995 (this closely parallels that

used in other studies on oak (Crawley and Akhteruzza-

man 1988; Tack et al. 2010). A higher score on the sur-

vey date indicates earlier budburst. Although oak

phenology is not known to show strong G 9 E interac-

tions across years (Alberto et al. 2011), we nevertheless

repeated phenology scoring in 2009 for 582 trees in a

subset of eight provenances. Phenology scores for the

same tree in 1995 and 2009 were significantly and posi-

tively correlated (see Data S4). We thus regard using the

1995 data for all 20 provenances as unlikely to produce

misleading or contrary results.

2 Diameter at breast height (DBH) – tree diameter at a

height of 1.3 m, measured during winter 2001–2002. A
higher value is associated with more rapid growth and

higher plant vigour.

3 Form – a measure based on tree shape, recorded on an

ordinal scale from 1 to 10 during winter 2001–2002.
Stressed trees with bushy, irregular growth and poor api-

cal dominance receive a low score, while healthy trees

with straight stems, even branching and strong apical

dominance score highly. These phenotypic measures

showed substantial variation among provenances (dis-

cussed in more detail below), providing the basis for

examination of impacts of phenological matching (Bud-

burst) and performance (DBH, Form) on herbivore

abundance (Table 1, Fig. 2).

Herbivore sampling

The cynipid species surveyed in this study all have broad

geographic distributions; like Q. petraea and closely related

oaks, they span the Western Palaearctic from the Iberian

Peninsula eastwards to Iran and the Caucasus. Cynipid gall

abundance was sampled across the 20 selected provenances

in 2008 and 2009. Gallwasps have a spring (sexual) and

autumn (asexual) gall generation each year, and both were

sampled, giving four surveys in total. For each of the 200

study plots, we sampled galls from 12 of the 24 available

trees, a total of 2400 trees. To minimize edge effects, sur-

veyed trees comprised the two internal rows of six trees

within each plot. During each survey, using a pole pruner

giving us approximately 4 m reach we selected 10 twigs on

each tree, each consisting of the last 2 years’ growth identi-

fied using ring scars on the bark. For each twig, we sur-

veyed the galls on all parts (buds, leaves, stem, catkins,

acorns; there are no cynipid galls on female flowers in Eur-

ope) of its terminal shoot (a module of woody growth from

Table 1. Summary of the 20 studied provenances of Quercus petraea, ordered by longitude from west to east showing their three digit INRA prove-

nance codes, provenance origin (site name and country), latitude and longitude in decimal degrees, altitude (Alt), the availability of genotypic data

and the mean values across all trees of each provenance for the phenotypic traits Budburst, Diameter at breast height (DBH) and Form.

Site number

in Fig. 1 Code

Provenance

name Country Long (DD) Lat (DD) Alt (m)

Genotypic

data

Mean

Budburst

Mean

DBH

Mean

Form

1 185 Blakeney UK �2.5 51.78 76 No 1.08 120 4.24

2 217 Berc�e France 0.39 47.81 155 Yes 1.59 98 4.2

3 237 R�eno Valdieu France 0.67 48.5 230 Yes 1.65 116 4.14

4 210 Saint Germain France 2.08 48.9 60 Yes 1.71 113 4.13

5 194 Soudrain France 2.38 46.95 178 Yes 1.24 110 4.33

6 211 Pr�emery France 3.6 47.2 300 Yes 1.55 106 4.34

7 201 La Haie Renaut France 4.95 48.67 180 Yes 1.77 109 4.24

8 245 �Etangs France 4.96 46.93 200 Yes 2.4 113 4.19

9 233 Vach�eres France 5.63 43.98 650 Yes 3.69 94 4.15

10 230 Romersberg France 6.73 48.82 220 No 1.06 101 4.17

11 250 Cochem Germany 7.05 50.08 400 Yes 1.86 112 4.43

12 225 Still France 7.25 48.58 688 Yes 1.55 105 4.56

13 252 Johanneskreuz Germany 7.83 49.4 460 Yes 1.03 116 4.42

14 257 Wolfgang Germany 9.05 50.15 160 Yes 1.61 96 3.92

15 181 Horbylunde Denmark 9.41 56.13 80 Yes 0.88 89 3.99

16 255 Spakensehl Germany 10.6 52.8 115 Yes 0.54 102 4.74

17 248 Kloster-marienberg Austria 16.57 47.41 310 Yes 3.23 103 3.9

18 179 Sycow Poland 17.93 51.18 210 Yes 1.42 104 4.76

19 249 Bolu Turkey 31.67 40.92 1200 Yes 1.58 94 4.39

20 184 Telavi Georgia 45.47 41.88 700 No 3.79 77 3.06

Values for the provenance closest to the trial site, Forêt de Berc�e, are shown in bold.
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the previous year carrying the new leaves). Galls were iden-

tified to species and generation in the field using a morpho-

logical key (Redfern and Shirley 2002) and our own

extensive field experience with this group (Stone et al.

2002; Cs�oka et al. 2005).

Statistical analysis

Controlling for statistical nonindependence of provenances

One way to address potential statistical nonindependence

of populations within species is to incorporate expected
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Figure 2 Between-provenance variation in three phenotypic variables (A) Form, in which higher values indicate healthier trees; (B) and (D) Diameter

at breast height (DBH), in which higher values indicate more vigorous growth; and (C) Budburst date, in which higher values indicate earlier budburst

in the spring. In (A) and (B), the position of provenances on the x-axis relates to their genetic differentiation (estimated as GeoFST) from the prove-

nance closest to the provenance trial site (Forêt de Berc�e). In (C) and (D), their position relates to the latitude of their site of origin with the identity of

Forêt de Berc�e shown. Modelling was conducted in the MCMCglmm R package, and response variables were modelled with provenance fitted as a

fixed effect and provenance, soil zone, plot and tree fitted as random effects. Models of (A) and (C) were fitted with a Poisson distribution, and (B)
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of provenance effects on gall abundance. Vertical bars represent 95% confidence intervals for each mean. MCMC, Markov Chain Monte Carlo.
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similarities among populations (due to shared common

ancestry and/or gene flow) as one or more variance–covari-
ance matrices in the random effect structure of a generalized

linear mixed model (Stone et al. 2011). Covariance matrices

for nonindependence arising through each of migration and

common ancestry can be generated for small numbers of

populations using population genomic data (e.g., Hearn

et al. 2014). However, for larger numbers of populations

(as here), and where more limited genotypic data are avail-

able, an alternative is to use a measure of pairwise genetic

differentiation between populations such as FST (Weir and

Cockerham 1984) as an estimate of their expected covari-

ance (Stone et al. 2011). Where genetic differentiation

between populations correlates strongly with geographic

distance, variance–covariance can be estimated as a function

of geographic separation between populations.

We used data from 10 putatively neutral microsatellite

markers (listed in Data S2; Guichoux et al. 2011) available

for 17 of our 20 study provenances (Table 1) to estimate

pairwise FST as implemented in FSTAT version 2.8.3.2 (Weir

and Cockerham 1984; Goudet 1995). For comments on the

impact of using alternative measures of genetic differentia-

tion related to FST, see Data S2. To allow us to analyse data

for all 20 study provenances, we used the highly significant

relationship between FST and geographic distance for the

17 provenances (Mantel test in the adegenet R package,

P = 0.01 with 999 iterations) to estimate a pseudo-FST for

the full set of 20 provenances, referred to hereafter as

GeoFST (full details are given in Data S2). Variance–covari-
ances between provenances were then estimated as either

1�FST or 1�GeoFST, such that expected covariance was

greatest between provenances with lowest differentiation.

To explore the consequences of using alternative

approaches to control for provenance nonindependence,

all of the analyses described below were conducted using

the following five dataset/covariance matrix combinations:

(i) the subset of 17 provenances for which genotypic data

were available, using an identity matrix as the provenance

covariance matrix. This identity model assumes prove-

nances to be statistically entirely independent (i.e., 0

covariance between all populations); (ii) the same 17

provenances, using a covariance matrix estimated as 1�FST;

(iii) the same 17 provenances, using a covariance matrix

estimated as 1�GeoFST; (iv) the full set of 20 provenances

using an identity model; and (v) the full set of 20 prove-

nances where covariance is estimated as 1�GeoFST. A

detailed discussion of this approach to addressing popula-

tion nonindependence, and values used in the covariance

matrices, are provided in the Data S2.

Statistical modelling of provenance effects on gall abundance

To investigate the influence of tree provenance on the

abundance of each individual gall type, we combined the

data for the two survey years and used generalized linear

mixed models (GLMMs) to partition the variance of gall

counts per shoot into the effects of year (as a fixed effect

with two levels) and provenance, soil zone, plot and tree

(all as random effects). When applying an identity model

for the relationship between provenances, the effect of

provenance was represented by a single random effect

with a unique independent level for each provenance. In

models that incorporated the relationship between prove-

nances, provenance co-variance was represented by two

random effects. One incorporated the specified variance–
covariance matrix (1�FST or 1�GeoFST) to account for

provenance nonindependence, while the second incorpo-

rated an identity matrix to capture the ‘nugget effect’

(Matheron 1963), in which variation in the response vari-

able exceeds that expected through correlation between

levels of the effect. Models were fitted in a Bayesian Mar-

kov Chain Monte Carlo (MCMC) framework using the

package MCMCglmm version 2.16 (Hadfield 2010) in R

version 2.15.1. For fixed effects, prior settings assumed a

normal distribution with a mean (µ) of 0 and a variance

(V) of 108. For random effect variances, scaled F_{1,1}
priors (with scale 1000) were used (Gelman 2006) except

for the residual variance for which an inverse-gamma

prior was used with shape and scale equal to 0.001. Mod-

els were run for 500 000 iterations with a burn-in of

50 000 and parameter sampling every 450 iterations. As

the response variable was count data and usually con-

tained many zeros, a Poisson error distribution was

applied. Our incorporation of year as a fixed effect

allowed for variation in abundance between years, while

estimating the relationship between gall abundance and

tree phenotypic traits across both years. The proportion

of variance explained by the year fixed effect was esti-

mated as the marginal R2 of the model (RsqM), following

Nakagawa and Schielzeth (2013) (R code for deriving

RsqM from MCMCglmm objects is provided in Data S3).

The variance component of each random effect was cal-

culated by dividing its estimated variance parameter by

the sum of all the random effect variance parameters,

including the residual UNIT term – a random effect with

a distinct level for each data unit that is fitted automati-

cally for Poisson distributed models in the MCMCglmm

package to account for overdispersion – and then multi-

plying each by the proportion of variance not explained

by the fixed effect (i.e., 1�RsqM). We addressed the

effects of multiple tests on false discovery rates – the

expected proportion of false discoveries among the

rejected hypotheses – following Benjamini and Hochberg

(1995) and Benjamini and Yekutieli (2001). The false dis-

covery rate is a less stringent condition than the family-

wise error rate, so this approach is more powerful than

alternatives such as Bonferroni (Nakagawa 2004).

© 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 8 (2015) 972–987 977
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Effect of tree phenotype

To investigate whether tree phenotypic traits were good

predictors of variation in gall abundance, GLMMs were

used to model counts of individual gall types with DBH

(growth), Form (tree health) or Budburst (spring phenol-

ogy) as fixed effects. While the influences of tree growth

and health on gall abundance are expected to be linear, the

local adaptation hypothesis for herbivores predicts that the

influence of phenology will be curvilinear, with lower gall

abundance on provenances that show budburst either

before or after local oaks. The fixed effect Budburst was

therefore fitted as both untransformed and squared terms.

To account for potential differences in abundance levels

between the two study years, a factor year was fitted as a

fixed effect.

For each gall type, counts per shoot were initially mod-

elled with year and either Form, DBH, Budburst or both

Budburst and Budburst2 as fixed effects. The severity of

co-linearity between these variables was assessed by their

variance inflation factors (VIFs) using the R package HH

version 2.3-23 (Heiberger 2013). To assess the importance

of interactions between tree phenotypic traits, a model con-

taining the fixed main effects Form, DBH, Budburst, and

their three pairwise interactions was fitted for each gall

type. All models were fitted in the MCMCglmm package

with the random effect structures and prior specifications

described above. The probability that the posterior distri-

bution of the fixed effect coefficients did not include zero

(pMCMC) was used to assess the predictive capacity of the

fixed effects.

Results

Phenotypic variation among provenances

If provenances are locally adapted, and divergence in selec-

tion history between provenance origins and the trial site

increases with genetic distance, then we expect more genet-

ically divergent provenances to show higher stress (mea-

sured using Form) and lower vigour (measured using

DBH). Form shows no linear relationship, but increases in

variance in more divergent provenances (Fig. 2A). Only

the most genetically divergent provenance, from Telavi in

Georgia, showed a markedly lower Form score than other

provenances. Plant vigour, measured using DBH, does

decrease with increasing genetic divergence (Fig. 2B), con-

sistent with local adaptation. Budburst phenology shows a

strong relationship with latitude (Fig. 2C), with more

southerly provenances showing earlier budburst: by the

time some southern provenance trees have open leaves

(scores 4 and 5), northern provenances have yet to burst

their buds (scores 0 and 1). We thus expect phenological

mismatch with native oaks to correlate with differences in

latitude between provenance origins and the trial site.

Herbivore abundance

We recorded approximately 725 000 galls of 20 gall types

(seven sexual generation and 13 asexual generation) during

the four survey seasons, representing 15 different gallwasp

species (Table 2). No acorn galls were recorded. Total

counts of individual gall types varied over five orders of

magnitude, from just 4 (asexual generation Cynips lon-

giventris) to over 330 000 (asexual generation Neuroterus

anthracinus). Gall abundance differed significantly between

years for all gall types except Andricus solitarius, with five

types exhibiting >10-fold differences (Table 2) and without

any consistent pattern between years or seasons. Six of the

20 gall types occurred on <1% of shoots in both survey

years and were excluded from further analysis.

Oak provenance effects on gall abundance

The percentage of variance in gall abundance per shoot

explained by differences between provenances (expressed as

the mean variance component, ranging between 0% and

100%) varied substantially between the statistical models

used. In identity models of the 20 provenance dataset (which

assume provenances to be fully independent statistically),

the percentage of variance in gall abundance explained by

provenance ranged from 3% (in sexual generation Neu-

roterus albipes) to 33% (in asexual generation Neuroterus

quercusbaccarum) and was >10% for seven of the 14 gall

types (Fig. 3). Because provenances are related, the identity

model is unlikely to be appropriate. All models incorporat-

ing provenance covariance gave higher estimates of the vari-

ance component for provenance effects (see Data S2 for

comparison of results across the alternative datasets and

models). Incorporation of provenance covariance using the

1�GeoFST covariance matrix for the same 20 provenance

dataset attributes between 38% (sexual generation N. albipes

and 95% (asexual generation N. quercusbaccarum) of vari-

ance in gall abundance to provenance effects (Fig. 3). The

identity models should thus be viewed as providing artifi-

cially low estimates of the variation in gall abundance attri-

butable to differences between provenances (Table S2.2,

Figure S2.1 in Data S2). On this basis, host tree provenance

is an important predictor of the abundance of many gallers,

explaining at least 10%, and as much as 95% of the variation

in abundance of seven of the 14 gall types tested. Without

more knowledge of the form of variance–covariance rela-

tionship, it is not possible to give a correct estimate. Impor-

tantly for what follows, analysis of fixed effects was not

influenced by our choice of variance–covariance model.
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Tree phenotypic traits as predictors of variation in gall

abundance

Significant relationships between gall abundance per shoot

and at least one of the provenance phenotypic traits were

identified for all but three of the 14 gall types tested

(Table 3). The signs and strengths of relationships were

stable across the various datasets and provenance co-vari-

ance structures (see Data S2 for full comparison of results),

and here, we therefore focus on the results of the 1�GeoFST
co-variance matrix models for the 20-provenance dataset,

identifying where they differ from the identity models for

the same dataset (Table 3). The phenotypic variables Form,

DBH and Budburst were not confounded, with low VIFs

(1.05, 1.02 and 1.02, respectively). Because our analyses

yielded only one significant interaction term (Budburst:

Form for sexual generation galls of Neuroterus numismalis;

mean coefficient = 0.031, pMCMC = 0.014), hereafter we

consider each trait in isolation.

Tree health, as measured by Form, significantly predicted

the abundance of only one gall type (asexual generation

Cynips quercusfolii; Table 3, Fig. 4A) for which healthier

trees supported more galls per shoot, as predicted by the

plant vigour hypothesis. Tree vigour, as measured by DBH,

was a better overall predictor of gall abundance per shoot,

with significant relationships for five of the 14 gall types

(two sexual and three asexual generations; Table 3,

Fig. 4B). For the spring sexual generation galls (Andricus

testaceipes and N. numismalis), galls were more abundant

on larger trees (Fig. 4B, as predicted by the plant vigour

hypothesis). Relationships varied for the three autumn

asexual generation gall types: N. albipes were more abun-

dant on larger trees (as predicted by the plant vigour

hypothesis), while N. numismalis and N. quercusbaccarum

showed the opposite pattern (as predicted by the plant

stress hypothesis).

Phenology, as measured by Budburst, was the best overall

predictor of gall abundance/shoot, with significant correla-

tions for eight gall types (Table 3, Fig. 4C). Four gall types

showed significantly nonlinear relationships, incorporating

a significant Budburst squared term. However, no gall type

showed peak abundance at an intermediate phenological

stage, as expected for the local adaptation hypothesis.

Instead, spring sexual generation galls were generally most

abundant on provenances showing the earliest budburst

(high budburst score), while the summer/autumn asexual

Table 2. Prevalence, incidence and between-year variation in the abundance of the 20 gall types recorded at La Petite Charnie. Columns show, for

each survey year, the total number of each gall type, the mean number of galls per shoot and incidence – the proportion of shoots bearing galls, and

the ratio of mean galls per shoot between 2008 and 2009.

Gall type (species

and generation)

2008 2009

Ratio of mean galls/

shoot 2008:2009

Total

galls

Mean

galls/shoot Incidence

Total

galls

Mean

galls/shoot Incidence

Spring sexual generation surveys

Andricus inflator 52 0.0022 0.0018 0 0 0 –

Andricus testaceipes 973 0.041 0.0025 2291 0.095 0.067 1:2.3

Biorhiza pallida 13 0.00054 0.00046 10 0.00042 0.00042 1.3:1

Neuroterus albipes 822 0.034 0.03 5828 0.24 0.16 1:8

Neuroterus anthracinus 14 278 0.59 0.35 7411 0.31 0.23 1.9:1

Neuroterus numismalis 1154 0.048 0.039 17 486 0.73 0.29 1:15

Neuroterus

quercusbaccarum

5808 0.24 0.15 7834 0.33 0.2 1:1.4

Autumn asexual generation surveys

Andricus callidoma 4 0.00021 0.00021 45 0.0019 0.0018 1:9

Andricus fecundatrix 334 0.017 0.013 1103 0.046 0.029 1:2.5

Andricus glandulae 83 0.0043 0.0037 335 0.014 0.012 1:2.3

Andricus inflator 44 0.0023 0.002 3 0.00013 0.00013 19:1

Andricus kollari 2 0.0001 0.0001 43 0.0018 0.0012 1:18

Andricus solitarius 528 0.028 0.026 726 0.03 0.028 1:1

Cynips divisa 1901 0.099 0.057 184 0.0077 0.0057 13:1

Cynips longiventris 1 0.000052 0.000052 3 0.00013 0.00013 1:2.5

Cynips quercusfolii 197 0.01 0.0085 456 0.019 0.013 1:2

N. albipes 45 771 2.38 0.51 27 531 1.15 0.32 2.1:1

N. anthracinus 313 507 16.33 0.93 23 820 0.99 0.29 16:1

N. numismalis 12 194 0.64 0.037 12 124 0.51 0.028 1.2:1

N. quercusbaccarum 123 708 6.44 0.56 94 830 3.95 0.49 1.6:1
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generation galls were most abundant on trees showing the

latest budburst (low budburst score, Fig. 4C).

Discussion

Predicting future change in ecosystem functioning requires

an understanding of the community impacts of both global

environmental change and any associated remediation

strategies. Climate change impacts on foundation species

are likely to influence the diversity, distribution and abun-

dance of associated taxa – whether these are beneficial

ecosystem service providers or potential pests. The chal-

lenge for a given system is then to estimate likely conse-

quences of both nonintervention and remediation; and

where the impacts of remediation strategies take time to

develop, to understand their trajectories through time. All

of these aspects apply in particular to climate matching of

long-lived foundation trees, which involves introduction of

non-native genotypes that take decades to establish and live

for centuries. Our analyses shed light on the likely conse-

quences for native herbivores of introducing tree prove-

nances that, although not initially climate-matched,

become increasingly so as climate changes, while native

provenances become increasingly mismatched and decline

in performance. A key aspect of our study is its use of a

provenance trial to quantify the consequences of host plant

variation in performance and phenology on multiple spe-

cies in the same guild, addressing a recognized need to

quantify the impacts of environmental change at guild and

community levels (e.g., Forkner et al. 2008; Van Asch et al.

2012; Ohlberger et al. 2014; Petanidou et al. 2014; Vatka

et al. 2014).

Influences of oak provenance on the gallwasp guild, and

incorporation of provenance covariance

Our results show that oak provenances vary significantly in

phenotypic traits likely to influence associated herbivores

Table 3. Summary of GLMMs for tree phenotypic predictors, showing the significance and sign of those fixed effect coefficients that differed signifi-

cantly from zero. Significance was assessed using pMCMC. Where the result of the identity models differed from the 1�GeoFST models, the identity

result follows the 1�GeoFST result.

Gallwasp species (generation) Year Form DBH Budburst Budburst2 Budburst: DBH Budburst: Form Form: DBH

Andricus testaceipes (sex) *** NS +**/+* NS NS NS NS NS

Neuroterus albipes (sex) *** NS NS NS NS NS NS NS

Neuroterus anthracinus (sex) *** NS NS +* NS NS NS NS

Neuroterus numismalis (sex) *** NS +**/+*** +*** �* NS * NS

Neuroterus quercusbaccarum (sex) *** NS NS +*** NS NS NS NS

Andricus fecundatrix (asex) *** NS NS �*** +**/+* NS NS NS

Andricus glandulae (asex) *** NS NS �* NS NS NS NS

Andricus solitarius (asex) NS NS NS NS NS NS NS NS

Cynips divisa (asex) *** NS NS �* NS NS NS NS

Cynips quercusfolii (asex) *** +* NS NS NS NS NS NS

N. albipes (asex) *** NS +* NS NS NS NS NS

N. anthracinus (asex) *** NS NS NS NS NS NS NS

N. numismalis (asex) *** NS �* �*** +* NS NS NS

N. quercusbaccarum (asex) *** NS �*** �*** +* NS NS NS

DBH, diameter at breast height; MCMC, Markov Chain Monte Carlo.

Significance codes in the table are as follows: *P < 0.05, **P < 0.01, ***P < 0.001, NS, P > 0.05, nonsignificant. Consideration of false-positive

discovery rates for multiple testing following Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) resulted in adjustment of P-values

indicated as * to P > 0.05, while all other results indicated as ** or *** in the table below remain significant at P < 0.05.

A. testaceipes (Sex)
N. albipes (Sex)

N. anthracinus (Sex)
N. numismalis (Sex)

N. quercusbaccarum (Sex)

A. fecundatrix (Asex)
A. glandulae (Asex)
A. solitarius (Asex)

C. divisa (Asex)
C. quercusfolii (Asex)

N. albipes (Asex)
N. anthracinus (Asex)
N. numismalis (Asex)

N. quercusbaccarum (Asex)

0.0 0.2 0.4 0.6 0.8 1.0
Variance component

Figure 3 The proportion of variation in gall abundance attributed to

the effect of provenance for the 20-provenance dataset that either do

not (black circles) account for population nonindependence (i.e., iden-

tity models) or incorporate a 1�GeoFST variance–covariance matrix

(open circles). Vertical bars represent 95% confidence intervals for each

mean.
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Figure 4 Plots of significant relationships between gall abundance and (A) Form, (B) Diameter at breast height (DBH) and (C) Budburst. Higher Form

scores indicate healthier trees, while higher Budburst scores indicate earlier budburst. Distributions of y at intervals across the range of a phenotypic

predictor (x) were derived from the 1000 stored Markov Chain Monte Carlo (MCMC) samples as: yi = exp(intercepti + x(mean coefficienti) + 0.5x ∑

random effect variancesi). Plots show the means (bold lines) and 95% confidence intervals from these distributions for each of the two study years.

Dotted vertical lines indicate the mean value of the phenotypic trait for the most local tree provenance (Forêt de Berc�e). Plots for models of the asex-

ual generation galls of Neuroterus numismalis could not be produced in this way due to high random effect variances.
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and that this in turn is associated with significant variation

in the population density (abundance per oak shoot) of

multiple gallwasp species. We show that the form of these

relationships is robust across models that assume very dif-

ferent patterns of variance–covariance among oak prove-

nances, from identity models assuming total independence

to models that estimate covariance based on population

genetic and provenance origin data. Our results indicate

that models that treat provenances as statistically indepen-

dent entities, which we know not to be true, consistently

underestimate provenance effects on gall densities relative

to models in which covariance is specified based on a mea-

sure of genetic differentiation (FST or GeoFST). If these

models accurately describe provenance co-variance, then

the influence of tree provenance on gall abundance is sub-

stantially greater (38–95%) than would be inferred by

assuming provenances to be statistically independent.

While pairwise FST and related measures are consistently

significantly larger than 0 (Tables S2.1 and S2.3 in

Data S2), their absolute values are small, providing little

resolution of the relationship of genetic differentiation and

geographic distance (see Data S2 for a comprehensive dis-

cussion). It is therefore difficult to estimate a ‘true’ value

for the impact of provenance and its explanatory power

given the nonindependence of populations (Felsenstein

2002; Stone et al. 2011).

The strong provenance effects we show are consistent

with the growing body of community genetics work linking

host plant genotypic variation to associated trophic levels

(Wimp et al. 2005; Bangert and Whitham 2007). A key

challenge in this field is to understand the importance of

host genetic effects for herbivore communities relative to

other ecological factors (Hersch-Green et al. 2011). Work-

ing near the northern limit of pedunculate oak (Quercus

robur) in Finland, Tack et al. (2010) found spatial effects to

be more important than tree genotypic effects in structur-

ing a community of herbivorous insects that included sev-

eral gallwasps. In reciprocal transplant experiments at local

and regional scales, Tack et al. (2010) found no effect of

tree genotype for any of the three gall types in their study

(asexual and sexual generations of N. quercusbaccarum are

shared with our study). The contrast between this and the

strong host plant provenance effects present at the Petite

Charnie trial is likely to reflect contrasting levels of adaptive

genetic and phenotypic diversity of the oaks in each study.

Although Finnish oak populations show substantial

intraspecific genetic diversity (Vakkari et al. 2006), they

show substantially less genetic diversity (and we expect also

phenotypic diversity) than the much wider geographic

array of provenances present at La Petite Charnie (Petit

et al. 2002). Our provenance trial study involves a much

greater array of genetic diversity than would be expected

from a single natural population, a feature shared with the

studies of genetically diverse hybrid populations (e.g., Dun-

gey et al. 2000) that often show strong plant genotype

effects on associated herbivores (Tack et al. 2010). Gener-

ally, the importance of host genetic effects relative to other

factors is likely to correlate positively with the adaptive

genetic diversity within a tree population present at a site,

and we would expect this to be increased in situations

where climate matching or other forms of assisted migra-

tion are implemented.

Impacts of between-provenance variation in phenology

The strongest predictor of between-provenance variation in

gallwasp density is variation in spring budburst phenology.

Phenological changes have long been recognized as a major

component of species responses to climate change that can

cascade through associated trophic levels. This has been

shown, for example, in work on the impact of changes in

oak budburst phenology on abundance of associated leaf-

feeding moths and breeding responses of insectivorous

birds – particularly Parus major (Van Asch and Visser

2007; Visser 2008; Van Asch et al. 2012; Vatka et al. 2014).

A key question in research on these systems has been the

extent to which responses of herbivores, and their natural

enemies are the result of phenotypic plasticity and local

adaptation.

It is striking that although adaptation to individual trees

has been demonstrated in oak–gallwasp interactions (Egan

and Ott 2007), none of our gall types showed declining

abundance with increasing phenological mismatch between

native oaks and planted provenances, rejecting our local

adaptation hypothesis. We also found the responses of the

spring and autumn generations in the gallwasp lifecycle can

be very different. Spring galls were more abundant on early

budbursting trees, while autumn generations of the same

species (N. numismalis and N. quercusbaccarum) were

more abundant on late budbursting trees. Similar relation-

ships to those we observed were recorded for Neuroterus

gallwasps in response to local phenological variation in

native UK Q. robur populations by Askew (1962, 1984)

and Crawley and Akhteruzzaman (1988); our results show

that the same trends can be extended to the wider pheno-

logical variation present in a provenance trial. We hypothe-

size that this contrast between the spring and autumn

generations may exist because later budbursting trees may

have higher abundance of phenologically young tissues

suitable for gall induction. Annual gallwasp phenology may

thus be the result of contrasting selection on the two lifecy-

cle generations, perhaps limiting local phenological adapta-

tion in either generation (Singer and Parmesan 2010). The

dynamics of such complex lifecycles are poorly understood,

and complex bottom-up impacts may apply to other

groups with multivoltine or more complex lifecycles, par-
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ticularly where these involve alternation between genera-

tions and/or plant hosts (including many aphids; Harring-

ton et al. 2007).

Impacts of between-provenance variation in tree vigour

Tree vigour also explained significant between-provenance

variation in oak gall density. In contrast, tree shape – com-

monly used as an indicator of physiological stress – had lit-

tle impact. As with phenology, the sign of correlations

between gall density and tree vigour varied among gall gen-

erations and taxa. Significant correlations with tree vigour

were positive for spring sexual generation gall types, while

two of three were negative for asexual generation gall types.

Support was thus evenly split between the plant vigour

hypothesis (Price 1991; Cornelissen et al. 2008) and the

plant stress hypothesis (White 1969, 1974, 2009). One pos-

sibility is that the apparent contrast in patterns for spring

and autumn generation galls could be driven by the long-

known seasonal shift in oak resource investment from

growth in the spring to metabolic defence in the summer

(Feeny 1970). Highly vigorous trees could then be both best

for spring generation galls and worst (=best defended) for
autumn generation galls. Mechanisms of oak defence

against gallwasps remain poorly understood.

Predicting the impact of climate-matched planting on

associated herbivores

Climate matching necessarily requires introduction of phe-

notypically divergent tree populations. In Europe, climate

models predict warmer summers and winters (Giorgi and

Coppola 2009; Jenkins et al. 2009), and climate matching

will thus always involve introducing more southerly prove-

nances that show earlier budburst (Ducousso et al. 1996;

Broadmeadow et al. 2005). Under low and high emissions

scenarios for 2050, Broadmeadow et al. (2005) identified

climate-matched sites for five UK locations that were 0–2°
and 5–12° further south, respectively (Broadmeadow et al.

2005). Our results (Fig. 2C) suggest that while the small

latitudinal shifts required under a low emission scenario

would probably have little impact on oak phenology, the

shifts of >10° of latitude required under a high emission

scenario could lead to major phenological differences

between native and climate-matched trees, and significantly

dissimilar gallwasp assemblages.

The widespread existence of latitude-dependent pho-

toperiod cues in plant phenology (Aitken et al. 2008)

suggests that the phenological contrasts between climate-

matched and native oak populations will be shared by other

plant species. The extent to which any such differences

influence associated herbivores is likely to vary according

to specific plant–herbivore interactions, reflecting available

herbivore phenotypic plasticity and adaptive genetic diver-

sity. We hypothesized that impacts of phenological mis-

match will be greatest for interactions in which herbivore

fitness is strongly correlated with successful exploitation of

a narrow phenological ‘window of opportunity’ (Durant

et al. 2007; Van Asch and Visser 2007; Forkner et al. 2008;

Netherer and Schopf 2010). This includes many insects that

feed on newly flushed leaves (Van Asch and Visser 2007;

Forkner et al. 2008). However, we found no evidence of

such a window for gallwasps: while they prefer to oviposit

(or survive better on) young tissues, they show no strong

preference for host trees at a single phenological stage. As

discussed above, impacts on herbivores with multivoltine

or multihost lifecycles may be complex.

The relationships we found between host plant vigour

and herbivore abundance are relevant to two stages in a cli-

mate matching strategy: the expected poor performance

under current climates of introduced provenances matched

to predicted future conditions, and the expected decline in

the performance of native provenances as climates move

away from any locally adapted range. The slope of the rela-

tionship between environmental variables and vigour for a

specific provenance will dictate not only the impact on

associated trophic levels, but also whether climate matching

with that provenance is feasible at all. The challenge for for-

est managers is to identify a climate-matched provenance

that is able to survive as a sapling and young tree before the

conditions justifying its selection have been reached and

become established before native provenances fail. Climate

matching is a recently developed strategy and its success at

maintaining forest productivity is untested (Broadmeadow

et al. 2005). Current guidelines in UK forestry advocate

mixed planting of both matched and local provenances,

which increases local resource heterogeneity for herbivores

(Hubert and Cottrell 2007), and creates conditions that

accelerate both environmental selection on host trees (Le-

fevre et al. 2014) and host plant-mediated selection on

associated organisms.

Assisted migration is increasingly seen as a viable strategy

for commercial and conservation settings (Broadmeadow

et al. 2005; Stone 2010; Dawson et al. 2011). Issues cited as

slowing down the implementation of climate matching as

an adaptive forestry strategy include lack of operating pro-

cedures, uncertainties over which climate models to use in

matching algorithms and risks associated with moving

plants outside their current ranges (Williams and Dum-

roese 2013). Theoretical studies nevertheless suggest that

such adaptive-, rather than resilience-targeted strategies

may be the best way to safeguard forest systems (Buma and

Wessman 2013; Lefevre et al. 2014). We would add that the

community impacts of assisted migration need to be care-

fully considered, particularly so for foundation species such

as forest trees. This requires better understanding of the
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relative contributions of host plant genotype and other eco-

logical factors to the tree phenotypes exposed to herbivores

(Tack et al. 2010). Geographical patterns of local adapta-

tion and tree phenotypic variation have only been mapped

in a tiny minority of species (Savolainen et al. 2007; Roba-

kowski et al. 2012; Sork et al. 2013), and studies that target

multiple provenance trial locations are required to separate

genetic and environmental contributions to provenance

phenotypes (Tack et al. 2010). While our study was based

on a single trial, the oak phenotypic traits we analysed have

been shown to be highly heritable in the sampled prove-

nances (Sinclair 2012), so we expect the provenance effects

we found to contain a significant genetic component.

Given strong environmental effects on plant traits includ-

ing phenology, repetition of the work in an array of trials

spanning different environments is clearly desirable.

Understanding herbivore numerical and adaptive responses

then in turn requires understanding the impacts of both

plant phenotypes and other ecological processes, including

the mortality inflicted on herbivores by their natural ene-

mies (Bidart-Bouzat and Imeh-Nathaniel 2008; Thomson

et al. 2010; Van Asch et al. 2012; Rasmann et al. 2014).

Much more needs to be done before forest managers can

take informed decisions concerning likely impacts of cli-

mate matching on forest-associated biodiversity.
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