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Abstract. Environmental models often involve complex dynamic and spatial inputs and outputs.
This raises specific issues when performing uncertainty and sensitivity analyses (SA). Based on appli-
cations in flood risk assessment and agro-ecology, we present current research to adapt the methods of
variance-based SA to such models. After recalling the basic principles, we propose a metamodelling
approach of dynamic models based on a reduced-basis approximation of PDEs and we show how the
error on the subsequent sensitivity indices can be quantified. We then present a mix of pragmatic
and methodological solutions to perform the SA of a dynamic agro-climatic model with non standard
input factors. SA is then applied to a flood risk model with spatially distributed inputs and outputs.
Block sensitivity indices are defined and a precise relationship between these indices and their support
size is established. Finally, we show how the whole support landscape and its key features can be
incorporated in the SA of a spatial model.
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Résumé. Les modèles environnementaux contiennent souvent des entrées-sorties complexes de par
leur nature dynamique et spatiale, ce qui soulève des problèmes spécifiques pour leurs analyses d’in-
certitude et de sensibilité (AS). A partir d’applications en évaluation des risques d’inondation et en
agro-écologie, nous présentons des recherches en cours pour adapter les méthodes d’AS à de tels modèles.
Après un rappel des principes de base, nous proposons une approche de métamodélisation de modèles
dynamiques basée sur une approximation par base réduite d’EDPs et nous montrons comment l’erreur
sur les indices de sensibilité qui en découle peut être quantifiée. Nous présentons ensuite un cocktail
de solutions pragmatiques et méthodologiques pour l’AS d’un modèle agro-climatique dynamique avec
des facteurs d’entrée non standards. Puis l’AS est appliquée à un modèle de risque d’inondation avec
des entrées-sorties spatialisées. On définit des indices de sensibilité par bloc et une relation précise est
établie entre ces indices et leur taille de support. Enfin, nous montrons comment l’ensemble du paysage
et de ses caractéristiques clés peut être incorporé à l’AS d’un modèle spatial.

Introduction
Environmental research and engineering require modelling approaches to integrate knowledge about complex

systems. The models developed today may involve large numbers of equations, parameters and state variables.
Beyond knowledge integration, they are expected to help compare scenarios, predict outcomes, evaluate risks
or support decision and policy.

Model complexity and stakes of the associated projects make it compulsory to assess how uncertainty and
variability in the inputs propagate to the outputs. These needs, which are shared by all domains of application,
have given rise to a rich theoretical and applied literature on sensitivity analysis and uncertainty quantification
(see [4,27,37]). In particular, it is now widely accepted that these methods must be applied globally, that is, by
considering the different inputs simultaneously and through their whole potential ranges of variation. In most
cases, global uncertainty and sensitivity analyses are beyond the scope of analytical approaches and so they
rely on simulation-based approaches. These approaches raise challenging statistical issues about sampling and
estimation in high-dimensional spaces.

In this paper, we give a flavour of some hot topics in this field of research when applied to environmental
and agro-ecological models. After a short presentation of the basic notions (Section 1), we consider problems
associated with the dynamic (Sections 2 and 3) and spatial (Sections 4 and 5) nature of most environmental
models. The more theoretical Section 2 proposes an intrusive approach based on metamodelling to cope with
dynamic models. Section 3 illustrates the use of two standard methods of sensitivity analysis (Morris and
Sobol’) on a model of water stress in grapevine, emphasizing typical issues of dynamic crop models. Based on
the context of flood risk assessment, Section 4 presents innovative methods to adapt sensitivity and uncertainty
analyses to spatial inputs and outputs. Section 5 considers the spatial case again, when non standard inputs
such as geometrical features must be included in the input factors of a sensitivity analysis.

1. Basic principles

1.1. Global sensitivity analysis, the variance-based approach
When performing uncertainty or sensitivity analysis, we write the model under study as

Y = G(X1,⋯,Xp), (1)

where Y denotes the output variable of interest, G denotes the model equations and X1, . . . ,Xp denote the
input factors. The input factors are considered as random variables, whose probability distribution reflects the
uncertainty on their values. Unless mentioned explicitly, they are supposed to be independent and the output
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Y is supposed to be scalar. The model G may be determistic or stochastic, but in both cases Y is a random
variable dependent on X1, . . . ,Xp. Uncertainty quantification aims at evaluating its probability distribution,
while sensitivity analysis aims at quantifying the contribution of each input factor to that uncertainty.

The conditional expectation E(Y ∣Xi) is a random variable which gives the mean of Y over the distributions
of the Xj (j /= i), when Xi is fixed. It is the best approximation of Y which depends on Xi only. Its variance
quantifies the influence of Xi on the dispersion of Y . The Sobol’ sensitivity indices are obtained by normalising
this variance. Thus, the Sobol’ first order sensitivity index of input factor Xi is defined by

S{i} =
Var(E(Y ∣Xi))

Var(Y )
.

It belongs to the interval [0,1]. More generally, one can define sensitivity indices of any order r ∈ {1, . . . , p},
starting from the functional ANOVA decomposition. Indeed, assume that G is a real square integrable function
defined on the unit hypercube [0,1]p and that X = (X1, . . . ,Xp) is a random vector with independent compo-
nents uniformly distributed on [0,1]. The choice of uniformly distributed components is not restrictive: using
the inverse transformation method allows to consider any marginal distributions. Then for any u ⊆ {1, . . . , p},
denote by Xu the random vector with components Xi, i ∈ u. The ANOVA decomposition (see [12] and [5]) then
states that Y = G(X) can be uniquely decomposed into summands of increasing dimensions

G(X) = ∑
u⊆{1,...,p}

Gu(Xu) (2)

where G∅ = E[Y ] and the other components have mean zero and are mutually uncorrelated. The Sobol’ index [41]
of order r = card(u) with respect to the combination of all the variables in u ⊆ {1, . . . , p} is then defined as

Su =
σ2
u

σ2 =
Var[Gu(Xu)]

Var[Y ]
. (3)

The main effect of the ith factor is measured by S{i}, then for i ≠ j, the interaction effect due to the ith and the
jth factors, that cannot be explained by the sum of the individual effects of Xi and Xj is measured by S{i,j},
and so on (see [36]). For any i ∈ {1, . . . , p}, we also define a total sensitivity index ST{i} [13] to express the overall
output sensitivity to an input Xi by

ST{i} = ∑
v⊂{1,...p} such that i∈v

Sv . (4)

Notice that
ST{i} = 1 − SX−i (5)

where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xp). This formula will be shown of numerical importance later [13].

1.2. An estimator for Sobol’ indices
In this subsection, we introduce the classical Monte Carlo estimator of Sobol’ indices first introduced in [41].

One of the main advantage of this estimator is that it can be used even for functional or spatial inputs.
We first need some notation. Let u be a non-empty subset of {1, . . . p}. Let Xj

i , i = 1, . . . ,2p− ∣u∣, j = 1, . . . n,
with n the number of Monte Carlo replications, be independent random variables uniformly distributed on
[0,1]. We also define

Xj
u = (Xj

1 , . . . ,X
j
∣u∣)

Xj,1
uc = (Xj

∣u∣+1, . . . ,X
j
p)

Xj,2
uc = (Xj

p+1, . . . ,X
j
2p−∣u∣) .
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Finally, for k = 1 and 2, consider
Y j,ku = f(Xj

u,X
j,k
uc ) . (6)

With this notation, we can define the estimator Ŝ{i},n of S{i} (resp. ŜT{i},n of ST{i}) by

Ŝu,n =

1
n

n

∑
j=1

Y j,1u Y j,2u − (
1
n

n

∑
j=1

Y j,1u )(
1
n

n

∑
j=1

Y j,2u )

1
n

n

∑
j=1

(Y j,1u )
2
− (

1
n

n

∑
j=1

Y j,1u )

2 (7)

with u = {i} (resp. {1, . . . , p} ∖ {i}).
The asymptotic properties of Ŝu,n have been recently studied in [14]. The i.i.d. hypothesis on the experimental

design can also be relaxed, reducing the computational cost [43]. However, we focus in this paper on the estimator
defined by (7), as it is commonly used by practitioners.

1.3. Screening as a preliminary step
When the number p of input variables is large (typically p≫ 10), estimating Sobol’ indices quickly gets too

expensive (in time or in storage capacity). In these cases, a preliminary step, which is less time consuming but
also less informative, is screening. The aim of screening is to eliminate some input variables whose influence
seems to be really negligible. We refer to [36] for a complete overview of tools for screening and we focus in this
paper on the method of screening introduced in [28]. Morris [28] proposed an OAT (one-at-a-time) design, in
which the impact of changing the values of each factor is evaluated in turn. However, the design introduced by
Morris belongs to global sensitivity experiments, as it covers the entire space over which the factors may vary.

Without loss of generality (thanks to a rescaling), we introduce below the approach by Morris [28] for
uniformly distributed input factors on the unit hypercube [0,1]p. Let l ∈ N, l ≥ 2. The p-dimensional input
vector X is discretized on a l-level grid G = {0, 1

l−1 ,
2
l−1 , . . . ,1}

p. The choice of l is arbitrary and has an impact
on the results (see [3] e.g. for more details on the choice of l). We then choose a predetermined multiple δ of
1/(l − 1), and define the ith elementary effect for 1 ≤ i ≤ p by

di(x) =
G(x + δi) − G(x)

δ
=
G(x1, . . . ,xi−1,xi + δ,xi+1, . . . ,xp) − G(x)

δ
(8)

where x is any value in the grid G such that x+δi is still in the grid G (we say x ∈ G′), with δi is a p-dimensional
vector whose all components are null except the ith one which is equal to δ. Let (xj), j = 1, . . . , r be an i.i.d.
(independent and identically distributed) sample uniformly distributed on G′. Starting from this sample of
size r, Morris [28] introduces a strategy to compute rp elementary effects using only r(p+ 1) evaluations of the
model G (see [36], p. 69-71 for details). For this strategy, l is chosen even and δ = l

2(l−1) , then each of the
lp−1 (p − δ(l − 1)) = lp

2 elementary effects for the ith input factor has equal probability of being selected. Define
di(xj), i = 1, . . . , p, j = 1, . . . , r the elementary effects deduced from the initial sample xj , j = 1, . . . , r. We then
compute

µi =
1
r

r

∑
j=1

∣di(xj)∣

and

σi =

¿
Á
ÁÀ

1
r

r

∑
j=1

(di(xj) − µi)2 .

We know that if the model is linear in Xi and Xi does not interact with the Xk, k ≠ i, then the elementary
effect di(x) does not depend on the position of x in the input space. Then σi is equal to zero. Morris’ approach
thus allows to detect effects which correspond either to non linearities or to interactions (or both), but it does
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not allow to separate both effects. In our case we use it to eliminate from influential input variables the ones
having

∣µi∣ ≤ c , ∣µi∣ ≤ 2σi
r

where the threshold c is chosen by the model expert.

1.4. Toy example
In this section, we give the intuition of sensitivity indices on a toy example. As a toy example, consider that

p = 2 and that
G(X1,X2) = 2X1 +X2,

where X1 and X2 are independent and uniform on [0; 1].
It is clear that VarY = 5VarX1 and that

E(Y ∣X1) = 2X1 +
1
2
,

so that VarE(Y ∣X1) = 4VarX1, and we have
S{1} =

4
5
.

Similarly, we have: S{2} =
1
5 . It is clear, from the formula which defines G, that the uncertainty on X1 has more

impact than the uncertainty on X2, provided they vary in the same range.
Now, if we suppose that uncertainty on X1 has been reduced, and that X1 is uniform on [0; 1

2 ] (while X2 is
still uniform on [0; 1]), we get that S1 = 1

2 = S2. As 1
2 < 4

5 , we see that the Sobol’ importance measure is
consistent with the intuitive fact that the reduction on the uncertainty on a parameter reduces its impact on
the uncertainty of the output (and increases, as a result, the impact of the uncertainty of the other parameters).

The next two sections (Sections 2 and 3) deal with specific issues for sensitivity analysis of dynamic models.
Section 2 can be read independently from Sections 3, 4 and 5. It is the most theoretical section. In Sections
4 and 5, we are faced with spatial inputs and outputs. These two sections can be read independently from
Sections 2 and 3 .

2. Reduced basis metamodels for sensitivity analysis of a dynamic model
Estimation of Sobol’ indices using the estimates Ŝu,n defined at (7) requires a large number of model runs.

More precisely, for a given index subset u, it requires n realisations of the Y 1
u and Y 2

u random variables. Using
equation (6), these realisations are obtained by performing 2n calls to the G function.

The Monte-Carlo sample size n is generally large (typically, in thousands or tens of thousands), so as to
obtain a reliable estimation of Su. This causes no problem if the G function can be rapidly evaluated. However,
in many cases, the evaluation of this function, for a single value of the parameter, can take a long time. For
instance, evaluation of G may involve a numerical solving of a partial differential equation (PDE) on a very fine
grid (hence, resolution of large systems of equations), or a numerical optimization of a CPU-intensive function,
or a large-sample Monte-Carlo simulation. In these cases, it is impossible, or at least not practical, to perform
the sensitivity analysis on the original G function, as this analysis would require many expensive evaluations of
this function.

One solution is to find a function G̃ ∶ [0; 1]p → R, which approximates the original model function G, but
which can be computed faster than G. The G̃ function is usually called metamodel (or surrogate model, or
response surface). The idea is the following: instead of performing 2n calls to G, we begin by building the
metamodel G̃ (possibly using a small number of calls to G), during an offline phase which is performed only
once. Then, in an online phase, the metamodel is called 2n times, in order to produce an approximation of the
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required evaluations. This methodology can be used in many contexts (not only in sensitivity analysis), where
many evaluations of a costly function are to be performed quickly (this is called a many-query context), such
as uncertainty quantification, model calibration, optimal design, or real-time simulations.

In the sequel of this section, we give a brief overview of the existing metamodelling methods (Section 2.1),
then we focus on a specific method: the reduced basis method, which will be presented, in the linear case, in
Section 2.2. The reduced basis (RB) approach is particularly well suited in the context of sensitivity analysis
and uncertainty analysis in geophysical models. Such models typically involve a wide range of parameters, such
as: source terms (climatic forcings, heat/wind/matter fluxes), boundary conditions (forcings, open boundaries),
and the initial state of the system. Their study generally leads to parametrized partial differential equations
which involve poorly-known parameters. It is then important to measure the impact of a given parameter
on the quality of the solution, and to identify the most influent parameters on the model solution.The RB
method has moreover the advantage of giving an explicitly computable bound on the metamodel error (ie., the
absolute difference between G and G̃) which, in turn, can be used to provide an error bound on the Sobol’ indices
estimated with the metamodel. This error quantification will be presented in Section 2.3.

2.1. Overview of metamodelling methods
We distinguish two families of metamodelling methods: the non-intrusive metamodels and the intrusive

metamodels. They differ by the type of information considered during the construction of the metamodel.

2.1.1. Non-intrusive metamodels
The non-intrusive methods use a finite sample of k ∈ N∗ input-output pairs

L = {(X1,G(X1
)) , . . . , (Xk,G(Xk

))} ,

where the design points X1, . . . ,Xk are generally chosen according to a space-filling design, such as variants of
latin hypercube sampling (LHS).

As the computation of the learning sample L requires k calls to the model function, k has to be kept moderate,
at most 2n, for the metamodel approach to be pertinent in terms of computation times.

The metamodel function G is then an interpolator (in the RKHS interpolation method, also known as Kriging
[38], [30] §3.1, [20]), or a regressor (in the non-intrusive polynomial chaos method [42]) of the elements in the
L set.

The L sample and the interpolation/regression coefficients are computed (and stored) during the offline
phase. In the online phase, the fast evaluation of G̃(X) for a given X is possible using the interpolation or
regression formula.

2.1.2. Intrusive metamodels
Intrusive metamodelling methods make use not only of a finite learning sample, as non-intrusive methods

do, but also of the mathematical (usually implicit) definition of the model function G. Let’s consider in the
following of this section the particular case where the model output writes as a function of the solution of a
X-parametrized PDE (that is, the PDE is driven by uncertain parameters which are taken as the inputs of this
model)

G(X) = `(u(X)),

where u(X) is the solution of a (discretized) X-dependent PDE

D(X, u(X)) = f(X) (9)

for a known f(X) (discrete) function, and a (discrete) differential operator D(X, ⋅).
For such models, it is possible to construct an intrusive metamodel. In the sequel, we present the reduced

basis approach, in the particular case of a linear PDE which depends “affinely” on the parameter vector, as given
in [29]. This method has been extended to more general (nonlinear and/or time-dependent) cases [9,21,44]. More
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specifically, it has been applied to the Burgers’ equation [15], a 1D version of the Shallow-Water equations, which
are commonly used to model the behavior of geophysical fluids (ocean, rivers). Thus it has to be considered as
a necessary first step to well understand what to do for more (realistic) complex models.

2.2. The reduced basis method for linear affinely-parametrized equations
2.2.1. Hypotheses.

We suppose that the PDE given in (9) is linear, and can be written in the following discrete weak form

a(X;u(X), v) = g(v) ∀v ∈ F , (10)

where F is a finite-dimensional vector space (usually a finite element space), and a(X; ⋅, ⋅) and g(⋅) are, respec-
tively, a bilinear form and a linear form on F .

The most computationally-demanding step during the evaluation of G(X) is generally the numerical resolution
of Equation (10). This resolution is costly because F has to be of large dimension for the PDE discretization
to be accurate. The goal of the reduced basis is to approximate (10) by a system of equations which can be
solved faster, replacing F by a specific space of smaller dimension.

We further suppose that a(⋅;u, v) can be affinely-parametrized, i.e. that

a(X;u, v) =
Q

∑
q=1

Θq(X)aq(u, v) ∀X,∀u, v ∈ F ,

where Θq (q = 1, . . . ,Q) are any functions of the parameter vector.

2.2.2. Offline and online procedures.
In the reduced basis method, one begins by choosing (during the offline phase) a parameter-independent,

problem-adapted, linear independent family {ζ1, . . . , ζm} of vectors of F . This family is called the reduced basis
and we define F̃ ∶= Vect (ζ1, . . . , ζm). Then, the following quantities

aq(ζi, ζj) (q = 1, . . . ,Q, i, j = 1, . . . ,m)

and
g(ζi) (i = 1, . . . ,m)

can be computed and stored. As they are parameter-independent, this can be done during the offline phase.
Finally, during the online phase, given a parameter vector X, the system of n equations

m

∑
i=1

⎛

⎝

Q

∑
q=1

Θq(X)aq(ζi, ζj)
⎞

⎠
ũi(X) = g(ζj) ∀j = 1, . . . ,m,

obtained by the Galerkin projection of (10) onto F̃ can be solved in ũ1, . . . , ũm so as to find

ũ(X) =
m

∑
i=1
ũi(X)ζi,

which is an approximation of u, solution of (10).
A significant computational gain can be realized if one can find a reduced basis {ζ1, . . . , ζm} such that

m ≪ dimF and, at the same time, u(X) ≈ ũ(X) for all X. We will see, in Section 2.2.4, two methods to find
such a basis.
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Once the ũi(X) coefficients have been found, one may approximate, in the case of a linear output defined by
`, the model G(X) by the reduced model

G̃(X) = `(ũ(X)) =
m

∑
i=1
ũi(X)`(ζi). (11)

This quantity can be computed with an online phase of complexity depending only on m and Q, and not on
dimF .

2.2.3. Error quantification.
The reduced basis method comes with an offline/online procedure for computing an error bound εu, satisfying

∥u(X) − ũ(X)∥ ≤ ε(X) ∶= εu(X),

for a suitably chosen norm ∥⋅∥ on F .
The online procedure for the computation of εu also has a dimF-independent complexity. One can refer

to [29] for details of the computation of εu.
The εu can be used so as to give a bound between true and reduced outputs

∣G(X) − G̃(X)∣ ≤ Lεu(X),

where L is the Lipschitz constant of `

L = sup
v∈F,v≠0

`(v)

∥v∥
.

One should note that a much more precise bound for ∣G(X) − G̃(X)∣ has been proposed in [17].

2.2.4. Reduced basis choice.
We now present two methods for choosing the reduced basis {ζ1, . . . , ζm}.
POD method. The first is the POD (proper orthogonal decomposition) method. The idea is to look for

an orthonormal family {ζ1, . . . , ζm} which minimizes the mean error

∫
X∈[0;1]p

∥u(X) − ũ(X)∥
2 dX,

where ũ(X) denotes the orthogonal projection of u(X) on Vect (ζ1, . . . , ζm).
As the integral cannot generally be carried out analytically, one instead minimizes an empirical approximation

∑
X∈Ξ

∥u(X) − ũ(X)∥
2
,

where Ξ is a (usually random) finite subset of the parameter space [0; 1]p.
The snapshot POD algorithm [39] performs this constrained minimization by computing u(X) for X ∈ Ξ,

and then finding the reduced basis in terms of the m dominant eigenvectors of a matrix of order cardinal of Ξ.
Greedy method. The greedy method [29] iteratively finds a reduced space of the form

F̃ = Vect (u(Xk), k = 1, . . . ,m) .

Hence, it is sufficient to define X1, . . . ,Xm. To begin with, we take for X1 a randomly chosen parameter.
At the kth step, suppose that X1, . . . ,Xk−1 have been found. One takes

Xk = argmin
X∈Ξ

εu(X),
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where Ξ is a random, finite, large subset of the parameter space, and εu is the error bound given by the reduced
basis method obtained by taking {u(X1), . . . , u(Xk−1)} as reduced basis (in fact, an orthonormalized family
which spans the same subspace, for numerical stability reasons).

The advantage of the greedy method over the POD method is that it requires computation of u(X) for only
m (ie., the desired size of the reduced basis) values of X, while the POD requires generally more, which causes
a greater offline computational time. However, the POD method does not depend on the existence and the
accuracy of an error bound, and have shown to have better mean performance in our experiments.

2.3. Error quantification for Sobol’ indices estimated using a metamodel
In this Section, we suppose we have a metamodel output G̃, which is used as an approximation of the original

model output G.
We suppose that the quality of this approximation is asserted by a computable pointwise error bound ε,

∣G(X) − G̃(X)∣ ≤ ε(X).

This error bound can be the one given by the reduced basis method (see above), or any other (possibly heuristic)
error estimator.

As said in the introduction, we suppose that the evaluation of G is costly while evaluation of G̃ and ε are
cheap. Hence, we would like to find two quantities Ŝmin

u,n and ŜMax
u,n so that

Ŝmin
u,n ≤ Ŝu,n ≤ ŜMax

u,n ,

where Ŝmin
u,n and ŜMax

u,n can be computed using evaluations of G̃ and ε.
We define, using the notations of Section 1.2,

Ỹ j,ku = G̃(Xj
u,X

j,k
uc ), εj,ku = ε(Xj

u,X
j,k
uc ), Ij,ku = [Ỹ j,ku − εj,ku ; Ỹ j,ku + εj,ku ] , (12)

for k = 1,2.
It is clear that since Y j,ku ∈ Ij,ku , for all j = 1, . . . , n and k = 1,2, one can take

Ŝmin
u,n = min

yj,k∈Ij,k
u ∀j,k

1
n ∑

n
j=1 yj,1yj,2 − ( 1

n ∑
n
j=1 yj,1)(

1
n ∑

n
j=1 yj,2)

1
n ∑

n
j=1 y

2
j,1 − ( 1

n ∑
n
j=1 yj,1)

2

and

ŜMax
u,n = max

yj,k∈Ij,k
u ∀j,k

1
n ∑

n
j=1 yj,1yj,2 − ( 1

n ∑
n
j=1 yj,1)(

1
n ∑

n
j=1 yj,2)

1
n ∑

n
j=1 y

2
j,1 − ( 1

n ∑
n
j=1 yj,1)

2 .

In [16], we have proposed a fast, analytical method for computing Ŝmin
u,n and ŜMax

u,n . The spread between Ŝmin
u,n

and ŜMax
u,n accounts for the error induced by the use of the metamodel to estimate the Sobol’ sensitivity index

Su.

If one wants to assess the uncertainty (when estimating Sobol’ indices) due to the replacement of the model
by the metamodel, but also the one due to Monte Carlo estimation, we have to go further.

The Monte-Carlo error can be quantified by using a bootstrap technique [6]. More specifically, notice that
Ŝmin
u,n and ŜMax

u,n are functions of the data

Ŝmin
u,n = Ŝmin

u,n ((Ỹ j,1u , εj,1u , Ỹ j,2u , εj,2u )
j=1,...,n) , ŜMax

u,n = ŜMax
u,n ((Ỹ j,1u , εj,1u , Ỹ j,2u , εj,2u )

j=1,...,n) .
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Now, for a list L drawn with replacement from {1, . . . , n}, we define the bootstrap replications of Ŝmin
u,n and ŜMax

u,n ,

Ŝmin
b (L) = Ŝmin

u,n ((Ỹ j,1u , εj,1u , Ỹ j,2u , εj,2u )
j∈L) , Ŝ

Max
b (L) = ŜMax

u,n ((Ỹ j,1u , εj,1u , Ỹ j,2u , εj,2u )
j∈L) .

We can compute, a (large) collection of B replications of Ŝmin
u,n and ŜMax

u,n ,

R
min

= {Ŝmin
b (L1), . . . , Ŝ

min
b (LB)}, RMax

= {ŜMax
b (L1), . . . , Ŝ

Max
b (LB)}.

with L1, . . . , LB independent lists drawn with replacement from {1, . . . , n}. Due to the resampling nature of
the bootstrap, this computation does not require any supplementary evaluation of the metamodel or its error
bound.

These replications can be used to produce a confidence interval for Su as follows: for a desired risk level α > 0,
we can consider qmin and qMax, respectively the α/2-quantile of Rmin and the 1 − α/2-quantile of RMax,

#{x ∈Rmin s.t. x ≤ qmin
} =

α

2
B,

#{x ∈RMax s.t. x ≤ qMax
} = (1 − α

2
)B,

and take [qmin; qMax] as confidence interval for Su.
This confidence interval combines the two sources (metamodel and estimation) of errors, and it can be shown

that it includes the bootstrap confidence interval based on the estimator on the true model output.

In the three next sections, we are interested with spatio and/or temporal environmental models involving
non standard inputs (weather scenarios, geometrical features, . . . ) and/or outputs (spatial outputs). In these
sections, contrarily to the RB approach of Section 2, we consider the model as a black box. For a set of input
parameters, one can compute the corresponding output, but one ignores the intern structure of the model.

3. Sensitivity and uncertainty analyses of a dynamic model with non
standard input factors

This section describes the global sensitivity analysis (SA) of an agro-climatic model embedded in a decision
support system (DSS) for the water management of vineyard in the Languedoc-Roussillon region, France. The
DSS is used in real time to recommend irrigation amounts in order to maintain optimal vine water stress
dynamics, based on the production objective targeted by the winegrower (table wine, aging or laying-down
wine, etc.). A major characteristic of agro-climatic models is the difficulty of estimating the numerous input
parameters because field measurements are both costly and tedious. This is particularly true when soil-related
parameters are involved - which is the case here - because their estimation requires subsoil measurements. The
operational use of the model thus requires to find the right balance between data-friendliness and precision [33]:
the less input parameters asked to the end-user, the better.

In this context, the practical use of the SA is to identify the most influent parameters in order either to
concentrate experimental efforts on their field measurement when possible, or to calibrate them otherwise.
After a preliminary screening of the less influential parameters via Morris method, the method by Sobol’ is used
to achieve the SA. The model includes a functional (temporal) output and correlated temporal inputs, so the
study addresses some issues arising from these two aspects when met in a practical context.
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3.1. A model of water stress in grapevine
The model output is the predawn leaf water potential (PLWP); it measures in MPa the water status in

vine leaves. It is the reference indicator of vine water stress [34], which describes the physiological state of the
vine under water deficit. It is estimated using a discrete-time mechanistic soil-vegetation-atmosphere-transfer
model [23, 31] that is, through the combination of models describing the dynamics of soil water balance, vine
canopy growth and solar radiation absorbed by the vegetation. The soil water balance model is again the
combination of sub-models describing the various soil water transfer processes: rain and irrigation infiltration,
bare soil evaporation, vine root absorption, runoff and drainage. The soil water balance model runs daily
starting January 1st, and PLWP is computed daily during the vine vegetative cycle, i.e. when leaves are
present, typically from April till October.

The model requires the definition of 4 temporal and 21 scalar inputs (see Table 1 for a brief definition).
The 4 temporal inputs are to some extent correlated. They represent the weather data station measurements
necessary for driving the model: daily precipitations, solar radiation, mean air temperature and potential
evapotranspiration. For most of the scalar inputs, like vegetation dimensions or vine rows orientation, the
winegrower can easily give at least a rough estimate. However, this is not the case for 4 scalar inputs that
are the parameters of the runoff (CN) and evaporation (b1 and U) models and the total transpirable soil
water (TTSW) that controls the maximum amount of soil-water available to the vine. The runoff parameter
CN controls the amount of water that actually infiltrates the soil during a rain event. Parameters U and b1
characterize the influence of the top soil layer on the evaporative processes. All 3 are known to be related to
other more easily measured soil properties, mainly soil texture in the top soil layer and soil surface feature
(presence of grass, chemical weeding, etc.), but no consensus exists in literature on the precise relations. Here
they are estimated from literature, based on relations with the mean soil texture only, because it is the parameter
that the end-user can the most easily estimate. Similarly, the TTSW is estimated based on soil texture and an
estimate of the rooting depth. One aim of the SA is to evaluate the choice made for the estimation of these
parameters: it might be suitable to spend more effort to reduce the uncertainty on the estimation of the most
influent parameters. In the following, the 21 scalar input parameters will be assumed to be independent, which
was considered as reasonable by practitioners.

3.2. Definition of the input factors
The SA was achieved at the Languedoc-Roussillon scale in order to gain a general insight into the model

behaviour. The distributions of all scalar parameters were set rather easily from literature or field expertise
in order to scan their whole variation range at the regional scale. The case of the weather data was more an
issue, since to the authors’ knowledge, the introduction of correlated functional inputs in a SA is still under
research. We chose to use an equivalent of the map-labeling method developed for spatial inputs and described
in Section 4.2.2. It consists in grouping the 4 temporal inputs into a single input factor, defining a weather
scenario. The weather scenarios are then equiprobably drawn among 22 sets of data (i.e. scenarios) collected by
weather stations in various spots of the Languedoc-Roussillon in the past 40 years, and representative of dry,
medium-dry and humid years. One drawback of the method is that it does not allow to quantify the individual
influence of the weather components, and especially of precipitations that are empirically known to be the most
influent. The whole set of input factors is described in Table 1.

3.3. Results
A preliminary screening via Morris method was achieved (results not shown). Morris method was developed

for scalar continuous inputs, so several SA were achieved with fixed weather scenarios, since they are defined
as discrete inputs. Three independent SA were performed with 3 years of weather data, representative of dry,
medium-dry and humid years and in all cases, the same 6 parameters were identified as being negligible. These
are the soil albedo, which depicts the radiation reflecting power of the soil surface, and the 5 cumulative thermal
times defining the transition between phenological stages (leaf appearance, flowering, leaf senescence, etc.). As
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Parameters Definition Distribution Range (binf ,bsup)
weather climatic data (see main text) discrete -
TTSW [mm] total amount of transpirable soil water uniform 50 − 350
CN [−] parameter of the runoff model uniform 60 − 99
U [m] parameter of the evaporation model uniform 2 − 6
b1 [mm] parameter of the evaporation model truncated N(14,5) 5 − 21
b2 [−] parameter of the evaporation model truncated N(0.12,0.03) 0.05 − 0.18
Hmax [m] vegetation maximum height uniform 0.5 − 1.5
Lmax [m] vegetation maximum width uniform 0.2 − 1
Pomin [−] vegetation minimum porosity uniform 0.1 − 0.5
FTSWinitial [−] water content at January 1st uniform 0.3 − 1
FTSWthreshold [−] parameter of the root absorption model uniform 0.3 − 0.9
D [m] inter-row distance uniform 1.5 − 3.5
orientation [rad] vine row orientation uniform 0 − π
THTHmax [○C.day] parameter of the vegetation growth model uniform 350 − 750
THTLmax [○C.day] parameter of the vegetation growth model uniform 350 − 750
THTPomin [○C.day] parameter of the vegetation growth model uniform 350 − 750

Table 1. Definition of the input factors for Sobol’ SA of the model for water stress in grapevine
in Section 3 with the probability distribution chosen, i.e. either a discrete distribution, a
uniform distribution in the range (binf ,bsup) or a normal distribution N(µ,σ) of mean µ and
standard deviation σ truncated in the range (binf ,bsup). The input factors eliminated with
Morris screening (see Section 3.3) are not included.

the results are coherent with field expertise, they were supposed extensible to every weather data, so these
parameters were fixed to nominal values in the following Sobol’ SA.

The results of Sobol’ SA, obtained with N = 15 000, are shown in Figure 1. The first order and total
sensitivity indices were computed sequentially at each simulation step, which enables to follow the variation of
parameters influence over time. Top Figure 1(a) shows the variation range of PLWP dynamics represented by its
median, interquartile and interdecile range. The PLWP evolution is characteristic of the Languedoc-Roussillon
pedoclimatic context. At the beginning of the vegetation growing season, the PWLP remains high and within a
small variation range. Early June, i.e. at the beginning of the drying season (marked in the figure by a vertical
dotted line), it begins to drop with an increasingly large variation range. Then PLWP slightly increases again
in September, which marks the beginning of soil-water refilling by rain events.

Bottom Figure 1(a) shows the corresponding daily stacked area chart of Sobol’ sensitivity indices (individual
parameters and parameter interaction). The contribution of individual parameters reduces to that of 4 soil-
related parameters plus the weather data, the total individual contribution of all other parameters (labeled
‘others’ in the figure) remains small. All along the season, interactions are high. They mainly occur between
the input factors whose individual contributions are the highest. Comparison between first order and total
sensitivity indices is shown in Figure 1(b). From an operational point of view, the parameters of interest are
those whose influence is high when PLWP variability is high, i.e. from June to October. In this regard, a
specificity of SA for temporal outputs is that the interpretation of the sensitivity indices on their own, i.e.
without reference to the output uncertainty, can be misleading. This is the case for parameter FTSWinitial
(soil-water content at January 1st); its total contribution explains up to 40% of the output variability in the
first phase of the season but its influence is rapidly damped when the PWLP variability increases. Identically,
the total contribution of the runoff coefficient CN, which goes up to 40% at the beginning of the season,
remains greatly under 15% in the phase of interest. The parameter FTSWthreshold, which is a soil-water content
threshold controlling root absorption, participates in the model when the soil-water content is low enough, i.e.
when PLWP is low enough. This explains why its influence is zero at the beginning of the growing cycle. It
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(a) (b)

Figure 1. Results of Sobol’ SA of the model for water stress in grapevine in section 3. (a) The
top figure shows the variation range of the model output dynamics represented by its median,
interquartile range (range between the 1st and 3rd quartiles) and interdecile range (range
between the 1st and 9th deciles). The bottom figure shows the corresponding daily stacked
area chart of sensitivity indices (individual parameters and interactions). (b) Comparison of
the temporal evolution of 1st order (individual) and total sensitivity indices for the 5 most
influential parameters. In all figures, the vertical dotted lines mark the beginning of the phase
with a high output variability.

starts playing a part around June and explains 10 to 15% of the variability at the end of the season. The 2
prevailing input factors when the PLWP variability is high are by far the weather station measurements and
the TTSW. This confirms the empirical knowledge of the modelers [24]. As stated above, the methodology
chosen for including the weather data as an input factor does not allow to discriminate which of the weather
components have the most influence. However, additional SA (not shown) achieved for fixed weather scenarios
showed the predominant role of precipitations since both PLWP and sensitivity indices dynamics strongly vary
with rain events.

3.4. Discussion
The SA allowed to assess the general behavior of the model at the Languedoc-Roussillon regional scale. For

a practical use of the model for decision support, a complementary step is now to quantify the sensitivity of
PLWP at the vine plot scale, and most importantly of the irrigation amount and triggering date recommended
by the DSS, and this for the whole range of pedo-climatic variability of the region. The present results, by
identifying parameter interaction, and thus the parameters whose influence vary from one plot to another, will
allow to define a set of region-representative vine plots.

This additional study is essential to assess the practical use of the model in the DSS, and to determine which
parameters require calibration. Considering the influence of the TTSW at the regional scale, and from empirical
knowledge, the best option seems to calibrate it against field data for each vine plot. Among the 3 parameters
related to soil texture, only the runoff coefficient CN stands out. This result has to be confirmed at the vine
plot scale, but the suitability of its calibration is currently under discussion.
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4. Sensitivity analysis of a spatial model for flood risk quantification
Flood risk research makes intensive use of numerical modelling to forecast flooding events, assess the impacts

of potential flooding events in terms of human well-being, economic and social development, and design efficient
flood management policies. These models simulate hydrological, hydraulic and economic processes over a given
study area. They are usually spatially distributed and often make use of Geographic Information Systems (GIS
tools). We present in this section how sensitivity analysis has been performed on one of these flood risk models.

4.1. NOE model for the economic assessment of flood risk
4.1.1. Model description

The NOE model is a spatially distributed code which is used to assess the economic impact of flood risk [7].
It calculates the so-called EAD risk indicator (Expected Annual Damage [e/year]), which is defined as the
expected economic losses due to flooding events over one year on a given study area. The EAD indicator is
spatially distributed and mapped over the floodplain. Its estimation requires to compute flood damages and
flood return intervals for a range of flood scenarios of various magnitudes (e.g. a 10-year flood, a 30-year
flood, etc.). The return intervals of these scenarios are computed from a series of annual maximum flows at a
gauging station. Estimation of economic damages caused by a given flood scenario (Figure 2) is based on the
combination of various input data: i) a hazard map which gives maximum water depths, water velocities and
flood durations over the study area for this flood scenario; ii) a landuse map which identifies and locates the
various assets at stake over the study area (e.g., buildings, agricultural land, shops, factories, etc.); and iii) a
set of so-called damage functions that describe the vulnerability of flood-exposed assets.

As a study area, we selected the Lower Orb River fluvial plain, located in the south of France (Hérault).
This 63 sq. km2 area has a Mediterranean subhumid regime and suffers from frequent flooding events, that
may result in large economic losses. For example, the flood of Dec. 1995 - Jan. 1996, with a peak discharge of
1 700 m3/s, affected approximately 15 000 people and caused a total amount of damage of 53 Me [40].

€

€
€
€

€
€

Figure 2. NOE model: estimation of economic losses for a given flood scenario.

4.1.2. Notations
The NOE model has both spatially distributed inputs and a spatial output. We thus adapt the general

notations given in section 1 as follows:

Y = G(X1, . . . ,Xp,Zp+1, . . . ,Zp+p′) (13)

where Xi are scalar inputs (X1: flood return intervals, X2: damage functions), Zi = {Zi(s) ∣ s ∈ R2} are
spatially distributed inputs (Z3: hazard map, Z4: landuse map) and Y = {Y (s) ∣ s ∈ R2} is a spatially distributed
output (the EAD map). The NOE model has two important features that need to be stressed out. First, the
model end-user (e.g., a water manager) is interested in the whole output map Y = {Y (s)∣s ∈ R2} of the EAD



314 ESAIM: PROCEEDINGS

risk indicator, but also in knowing the aggregated value of the EAD risk indicator over one district, one city or
the entire floodplain. We thus say that the NOE model is spatially additive, which means that the output of
interest over a given spatial support ν ⊂ R2 is the integral Yν = ∫s∈ν Y (s)ds.1 Second, the NOE model is also
a point-based model, meaning that the value of model output Y (s) at a given location s ∈ R2 only depends on
the set of scalar inputs X1, . . . ,Xp and on the values Zi(s) of spatially distributed inputs at that same location
s only [11]. Such point-based models are encountered in various fields of environmental and earth sciences,
whenever spatial interactions in the physical processes under study can be neglected in a first approximation.

4.2. Variance-based sensitivity analysis for a spatial model
4.2.1. Modelling uncertainty on spatial inputs

The hazard map (Z3) is a GIS raster map (regular grid) that gives water depths across the study area.
Uncertainty in Z3 derives from the combination of various input uncertainties in the inundation mapping
process; however, for the sake of simplicity, we considered the error on the high-resolution Digital Terrain
Model (DTM) as the single uncertainty source in the hazard map Z3. The DTM – a raster surface of 5 m cell
size – was initially built by stereo-photogrammetry. Both measurement errors and interpolation errors affect
the quality of this input data [46]. These errors are spatially auto-correlated and are modelled by a zero-mean
Gaussian Random Field with an exponential variogram model γ(⋅), whose characteristics were determined from
a set of 500 control field points (sill = 17 cm, range = 500 m, nugget = 0.02).

The landuse map (Z4) is a GIS vector map, which exhibits at least two types of uncertainty: i) semantic
errors (misclassification of polygonal features representing assets); and ii) geometric errors [2]. Semantic errors
are described by a confusion matrix that gives a confusion probability p(a, b) for each pair of possible land use
types (a, b) [8]. Geometric errors are accounted for by randomizing the surface area of each polygonal feature,
using a corrective random coefficient α ∼ U [0.75; 0.85] — which corresponds to a digitalising error of 0.3 mm
at the map scale [10].

From this description of uncertainty, two stochastic processes P3 and P4 were designed to generate any
number of random realisations of Z3 and Z4. Stochastic processes P3 and P4 are fixed, and the sensitivity
analysis focuses on the overall uncertainty on Z3 and Z4 that is generated by P3 and P4.2

4.2.2. Propagating uncertainty: the map labelling method
To estimate variance-based sensitivity indices SZ3 and SZ4 associated with spatial inputs Z3 and Z4, we

use the map labelling method [25]. The uncertainty of Zi is represented using a set of ni randomly generated
realisations (ni possibly large), generated by the stochastic process Pi. Each realisation is then labelled by a
single integer. The steps are as follows:

Step 1: generate ni random realisations of the spatial input Zi = {Zi(s)∣s ∈ R2} using a stochastic process
Pi. Store them in some permanent disk space. These realisations are considered as equiprobable;

Step 2: label each realisation of Zi with a unique integer in ⟦1;ni⟧; the random realisation associated
with label l is denoted by Z(l)

i ;
Step 3: consider a random label Li, which is assumed to follow a discrete uniform pdf in ⟦1;ni⟧;
Step 4: sample random label Li along with other model inputs to generate an input matrix, following

the sampling procedure described in Section 1.2;

1Many other environmental models are also spatially additive (e.g. models that describe the rainfall over a study area), but
some are not (e.g., a model that predicts the maximum pollutant concentration max{Y (s)∣s ∈ ν} over a study area).

2Other choices could have been made, such as: i) considering that Pi is itself uncertain—so-called second-level uncertainty,
e.g., modelling uncertainty on the variogram model γ(⋅) or on the probabilities confusion pi,j ; or ii) not considering the overall
uncertainty on Zi, but focusing on the impact of some important scalar features of Zi—which is the perspective adopted in Section
5.3.
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Step 5: evaluate the model G for each line of the input matrix; spatially distributed input Zi is replaced
by a reference to the random label li: on line j, the sampled value l(j)i of the label indicates that random

realisation Z(l(j)i )
i must be considered to evaluate model G for this sample line;

Step 6: from the output vector, calculate the estimators of first and total-order sensitivity indices ŜLi

and ŜTLi
of random label Li with Equation (7). These indices are taken as a measure of the influence of

Zi on the variance of model output.
Sample sizes n3 = 1000 and n4 = 100 were used for the two spatial inputs of the NOE model (hazard map Z3

and landuse map Z4).

4.2.3. Which output of interest? Site and block sensitivity indices
Variance-based sensitivity indices must be computed with respect to a scalar quantity of interest derived

from the spatially distributed model output Y = {Y (s)∣s ∈ R2}. In the case of a spatially additive model such
as NOE, we suggest to use two different types of sensitivity indices: site and block sensitivity indices.

We first call site sensitivity indices, denoted by ST{i}(s), the total-order indices computed on a point support,
i.e., with respect to the output of interest Y (s) at a specific location s ∈ R; S{i} = {ST{i}(s) ∣ s ∈ R2} denotes the
2D-field of site sensitivity indices.

Next, we call block sensitivity indices, denoted by ST{i}(ν), the total-order indices computed on a block
support ν ⊂ R2, i.e., with respect to the block average Yν = ∫s∈ν Y (s)ds. On the NOE model, we considered
three individual spatial supports ν1, ν2 and ν3 of increasing surface area. These three supports were selected
at random, and their study is only meant to be illustrative: ν1 is a single house located on the western bank
of the Orb Delta (∣ν1∣ = 1 ha), second support ν2 is the administrative district of Sauvian (∣ν2∣ = 13 sq. km2),
and ν3 is the entire floodplain (∣ν3∣ = 63 sq. km2).

4.3. Results
4.3.1. Maps of site sensitivity indices

Figure 3 displays the maps S{i} of site sensitivity indices for uncertain model inputs X1, X2, Z3 and Z4.
Spatial distribution of site sensitivity indices proves to be heterogeneous. For example, by comparing these
sensitivity maps with a map of the study area, we can find that the hazard map Z3 and the landuse map Z4
display smaller sensitivity indices on the urban areas than on the areas covered with agricultural land. The
interpretation of this finding will not be discussed here, but it brought a better understanding of the NOE
model behaviour.

4.3.2. Block sensitivity indices
Figure 4 displays the block sensitivity indices ST{i}(ν) computed for each uncertain model input with respect to

the aggregated model output Yν = ∫s∈ν Y (s)ds over spatial supports ν1 (house), ν2 (district) and ν3 (floodplain).
It clearly suggests that the ranking of uncertainty sources depends on the surface area of the spatial support
ν (change of support effect). The variance of the aggregated model output on ν1 (smallest support) appears
to be mainly explained by the uncertainty on the two spatially distributed inputs, that is, the hazard map Z3
and the landuse map Z4 (sensitivity indices: 0.65 and 0.8, respectively). On the contrary, the non spatially
distributed inputs (flood return intervals X1 and damage functions X2) prove to be the most important sources
of uncertainty when aggregating the EAD risk indicator over the total floodplain ν3 (largest support).

4.4. Change of support effect
The change of support effect observed in Section 4.3.2 can be explained theoretically. Let consider from now

on a model Y = G(X,Z) with a single spatial input Z which is assumed to be a second-order stationary random
field (SRF) with an isotropic covariance function C(⋅). Let’s also assume that model G is point-based, that is,
there exists a mapping Gloc. ∶ Rp × R → R such that ∀s ∈ R2, Y (s) = Gloc. [X, Z(s)]. Under the stationary
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Figure 3. Maps S{i} of site sensitivity indices for each model input.

0 0.4 10.2 0.6 0.8 0 0.4 10.2 0.6 0.8 0 0.4 10.2 0.6 0.8

v2 : district v3 : floodplainv1 : housing unit

Z

Z

X

X1

2

3

4

Figure 4. Block sensitivity indices ST{i}(ν) on spatial supports ν1 to ν3.

hypothesis on Z, site sensitivity indices ST{i}(s) do not depend on site s ∈ R2 and can simply be denoted by ST{i}.
For any support ν ⊂ R2, the block sensitivity indices of X and Z over support ν satisfy :

STZ(ν)
STX(ν)

≃
νc
∣ν∣

with νc = A ⋅
STZ
STX

(14)

where A depends only on the covariance function C(⋅). The symbol ≃ means that the equality is valid to a
first approximation [35, for a detailed proof]. Equation (14) shows that the ratio νc/∣ν∣ determines the relative
contribution of the model inputs Z and X to the output variance var(Yν). For a small ratio (i.e., when the area
of the support ν is large compared with the critical size νc), the variability of Z is mainly local, and the spatial
correlation of Z over ν is weak. This local variability averages over the support ν when the aggregated model
output Yν is computed; hence, spatial input Z explains a small fraction of the output variance var(Yν). This
change of support effect is of great importance to better understand how the result of a sensitivity analysis may
change under model upscaling or downscaling.

5. Sensitivity analysis in agro-ecology with landscape as an input factor
Today, much research in agronomy and ecology involves complex dynamic processes that occur at the scale of

an agricultural landscape. These processes include population genetics and population dynamics which depend
on the composition and structure of the landscape. In this section, we consider theoretical dynamic models that
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aim to study and better understand such processes. We focus on the case when the model is spatially explicit
and the influence of landscape features is of interest. In the previous section, the emphasis was on uncertainties
about a given landscape. In this section, we are interested in comparing the effects of different landscapes on
the output (see Fig. 5).

5.1. Models of coexistence and crop disease propagation
5.1.1. Models short description

Similar models have been developed for two types of agricultural issues. The first type (see e.g. [22, 45])
deals with the coexistence between GM (genetically modified) and non-GM crop varieties. The objective is to
determine the conditions (if any) for both types of crops to coexist within the same area, and to minimize the
risk of non-GM fields to exceed given thresholds of GM content because of cross-pollination from GM fields.
The second issue (see e.g. [32]) deals with crop disease propagation over an agricultural area. The propagation
depends on the genetic composition of the pathotypes in the environment and on resistance genes which differ
between crop varieties. The objective is to better manage the allocation of crop varieties to the different fields,
in order to minimize the strength and speed of disease propagation.

In both cases, the problem involves dynamic processes and dispersal (of pollen or spores) between fields.
The landscape is described by its composition (the proportions of the different varieties) and by its structure
(the field pattern and the spatial allocation of the varieties). Both characteristics may have an influence on the
output.

5.1.2. Landscape input
In the models developed in [22, 32, 45], the spatial support is an idealised agricultural landscape within a

square area A of a few squared kilometers. The field pattern is a polygon tessellation in A with each polygon
representing a crop field. It can be described by two categorical and spatialised inputs Z1 and Z2, where Z1(s)
is the field containing location s and Z2(s) is the variety allocated to Z1(s).

5.1.3. Main characteristics
In [22, 32, 45], space and time are discretised at a fine scale. The models contain state variables w(s, t)

which represent population quantities in location s at time t. The quantity w(s, t) depends on the quantities
w(s′, t − 1) through integro-differential equations that describe pollen or spore dispersal. The final output Y is
a given function of the state variables w(s, t). Like in Section 4, it can be written

Y = G(X1,⋯,Xp,Z1,Z2), (15)

where Xi are scalar inputs, Zi are spatially distributed inputs and Y is a spatially distributed output. Note
that G is never a point-based model in the sense of Section 4, because pollen and spore dispersal generate
dependency between what happens in any two locations s and s′.

Compared to Section 4, we are not interested in the output map Y = {Y (s)∣s ∈ R2} per se, but rather in
scalar summaries of Y which may also involve features of Z1 and Z2.

5.2. Pragmatic sensitivity analysis with input factors related to landscape features
The output Y depends on the particular field pattern associated with Z1 and on the variety allocation to

fields associated with Z2. When performing sensitivity analyses of G, we would like to account for and quantify
this influence. This can be done more or less formally.

A simple and pragmatic approach consists in generating a finite collection of landscapes based on a few input
factors. In [45], six real-world field patterns were used and Z1 was defined through a categorical input factor
called Map at six levels (see Figure 5). The variety allocation Z2 depended on Z1 and on three additional
input factors : Maiz, the maize area proportion in A; GM, the GM-maize area proportion; Aggr, the degree
of aggregation between GM fields.
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Figure 5. A set of maps generated in [45] with the same field pattern Z1 and different variety
allocations Z2.

In [45] all factors, including Map, Maiz, GM and Aggr, were given a finite number of levels and considered
as independent. Simulations were run according to an unreplicated complete factorial design. In each simulation,
the field pattern Z1 was entirely determined by the level of factor Map. For each combination of levels of Map,
Maiz, GM and Aggr, the variety allocation Z2 was generated by a simulated annealing algorithm. An analysis
of variance was then performed as described in [27]. Note that this can be considered as a special case of the
variance-based sensitivity analysis described in Section 1, where all input factors Xi are given a symmetric
multinomial distribution.

5.3. Landscape representation by stochastic processes
An alternative is to model the spatial variability (or uncertainty) of interest by defining Z1 and Z2 as two

stochastic processes, as proposed in Section 4. We shortly review recent works on agricultural field patterns
and variety allocation modelling by stochastic processes.

5.3.1. Field pattern
Stochastic field patterns (Z1 input factor) can be modelled by Voronoi tessellations based on stochastic point

processes. In [22], it was shown that for more realistic field patterns, the seeds of the Voronoi tessellations
should be distributed as a pairwise-interaction point process rather than a Poisson process. Up to a scalar, the
density function of a pairwise-interaction process is equal to

λn∏
i<j
γθ(∥si − sj∥),

where λ is the process intensity, the si are the locations of the n centroids, ∥s − s′∥ is the Euclidean distance
between s and s′, and γθ(⋅) is the interaction function with interaction parameter θ. Parameter λ allows
to control the expected number of points (and so the number of fields) in the area, while θ determines the
distribution of pairwise distances between the centroids (and so, indirectly, the spatial distribution of field
sizes).

The polygons associated with a Voronoi tessellation based on random seeds do not look like actual agricultural
fields. To overcome this drawback, rectangular tessellations due to Mackisack and Miles [26] were investigated
by Le Ber et al. [22]. More recently, Kiêu et al. [18, 19] have investigated the T-tessellations introduced by
Arak et al. [1]. In a T-tessellation, each vertex lies at the intersection of three edges, two of which are aligned.
In [18], the definition of a completely random T-tessellation is proposed. Based on this definition, more specific
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T-tessellation processes can be defined by using Gibbsian density functions h(T ) with − logh(T ) = ∑k θkgk(T ),
where T denotes a T-tessellation , gk(T ) is a feature of interest measured on T (number of fields, size variability,
angle values, etc.), and θk is a parameter. For sensitivity analysis, it is possible either to fix the density function
and its parameters or to fix the density function and vary its parameters.

5.3.2. Variety allocation
Conditional on Z1, variety allocation (Z2 input factor) is a stochastic function from the set of fields to the

set of varieties. In [45], the allocation is generated by a simulated annealing algorithm. Alternatively, it can be
defined as a Gibbs process with a density function allowing to control the variety proportions and their degree
of spatial aggregation (see also [32]).

5.4. Consequences on the sensitivity analysis
When the variance-based sensitivity analysis of Section 1 includes the agricultural landscape among the input

factors, or indeed any similarly complex input, several options arise. In particular, for each spatial input Zi,
● the stochastic process Zi may be considered as a landscape input factor per se;
● the stochastic process Zi may be generated conditionally on some of its parameters that are considered
as the actual landscape input factors. To be useful, these parameters must correspond to landscape
features of interest. Examples are the parameters e.g. λ or θ in the tessellation processes described
above or the Map, Maiz, GM and Aggr values for the allocation of varieties in [45].

In the first case, the map labelling approach of Section 4 can be applied. In the second case, the parameters of
interest of the process are usually included among the independent input factors Xi. The sensitivity analysis is
performed as described in Section 1, with Zi generated using the parameter values Xj

i given by the experimental
simulation design.

In fact, the complete input structure is often more complicated than appears at first sight. For example,
consider the input Z2 discussed in Section 5.2. It is an additional input factor whose levels are the field-and-
variety pattern after varieties have been allocated to the fields. Let’s call this factor VarMap. Then VarMap
is a categorical factor nested in Map, Maiz, GM and Aggr. A complete variance decomposition would require
replications of VarMap for given combinations of these nesting factors. If G is stochastic, replicated runs of G
for a given level of VarMap would be required as well. For the sake of conciseness, this will not be developed
any further in this paper.
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