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Fine mapping of QTL and genomic prediction
using allele-specific expression SNPs
demonstrates that the complex trait of genetic
resistance to Marek’s disease is predominantly
determined by transcriptional regulation
Hans H. Cheng1*, Sudeep Perumbakkam1,2, Alexis Black Pyrkosz1, John R. Dunn1, Andres Legarra3 and William M. Muir4

Abstract

Background: Marek’s disease (MD) is a lymphoproliferative disease of poultry induced by Marek’s disease virus
(MDV), a highly oncogenic alphaherpesvirus. Identifying the underlying genes conferring MD genetic resistance is
desired for more efficacious control measures including genomic selection, which requires accurately identified
genetic markers throughout the chicken genome.

Methods: Hypothesizing that variants located in transcriptional regulatory regions are the main mechanism
underlying this complex trait, a genome-wide association study was conducted by genotyping a ~1,000 bird MD
resource population derived from experimental inbred layers with SNPs containing 1,824 previously identified allele-
specific expression (ASE) SNPs in response to MDV infection as well as 3,097 random SNPs equally spaced
throughout the chicken genome. Based on the calculated associations, genomic predictions were determined for
200 roosters and selected sires had their progeny tested for Marek’s disease incidence.

Results: Our analyses indicate that these ASE SNPs account for more than 83 % of the genetic variance and exhibit
nearly all the highest associations. To validate these findings, 200 roosters had their genetic merit predicted from
the ASE SNPs only, and the top 30 and bottom 30 ranked roosters were reciprocally mated to random hens. The
resulting progeny showed that after only one generation of bidirectional selection, there was a 22 % difference in
MD incidence and this approach gave a 125 % increase in accuracy compared to current pedigree-based estimates.

Conclusions: We conclude that variation in transcriptional regulation is the major driving cause for genetic
resistance to MD, and ASE SNPs identify the underlying genes and are sufficiently linked to the causative
polymorphisms that they can be used for accurate genomic prediction as well as help define the underlying
molecular basis. Furthermore, this approach should be applicable to other complex traits.
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Background
Several major issues confront the poultry industry today.
With high-density chicken rearing, reduced genetic diver-
sity from industry consolidation [1], and limitations on
antibiotic usage, controlling infectious diseases and pre-
venting disease outbreaks are critical for sustaining eco-
nomic viability, maintaining public confidence in poultry
products, and enhancing animal welfare. Among poultry
diseases, Marek’s disease (MD), a lymphoproliferative dis-
ease caused by the highly oncogenic -herpesvirus Marek's
disease virus (MDV), continues to be at or near the top of
the list of concerns [2]. Alarm about MD is enhanced by
the unpredictable yet recurrent vaccine breaks that result
in devastating losses to poultry farms.
The main control strategy for MD is vaccination.

However, while these vaccines effectively prevent MD
and tumor formation, they do not prevent infection or
shedding of pathogenic MDV [3]. And because vaccine vi-
ruses and pathogenic MDVs coexistence in MD-
vaccinated flocks, it is likely widespread MD vaccination
programs have influenced the evolution of pathogenic
strains with increasing virulence in the field [4–6]. A re-
cent study [7] has experimentally demonstrated that cer-
tain MD vaccinates can select for MDVs that replicate and
spread better, which in turn helps to promote viral evolu-
tion to higher virulence as this increased viral load favors
the chance that one or more cells in a chicken will get
transformed.
As a sustainable alternative to vaccination, we have

been pursuing a strategy of identifying chickens with
enhanced genetic resistance to MD based on genomic
selection (GS) for breeding naturally MD resistant flocks
[8]. By identifying genetic markers associated with MD
resistance genes, it would be possible to select individuals
with superior MD genetic resistance rather than using
traditional phenotypic selection, which is labor and animal
resource intensive involving direct MDV challenge of pro-
geny or siblings to determine estimated breeding values
(EBVs). Use of genetic markers offers several advantages
including but not limited to (1) improved selection inten-
sity and accuracy, (2) maintenance or integration of new
genetic variation into breeding programs, (3) the ability to
select birds of either sex at an early age, and (4) obviate
the need to expose elite flocks to a hazardous pathogen.
The success of this method is contingent on having accur-
ately identified genetic markers.
Identifying underlying causative genes or even tightly

linked markers is difficult for genetic resistance to MD,
as is the situation for other complex traits. Even with
modern tools and efforts [e.g., genome-wide association
studies (GWAS)], the significantly-associated genetic
markers, typically SNPs, often define linkage disequilib-
rium (LD) blocks with either no single candidate gene or
multiple genes [9]. And while individual genes underlying

a portion of the genetic variance for complex traits have
been identified in many studies, in general, there are rela-
tively few genes that have a major effect. For those traits
that are controlled by large networks of genes where indi-
vidual genes each have a minor effect, tracing these small
signals to identify all the genes in the network is extremely
difficult, which partially explains the “missing heritability”
problem [10].
There is growing awareness that variation in gene

expression is a major factor accounting for phenotypic
variations such as those involved in human disease [11].
One technique to identify this variation is to screen for
allele-specific expression (ASE). For all genes of interest,
the relative expression levels of the two alleles as judged
by a marker polymorphism (e.g., SNP) are compared
within an RNA sample derived from an individual test
subject but across biological replicates. If allelic imbal-
ance is observed, then a polymorphic cis-acting element
must be present for that gene since allelic variation is by
definition reflective of a cis-acting genetic influence.
This is in contrast to eQTL analyses where RNA sam-
ples among individuals, genes with “cis” regulation are
defined as being proximal to the gene, but may not be
allele specific, which has resulted in many identifications
that are actually trans and, thus, incorrectly identify spe-
cific genes [12].
The study had two aims. First, we sought to increase

our understanding of the complex trait of genetic resist-
ance to MD and use this information to improve commer-
cial poultry breeding via GS. The second goal was to
demonstrate the power and utility of using ASE to identify
specific genes impacting disease and genetic resistance.
Previously, we identified 4528 SNPs in 3718 genes that
exhibit ASE in response to MDV infection using F1 pro-
geny from experimental inbred White Leghorn layer lines
that differ greatly in MD genetic resistance [13, 14]; lines
6 and 7 are MD resistant and susceptible, respectively.
Here we show that these genes with cis-regulatory ele-
ments account for the majority of the genetic variation be-
tween these two experimental White Leghorn (egg laying)
lines and verify our genomic predictions by creating lines
differentiated for the identified cis-regulatory elements
that demonstrate associated changes in MD resistance.

Results
Genes with SNPs exhibiting ASE in response to MDV
infection are associated with MD genetic resistance
To address whether genes with SNPs exhibiting ASE in
response to MDV infection are associated with MD gen-
etic resistance, an advanced intercross (line 6 × 7 F6) MD
resource population was generated and genotyped with a
custom SNP array. To accommodate our 5 K SNP capacity
as well as provide genome-wide coverage, the chicken
genome was divided into 1 cM blocks based on physical
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distances determined by the chicken genome assembly
[15], then each bin was filled with a suitable ASE or and
non-ASE SNPs. In the end, the array included 1824 ASE
SNPs plus 3097 “random” SNPs spaced throughout the
chicken genome of which 1194 were in genes (Additional
file 1: Table S1). Analysis using the GS3 software, a pro-
gram implementing multiple Bayesian approaches to esti-
mate fixed and random effects, breeding values, and SNP
effects on continuous and threshold traits [16], found the
selected ASE SNPs account for more than 83 % of the gen-
etic variance in MD resistance. Further analyses comparing
effects of ASE SNPs to random SNPs, both within and be-
tween coding regions of genes, indicated that on a relative
basis, effects associated with ASE SNPs, which are always
within coding regions as they are derived from mRNA, ac-
count for more of the genetic variance and have less of un-
accounted or polygenic component, compared to random
SNPs, even though there were ~70 % more random SNPs
(Fig. 1). Furthermore, the determined ASE effects were
15.2 % above the average genetic effect, whereas effects for
SNPs within and between coding regions of random genes
were 6.9 % and 8.2 % below average, respectively (Fig. 2).
As a consequence, we few exceptions, the ASE SNPs

exhibited all the highest genome-wide associations
(mixed model; Fig. 3); in the few exceptions where ran-
dom SNPs were highly associated, many had a nearby
significantly-associated ASE SNP. This result was also
supported by analyzing the dataset using BayesCPi and
estimating pi, which is the best estimate of the propor-
tion of the SNPs that have effects. Pi was found to be
24.6 % and 9.4 % of the ASE and random SNPs, respect-
ively, which resulted in 448 and 292 ASE and random
SNPs, respectively, with non-zero effects (Fig. 4). Thus,
the ASE approached yielded 156 more SNPs with

genetic effects even though there were 1273 less SNPs
queried.

ASE SNPs can accurately predict genetic merit for MD
genetic resistance
To validate the association of ASE SNPs with MD gen-
etic resistance, a progeny test was performed. Specific-
ally, 200 F7 generation roosters were genotyped, best
linear unbiased prediction (BLUP) estimated breeding
values (EBVs) based on both SNPs and pedigree calcu-
lated, followed by bidirectional selection of roosters
based on the SNP EBVs only. The top 30 and bottom 30
ranked roosters were each reciprocally mated to 6 ran-
dom F7 hens, and the resulting ~30 progeny per sire
tested for MD incidence; therefore, ~1800 total progeny
challenged with MDV and evaluated for MD. As a result,
after only one generation of selection, there was a 22 %
difference in MD incidence after bidirectional selection
based on the ASE SNPs (Fig. 5), which is in line with
that predicted based on the genetic variance accounted
for by the ASE SNPs and the selection differentials.
Based on the progeny test results, the accuracy of selec-

tion was compared between BLUP, the current state-of-
the-art method that uses pedigree or familial relationships,
and genomic selection (GS) based on the ASE SNPs only.
Accuracy was calculated as the correlation between the
true and predicted estimated breeding values (EBV). For
BLUP, the accuracy was 0.325 while the GS EBVs (GEBV)
was 0.736 (Fig. 6).

Discussion
Identifying genes for genetic resistance to MD, like other
complex traits, has been challenging. Prior efforts by our
group toward this goal have identified three genes and

Fig. 1 Amount of genetic variation accounted for by the polygenic effect vs. each SNP panel. The data was fit using a mixed model containing both a
polygenic effect, associated with the pedigree relationship matrix, and a SNP panel, associated with either 1824 ASE SNPs or 3097 random SNPs
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many more candidates by integrating genetic mapping
with candidate genes derived through transcript profiling
or MDV-chicken protein-protein interactions [8, 17–19].
While these efforts (and more) have aided in our under-
standing of how genetics and molecular pathways
help the bird combat viral infection and transformation,

as the majority of the genetic variation is unaccounted
for, our knowledge was incomplete. The issue was that
these previous strategies mainly relied on linkage be-
tween the causative polymorphism and the genetic
marker. Unfortunately, due to either the lack of reso-
lution or associations that do not identify specific genes,

Fig. 2 Percent deviation from average genetic effect for each SNP category screened. SNPs used in our genome-wide association analysis (GWAS)
were identified as (1) ASE, which showed allele-specific expression (ASE) in response to Marek’s disease virus (MDV) challenge, or (2) were randomly
selected based on equally spaced informative genetic markers that were either in genes or between them. The effects associated with the SNPs (ai)
were estimated from the solutions with all SNPs in the model, then the total contribution of effects to each category, Vg (category), was computed as
the sum of the effects in that category squared, which is proportional to the variance explained by SNPs in that category. The relative genetic effects
of SNPs in each category (ASE, Random in gene, and Random not in gene) were calculated as 100[Vg(category)-Vg(average)]/Vg(average)

Fig. 3 Genome-wide association analysis (GWAS) of Marek’s disease (MD) incidence in experimental layers. The X axis shows the position of each
genotyped SNP in the order of the existing chicken genome build with “R” indicating random or unplaced sequences. The probability of each
SNP contributing to disease incidence is given on the Y axis. ASE and Random SNPs are denoted by and , respectively
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these approaches were unable to identify or capture the
majority of the underlying genes.
As an alternative strategy to alleviate these issues that

are confounded by but also rely on LD, we incorporated
ASE screens in response to MDV challenge. While ASE
does rely on LD, it is limited to the transcriptional unit,
which is comprised of the coding gene and accompany-
ing regulatory elements and thus not confounded by
output of other linked or unlinked genes. Thus, ASE
screens can identify most, if not all, of the genes that
have cis-regulatory or genetic elements that control gene
expression. Then if differences in gene expression are
the major contributor of phenotypic variation, one can

identify, map, and determine the contributions of thou-
sands of genes, many of which have small effects, in two
steps (ASE SNP identification followed by association
analyses) that explain the majority of genetic variation
effects for a trait.
It is relevant to highlight the fact that due to the simpli-

city of this approach, many fewer individuals are required
to achieve high power compared to eQTL screens as the
latter suffers from the same mapping problems as do
other QTL mapping approaches. Another advantage of
the ASE approach is to detect candidate genes for further
evaluation as the only requirement is, given the proper
tissue and timing, that the transcripts be differentially

Fig. 4 Number of SNPs with non-zero effects. Using BayesCPi, pi is the best estimate of the proportion of the SNPs that have effects. For ASE and
random SNPs, pi was 24.6 % and 9.4 %, respectively, which yielded 448 and 292 SNPs, respectively, with non-zero effects

Fig. 5 Disease incidence showing response to one generation of selection for genetic resistance or susceptibility to Marek’s disease (MD) based
on allele-specific expression (ASE) SNPs only. Genomic estimated breeding values (GEBVs) for 200 F7 generation of sires were calculated as the
sum of the ASE SNP effects, given the genotype of the sire, and the top 30 and bottom 30 ranked individuals were progeny tested; ~30 progeny
per sire. The average incidence and standard deviation for each group of progeny is shown
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expressed between groups of interest (e.g., uninfected and
MDV-infected birds), which is not limited by the effect
size. This differs from classic QTL analysis where the ef-
fect of the QTL on the trait is directly proportional to the
ability to detect it. Furthermore, as ASE is initially based
on analysis of RNA within individuals, it is possible that
random micro-environmental influences that reduce the
heritability of a trait may have less negative influence on
the ASE approach because the within individual analysis
removes impacts of between individual biological variabil-
ity and further increases power.
It is also relevant to point out that all analyses in this

study were whole-genome based. Effects and P values of
markers, and phenotype predictions, were estimated
simultaneously. This means that our estimates were free
from collinearity due to LD among markers. Also it
means that we have been able to partition the variance
among random SNPs and ASE SNPs, something that
cannot be easily done with those GWAS-like approaches
that work one marker at a time.
Using this process, we identified genes that account

for the majority of genetic resistance to MD, and our
predictions were validated by bidirectional selection. To
our knowledge, this is the first attempt to quantify the
contribution of transcriptional regulation on a whole
genome scale. Having said this, recently Gusev et al. [20]
reported highly similar results by examining the role of
regulatory and coding variants for 11 human diseases.
Assuming that DNase I hypersensitive sites found in any
human cell are indicative of genomic sites containing
regulatory elements, they determined that SNPs in these
regions explain an average of 79 % of the heritability; vs.
less than 10 % for SNPs in exons. Even though the range

of values for the amount of genetic variation accounted
for by the putative regulatory elements for the 11 human
diseases was large, the fact that nearly the same value on
average was declared as determined in our experiment
suggests a trend.
Once identified, our results clearly demonstrate that is

possible to accurately select for improved genetic resist-
ance to MD using less than 2 K SNPs. We hypothesize
that predictions based on ASE SNPs should be more
accurate and persist longer over multiple generations of
selection, than even whole genome sequencing contain-
ing the ASE SNPs as a subset. This is because effects of
SNPs that have not recombined, either closely linked or
further away, are confounded. Use of distantly related
SNPs in the predictions will eventually fail due to re-
combination in advanced generations. As previously
seen with QTL mapping, adding more genotypes does
not necessarily increase resolution, only adding biological
replicates with different combinations of genotypes is
capable of doing that. With an increase in the number of
genotyped loci, a corresponding increase in biological rep-
licates is necessary to properly train the model. For ex-
ample, given a simply inherited trait based on a single
QTN and two data sets, one with 3 phenotypes associated
with genotypes at the causative QTN, and another data
set with the complete genome sequence of each indi-
vidual. Both data sets include the true QTN while the
latter also includes noise. The noise will decrease the
accuracy of prediction in the first generation while in
the latter generations become even worse because distantly
linked loci will recombine and become less predictive. The
parallel to complex traits and high density genotyping is
similar.

Fig. 6 Accuracy of estimated breeding values based on ASE SNPs compared to BLUP. Accuracy was based on a progeny test whereby 60 roosters
from the tails of the distributions were each reciprocally mated to 6 random F7 hens, and the resulting progeny scored for MD incidence. The accuracy
of the breeding values estimated either by pedigree or ASE SNPs was determined by correlating the mean survival of progeny from each rooster with
expected breeding values based on either pedigree (EBV) or from SNPS (GEBV)
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Conceptually a SNP chip with only the causative QTN
would be the most accurate with predictions that would
not decay over generations due to recombination and/or
imperfect training, but would still loose predictive ability
due to fixation of the favorable alleles [21]. An ASE SNP
chip comes closer to that ideal chip than a random set
of SNPs regardless of how dense. From a practical aspect,
this means that existing SNP arrays can be easily en-
hanced by including “add-on” content for the ASE SNPs.
Examination of the top SNPs was indicative of the

power of this approach. There were 13 SNPs with P
(non-null) values greater than 0.25 of which 7 were ASE.
And for 2 of the top 6 random SNPs, there were ASE
SNPs that tagged the same gene. For example, both a
random SNP at chr. 2, position 40,419,282 (ranked as
the second highest) and an ASE SNP at chr. 40, position
442,578 (sixth highest) identified CKLF-like marvel trans-
membrane domain-containing 7 (CMTM7). Most of the
candidate genes for these top hits were associated with cell
cycle regulation, metabolism, and tumor biology, which is
consistent with our prior QTL results that suggested the
underlying genes were either involved in restriction of viral
replication or, more often, control of neoplastic transform-
ation [22].
Although satisfying, the ultimate goal is to identify the

causative polymorphisms to connect phenotype with
genotype, which theoretically should allow for near per-
fect predictions. ASE is most likely the result of different
allelic rates of transcription, transcript processing, or
transcript stability. As ASE SNPs are found only in cod-
ing regions as they rely on screening mRNAs, identifying
causative variants requires knowledge of transcriptional
regulatory regions for each gene. With regard to investi-
gating polymorphisms in promoters of candidate genes,
we have had some success in profiling for binding sites
of the MDV Meq, the viral oncogene and a bZIP tran-
scription factor, that result in ASE in response to viral
infection [23, 24]. Similar levels of success have been ob-
tained by screening for alternative splicing under control
and MDV-infected conditions [25]. The limited success
suggests that it may be more productive to examine
polymorphisms that affect transcription factor binding
in enhancers as they are thought to be the major contribu-
tors for expression and trait variation [26].

Conclusions
We conclude that ASE based SNPs are functionally
linked to causative polymorphisms that alter transcrip-
tional levels in genes manifesting changes due to disease
incidence. Our results also clearly show that variation in
cis-regulatory elements is the major mechanism that
accounts for the majority of variation in MD genetic re-
sistance between these two experimental lines, which
supports the hypothesis that phenotypic variation in

traits is mainly due to changes in regulation of gene ex-
pression rather than protein composition. Our results
also suggest that complex traits are controlled by many
genes, most of which have small effects. And in theory,
this method should be generally applicable to other in-
fectious diseases and complex traits at the whole gen-
ome level or to fine map existing QTL or associations.

Methods
Bird populations and phenotypic measurements for
Marek’s disease
The highly inbred Avian Disease and Oncology Laboratory
(ADOL) line 6 (MD resistant) and line 7 (MD susceptible)
experimental White Leghorn chickens were intermated to
produced F6 and F7 birds. To test disease susceptibility, at
2 days of age, each bird was injected intra-abdominally
with 2000 pfu MDV (JM strain) and housed for up to
8 weeks in Horsfall-Bauer isolators. Moribund birds, or
those that survived up to eight weeks post challenge, were
terminated and examined via necropsy. Birds were scored
as having MD if they displayed visceral tumors or had en-
larged nerves. All experiments were approved by the
USDA, ADOL Animal Care and Use Committee (ACUC).
The ACUC guidelines established and approved by the
ADOL ACUC (April 2005) and the Guide for the Care
and Use of Laboratory Animals by the Institute for La-
boratory Animal Research (2011) were followed through-
out the experiments.

Design of custom SNP array
To achieve genome-wide coverage within a limit of 5 K
SNPs, the ~ 1 billion bases of the chicken genome was
partitioned into ~3000 1 cM bins based on the derived
physical distances per chromosome from the chicken
genome assembly [15]. Priority was given first to the
4528 previously identified ASE SNPs [14]. This class of
genetic markers was screened using the Axiom myDe-
sign Array, Affymetrix (Santa Clara, CA, USA), and those
that were scored as recommended were retained. For bins
lacking a genetic marker, SNPs based on the genomic
sequences of lines 6 and 7 (unpublished) in the desired
regions were similarly screened and retained. The final
array composition was finalized by selecting 1 or 2 SNPs
per bin with the maximum content being up to 5 K SNPs
(see Additional file 1: Table S1).

Association analysis
Markers were fit simultaneously using a BayesCPi model,
which produced estimates of marker effects and posterior
probabilities of markers having an effect different from zero
[27, 28]. To estimate QTL effects associated with those
ASE loci, over 1000 pullets from a 6 × 7 F6 MD resource
population were produced, challenged with MDV as de-
scribed above, and scored as either disease present or
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absent based on necropsy. DNA was isolated from 10 μl of
blood from each bird using 96-Well Plate Blood Genomic
DNA Mini-Preps kits (BioPioneer Inc., San Diego, CA,
USA) then genotyped by DNA Landmarks (Saint-Jean-sur-
Richelieu, Quebec, Canada) using the custom 5 K SNP
array described above. The data were subjected to mixed
model analysis using the binary option of the GS3 set of
programs [16] with SNPs and/or pedigree effects treated as
random. The binary option estimates SNP effects and vari-
ance components on the underlying liability scale.

Accuracy of selection analyses
Roosters in the F7 generation were genotyped, BLUP
EBVs based on SNPs and pedigree were calculated, and
were bidirectionally selected based on the SNP EBVs.
The top 30 and bottom 30 ranked roosters were each
mated to 6 random F7 hens, and ~30 progeny per sire
tested for MD resistance over a total of 3 hatches. The
accuracy of selection was determined from the correlation
of EBVs estimated based on either SNPs or pedigree with
progeny test performance.
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