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Abstract

Background: Herbicide resistance in agrestal weeds is a global problem threatening food security. Non-target-site
resistance (NTSR) endowed by mechanisms neutralising the herbicide or compensating for its action is considered
the most agronomically noxious type of resistance. Contrary to target-site resistance, NTSR mechanisms are far from
being fully elucidated. A part of weed response to herbicide stress, NTSR is considered to be largely driven by gene
regulation. Our purpose was to establish a transcriptome resource allowing investigation of the transcriptomic
bases of NTSR in the major grass weed Alopecurus myosuroides L. (Poaceae) for which almost no genomic or
transcriptomic data was available.

Results: RNA-Seq was performed from plants in one F2 population that were sensitive or expressing NTSR to
herbicides inhibiting acetolactate-synthase. Cloned plants were sampled over seven time-points ranging from
before until 73 h after herbicide application. Assembly of over 159M high-quality Illumina reads generated a
transcriptomic resource (ALOMYbase) containing 65,558 potentially active contigs (N50 = 1240 nucleotides)
predicted to encode 32,138 peptides with 74 % GO annotation, of which 2017 were assigned to protein families
presumably involved in NTSR. Comparison with the fully sequenced grass genomes indicated good coverage and
correct representation of A. myosuroides transcriptome in ALOMYbase. The part of the herbicide transcriptomic
response common to the resistant and the sensitive plants was consistent with the expected effects of
acetolactate-synthase inhibition, with striking similarities observed with published Arabidopsis thaliana data. A.
myosuroides plants with NTSR were first affected by herbicide action like sensitive plants, but ultimately overcame it.
Analysis of differences in transcriptomic herbicide response between resistant and sensitive plants did not allow
identification of processes directly explaining NTSR. Five contigs associated to NTSR in the F2 population studied
were tentatively identified. They were predicted to encode three cytochromes P450 (CYP71A, CYP71B and CYP81D),
one peroxidase and one disease resistance protein.

Conclusions: Our data confirmed that gene regulation is at the root of herbicide response and of NTSR.
ALOMYbase proved to be a relevant resource to support NTSR transcriptomic studies, and constitutes a valuable
tool for future research aiming at elucidating gene regulations involved in NTSR in A. myosuroides.
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Background
Agrestal weeds are the major biotic cause for crop yield
losses [1]. Most weeds are annual or short-lived wild
plant species. They thrive in agricultural ecosystems
because they have evolved traits enabling them to
withstand crop competition and cultural practices, in-
cluding herbicide applications, aimed at disrupting their
demography [2, 3]. Understanding weed success requires
unravelling the genetic basis of these traits, a task far from
being achieved today [3]. Prominent among those traits is
resistance to herbicides that has now evolved in 246 weed
species [4] in response to the powerful and recurrent se-
lective pressure exerted by herbicide applications [5]. The
evolution of herbicide resistance in weed populations can
ultimately result in the disruption of herbicide efficacy,
leading to crop failure [6].
Basically, mechanisms of resistance to herbicides can

be categorised into two classes according to their genetic
control [5]. Monogenic resistance is governed by allele(s)
of a single gene, while polygenic resistance is governed
by allele(s) of a set of genes, with “allele” meaning a vari-
ant of a wild-type gene displaying differences in its
protein-coding sequence and/or its regulatory region [5].
Target-site-based resistance endowed by mutations at
the gene encoding the herbicide target protein is an ex-
ample of monogenic resistance that is now well eluci-
dated in weeds [5, 6]. Non-target-site based resistance
(NTSR) endowed by mechanisms neutralising the herbi-
cide or compensating for its action is most often a case
of polygenic resistance [5, 7, 8]. NTSR can confer
resistance to herbicides with different modes of action
and is considered the most agronomically noxious type
of herbicide resistance [5, 6]. NTSR is overall the most
widespread and frequent type of resistance in grass
weeds [5, 6]. The literature available suggests that NTSR
mechanisms are part of the pathways involved in the re-
sponse of weed plants to the herbicide stress. Accord-
ingly, NTSR is considered to be largely driven by
inheritable differences in the expression patterns of one or
more genes between resistant and sensitive plants [9, 10].
These differences can be constitutive and/or induced
by herbicide application [9, 10]. Cytochromes P450,
glutathione-S-transferases, glycosyltransferases, ester-
ases, ABC transporters and/or peroxidases have been
shown to play a major role in herbicide response and in
NTSR (reviewed in [9, 10]). While a few NTSR genes
belonging to these families have recently been identified
[11–19], the majority of the genetic mechanisms under-
lying NTSR remain to be elucidated [10].
Elucidating the genetic basis of NTSR requires being

able to unravel the genetic bases of herbicide stress re-
sponse in weeds, and to identify genetic differences be-
tween resistant and sensitive plants before and after
herbicide application [9, 10]. This is now feasible thanks

to the tremendous development of the Next-Generation
Sequencing technologies (reviewed in [20]) that enable
establishment of transcriptomic resources for plant species
without the need for associated genomic resources [21].
Next generation sequencing technologies allow compre-
hensive transcriptome sequencing (RNA-sequencing or
RNA-Seq) that produces both qualitative data (transcript
sequences) and quantitative data (transcript expression
level) with an unprecedented level of sensitivity and
accuracy [22–24]. Accordingly, RNA-Seq is considered
a highly promising way of unravelling the genetic con-
trol of complex traits in weeds [3, 25]. Yet, despite the
acknowledgement of the potential of transcriptome-
wide sequencing to study weed response to herbicides
and NTSR [10], only a few studies have implemented
this approach to date [15–19, 26].
Alopecurus myosuroides L. (black-grass) is a diploid

grass (Poaceae) weed with no associated genomic or tran-
scriptomic resources. A. myosuroides is a major weed of
winter crops in North-Western Europe that can be re-
sponsible for substantial yield losses [27]. A. myosuroides
has evolved resistance to six herbicide modes of action [4],
including leaf-applied herbicides that are the herbicides
most used to control this species. In A. myosuroides,
resistance to leaf-applied herbicides is mostly due to
polygenic NTSR mechanisms [5, 28, 29]. The major group
of leaf-applied herbicides used against A. myosuroides are
acetolactate synthase (ALS) inhibitors. ALS is a key en-
zyme in the branched-chain amino acids (BCAAs) biosyn-
thesis pathway [30, 31]. Physiological effects of ALS
inhibitors on the cellular amino-acid pools, protein turn-
over and carbohydrate metabolism have been described in
crop or model species (reviewed in [30]). To the best of
our knowledge, the transcriptomic response of a plant to
the stress caused by an ALS inhibitor had so far only been
investigated in a few studies considering model or crop
species [32–35].
Our purpose was to establish the first transcriptome

resource for A. myosuroides (ALOMYbase) using Illu-
mina sequence data obtained from a time-course experi-
ment. To check the relevance of ALOMYbase for the
identification of genetic determinants of NTSR to ALS
inhibitors, the transcriptomic response of A. myosuroides
plants resistant or sensitive to an ALS inhibitor was
investigated. Five contigs potentially involved in NTSR
to ALS inhibitors were identified as an additional out-
come of this study.

Results
Establishing ALOMYbase: A. myosuroides transcriptome
sequencing and data assembly
The expected phenotypes of all plants used for RNA-Seq
(i.e., three resistant and three sensitive F2 plants) were
confirmed by rating the corresponding phenotype
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control clones 4 weeks after herbicide application. Raw
100-base single-end sequence reads were subjected to
quality control using Phred scaled quality score. Overall,
92.4 % of the sequenced bases had a quality score ≥ 30
and 95.7 % of the sequence reads passed quality filters
and matched Illumina’s quality requirements. The pro-
portion of undetermined bases was 0.009 and 0.001 % in
the two flow cells used for sequencing. After filtering
out low quality reads, homopolymers and short reads,
159,089,080 100-base single-end reads were generated
from the 14 cDNA libraries. The number of reads was
similar in the different libraries (Additional file 1:
Figure S1).
De novo assembly of the 100-base reads yielded

180,117 unique sequences ranging from 200 to 17,734
nucleotides in length (Table 1). The length distribution
of the assembled contigs is shown in Fig. 1a. The
proportion of contigs with at least one mapped read was
similar in all experimental modalities, except the resist-
ant pool at 48 h After Treatment (HAT) where only
50 % of the contigs assembled had at least one mapped
read (Additional file 1: Figure S2). This experimental
modality was thus considered dubious, and the whole
48HAT time-point was removed from further analyses.

Functional annotation and contig expression data
Automated search for coding sequences in all the assem-
bled contigs using FrameDP identified 97,079 predicted
peptides with an average length of 166 amino-acids. Pep-
tide size ranged from 30 to 4135 amino-acids. Overall,
33.9, 45.3 and 44.3 % of the predicted peptides could be
assigned a GO term, an InterPro domain or a Pfam fam-
ily, respectively (Fig. 1b). Small contigs and predicted
peptides of small size that probably corresponded to

truncated contigs were poorly annotated (Fig. 1b). Thus,
assembled contigs shorter than 400 nucleotides or
encoding predicted peptides shorter than 134 amino-
acids were considered as assembly waste and discarded.
RPKM counts were computed in each experimental

modality for every contig. Contigs with low RPKM
values could be assembly artefacts. As proposed before
[36–38], a contig was considered potentially expressed if
it had an average 2-fold sequencing coverage. As the
reads used for de novo A. myosuroides transcriptomic
data assembly were 100-base long, this corresponded to
a RPKM value of 1.8. Accordingly, only contigs with a
RPKM count ≥1.8 in at least one experimental modality
were considered expressed. All the other contigs were
discarded. Of the 90,036 assembled contigs with a
length ≥400 nucleotides, 65,558 that had a RPKM
value ≥ 1.8 in at least one library were considered po-
tentially from expressed genes and used for subsequent
analyses. These contigs had a N50 value of 1240 nucleo-
tides and were predicted to encode 32,138 peptides with a
length > 134 amino-acids, of which 56.9 and 74.0 % could
be assigned a GO term and/or an InterPro domain, respect-
ively (Table 1). In the following, the name “ALOMYbase”
will refer to the 65,558 contigs and the corresponding
32,138 predicted peptides sequences.
The 15 GO terms in the Molecular Function and

Biological Process categories most represented in
ALOMYbase are shown in Fig. 2. Terms related to
oxidation-reduction process, protein phosphorylation
and metabolic process contained the highest number of
predicted peptides in the Biological Process category.
“Protein binding” and “ATP binding” contained the
highest number of predicted peptides in the Molecular
Function category (Fig. 2).

Comparison of the predicted peptide contents of
ALOMYbase with other grass species
The 32,138 predicted peptides in ALOMYbase were
compared to those encoded in the genomes of all
grass (Poaceae) species with a fully sequenced genome,
i.e., B. distachyon, H. vulgare, Z. mays, O. sativa and S.
bicolor that contained 30,994, 79,379, 63,532, 49,059
and 29,448 predicted peptides, respectively. A total of
30,443 OrthoMCL groups were identified among the
five species and ALOMYbase. Of these, 13,845 (45.5 %)
were found in ALOMYbase, while 17,556 (57.7 %) to
20,892 (68.6 %) were found in any of the individual
species (Additional file 2: Figure S3). Overall, 9328
OrthoMCL groups (30.6 %) were present both in
ALOMYbase and in all the five grass genomes. The
highest number of OrthoMCL groups exclusively shared by
ALOMYbase and one of the grass genomes was observed
for H. vulgare and B. distachyon (511 and 217 groups, re-
spectively) (Additional file 2: Figure S3). A total of 833

Table 1 ALOMYbase statistics

ALOMYbase – A. myosuroides transcriptome resource

Total number of reads 159,089,080

Total assembled contigs 180,117

Total size of the assembly 110.87 Mb

Average contig size 616 nucleotides

N50 835 nucleotides

Total contigs after filteringa 65,558

Total size of the assembly after filteringa 68.59 Mb

Average contig size after filteringa 1046

N50 after filteringa 1240

Total predicted peptides after filteringb 32,138

% predicted peptides with a GO annotationb 56.9

% predicted peptides with an Interpro annotationb 74.3
aFilters: contig size ≥ 400 nucleotides, RPKM ≥ 1.8 in at least one
experimental modality
bFilers: contig size ≥ 400 nucleotides, RPKM ≥ 1.8 in at least one experimental
modality, and peptide length > 134 amino-acids
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OrthoMCL groups were specific to ALOMYbase. Based on
their Interpro annotation, they mostly contained putative
cytochromes P450 and regulatory proteins.
A total of 4062 Pfam families were identified among

the five grass genomes and ALOMYbase. Among these,
3374 were identified in ALOMYbase, while 3658 to 3758
were identified in the five grass genomes. Considering
the number of predicted peptides assigned to each Pfam
family, the 22 Pfam families most represented in
ALOMYbase had a similar ranking in all grass genomes
(Additional file 3: Table S1). Three of these families were
potentially involved in herbicide response: cytochrome
P450, UDP-glycosyltransferase and ABC transporter.
Overall, considering the 4062 Pfam families, Pearson
correlations of the rankings of Pfam families were 0.51,
0.47, 0.45, 0.44 or 0.42 between ALOMYbase and B.
distachyon, S. bicolor, O. sativa, Z. mays or H. vulgare
genomes, respectively.
Considering Pfam families potentially involved in herbi-

cide response and/or in NTSR, ALOMYbase contained
592, 549, 162, 372, 211 and 131 putative peptides assigned
to cytochromes P450, glycosyltransferases, glutathione-S-
transferases, ABC transporters, peroxidases or esterases,

respectively (Fig. 3). The number of putative peptides
assigned to these Pfam families were roughly similar in
ALOMYbase and in the five grass genomes, except
cytochromes P450 or ABC transporters that were particu-
larly numerous in ALOMYbase.
The comprehensiveness of ALOMYbase was assessed

using CEGMA. CEGMA checks the presence in genome
or transcriptome assemblies of a set of 248 proteins from
housekeeping genes considered widely conserved among
eukaryotes [39]. CEGMA analysis of ALOMYbase identi-
fied 152 of the 248 eukaryotic core proteins (61.3 %) as
“complete”, “complete” being defined as >70 % alignment
length with a core protein. As a comparison, CEGMA
analysis of the transcript sets available for each of the five
grass genomes identified 242 proteins (97.6 %) in B.
distachyon, 246 proteins (99.2 %) in S. bicolor, 237
(95.6 %) in O. sativa, 233 (93.9 %) in Z. mays and 198
(79.8 %) in H. vulgare as complete.

RT-qPCR validation of ALOMYbase expression data
RNA-Seq-based contig expression data were validated by
measuring the expression of 21 contigs over the time-
course using RT-qPCR. These contigs were randomly

Fig. 1 ALOMYbase peptide contents and annotation. a Number of assembled contigs and number of contigs predicted to encode at least one
peptide according to the contig size range (left axis), and percentage of contigs predicted to encode at least one peptide and percentage of
contigs successfully assigned an InterPro annotation (right axis). b ALOMYbase predicted peptide contents and peptide annotation
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selected. Two had a stable RNA-Seq expression pattern
and 19 had a RNA-Seq expression pattern varying over
time or between phenotypes (Additional file 3: Table S2).
The expression level of the 21 contigs in the 42 individual
samples showed substantial variation among experimental
modalities and among individual plants within modalities.
Variation was also observed among plants with the same
phenotype in the same experimental modality (Additional
file 4: Figure S4). Despite this variation, the average contig
expression levels computed for the three plants in the re-
sistant pool and for the three plants in the sensitive pool at
each time-point matched the corresponding RNA-Seq ex-
pression data (Pearson’s correlation coefficient value = 0.82
for the 21 contigs) (Additional file 5: Figure S5).

Transcriptomic response to the herbicide application
The Untreated (UT), 6HAT, 12HAT, 24HAT, 36HAT
and 48HAT time-points originated from the same time-
course experiment. The 73HAT time-point originated
from a different time course experiment. At 73HAT,
14,671 contigs were up-regulated compared to UT and
28,628 contigs were down-regulated compared to UT

(Fig. 4). These numbers were not different from those at
the five other time-points after herbicide application
(19,405 and 10,894 on average in the other time-points
after herbicide application; outlier test based on the as-
sumption of normal distribution of data at a significance
level of 0.05). Furthermore, the RPKM values computed
for the three reference genes used for RT-qPCR data
normalization at 73HAT in the resistant pool and in the
sensitive pool were not different from those in the other
12 experimental modalities (outlier test based on the as-
sumption of normal distribution of data at a significance
level of 0.05). Including the 73HAT time-point in the
subsequent analyses was thus deemed relevant.
A total of 57,427 contigs (87.6 % of the contigs in

ALOMYbase) were up- or down-regulated in the resistant
and/or in the sensitive pool in at least one herbicide-
treated modality compared to the respective UT modal-
ities. Among these, 41,843 contigs were up-regulated and
39,626 contigs were down-regulated in the resistant and/
or in the sensitive pool in at least one herbicide-treated
modality compared to the respective UT experimental
modalities.

Fig. 2 ALOMYbase top 15 GO terms in the categories Biological Process (black bars) and Molecular Function (white bars)
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Investigating the transferability of Arabidopsis thaliana
transcriptional markers for the response to ALS inhibitors
to A. myosuroides
A previous study investigating Arabidopsis thaliana
transcriptome-wide response to four herbicides inhibit-
ing ALS identified a set of 101 genes which expression
pattern was linked to the response to these herbicides in
A. thaliana and Brassica napus [34]. In both species, a
subset of 46 genes had a similar regulation pattern in re-
sponse to four ALS inhibitors (“group 1 markers”), while
the regulation pattern of the remaining 55 genes varied
with the herbicide (“group 2 markers”) [34]. To investi-
gate whether this transcriptional signature was conserved
in A. myosuroides, identification of putative homologues
to the 101 A. thaliana genes in ALOMYbase was con-
ducted using BLASTp. For each A. thaliana gene, the
predicted peptide in ALOMYbase with the best
BLASTp hit (i.e. the smallest E-value) was retained
and considered the most likely homolog. Only predicted
peptides with a significant homology (E-value < 10−5)
were considered (Additional file 3: Table S3). Two A.
thaliana genes (AT5G61020 and AT1G55500) shared

the highest homology with the same predicted peptide in
ALOMYbase, and seven had no significant homolog in
ALOMYbase. Thus, 93 ALOMYbase contigs were identi-
fied that encoded predicted peptides with a significant
homology to one of the 101 “group 1” or “group 2” A. thali-
ana genes. Expression ratios were calculated for the corre-
sponding ALOMYbase contigs for the sensitive pool and
for the resistant pool at each time-point in the time-course
experiment as described [34] and compared to those
obtained for the A. thaliana genes.
The regulation patterns of the 93 ALOMYbase homo-

logs of the A. thaliana genes was highly similar in both
the sensitive and the resistant A. myosuroides pools over
the whole time-course (Additional file 3: Table S3). The
similarity in the regulation patterns of the 93 ALOMYbase
contigs and of their A. thaliana counterparts increased
with the time elapsed since herbicide application and was
highest at 73HAT. At this time-point, 29 ALOMYbase
homologs of A. thaliana group 1 markers showed a simi-
lar regulation in response to the herbicide application in
the sensitive and in the resistant pool (Additional file 3:
Table S3). Twenty-four of these contigs were up-regulated
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in both pools. They belonged to the 32 ALOMYbase ho-
mologs of the 34 A. thaliana “group 1 marker” genes up-
regulated after herbicide application. The remaining five
contigs were down-regulated in both pools. They
belonged to the 12 ALOMYbase homologs of one of the
12 A. thaliana “group 1 marker” genes down-regulated
after herbicide application. Three additional ALOMYbase
homologs of one of the 12 A. thaliana “group 1 marker”
genes down-regulated after herbicide application also
showed a trends in down-regulation in both pools. Among
the 49 ALOMYbase homologs of the 55 A. thaliana
“group 2 marker” genes, 24 had a similar regulation pat-
tern in the sensitive and in the resistant pool at 73HAT.
Overall, the regulation pattern of these contigs was most
similar to the regulation pattern observed for A. thaliana
“group 2 marker” genes in response to the ALS inhibitor
sulfometuron (Additional file 3: Table S3).

Transcriptional response to the ALS inhibitors
iodosulfuron +mesosulfuron common to both
phenotypes (treated vs. UT)
Respectively 10,714 and 15,544 contigs were up-
regulated or down-regulated in both the resistant and
the sensitive pool in at least one treated modality

compared to the respective UT modalities (16.3 and
23.7 % of the contigs in ALOMYbase, respectively). The
number of contigs regulated in both pools after herbi-
cide application is shown in Fig. 4. Overall, 253 contigs
were up-regulated in all treated modalities in both pools,
of which 111 could be assigned an InterPro domain an-
notation (Additional file 3: Table S4). They included four
putative cytochrome P450 monooxygenases, two ABC
transporters, four glutathione-S-transferases, one perox-
idase and 11 UDP-glycosyltransferases. Nine contigs
were down-regulated in all treated modalities in both
pools, of which one could be assigned an InterPro do-
main annotation (UDP-glycosyltransferase).
Among the 36 GO Biological Processes significantly

enriched (p-value < 10−2) in up-regulated contigs in both
pools (Additional file 3: Table S5), 16 were enriched in
several treated modalities. “Multidrug transport” that
was mostly enriched in contigs predicted to encode multi
antimicrobial extrusion proteins (MatE) and “Branched
chain family amino acid biosynthesis” were significantly
enriched from 24HAT on. The other enriched GO
terms were mostly involved in gene expression regu-
lation, stress response, respiration or amino-acid
biosynthesis.

Fig. 4 Number of contigs regulated by herbicide application. Venn diagrams show the number of contigs up-regulated (a) or down-regulated
(b) in the resistant pool (R), in the sensitive pool (S) or in both phenotypes after herbicide treatment. Each herbicide-treated modality was
compared to the UT of the corresponding phenotype. xHAT, x hours after herbicide application
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Among the 31 GO Biological Processes significantly
enriched (p-value < 10−2) in down-regulated contigs in
both pools (Additional file 3: Table S6), five were enriched
in several treated modalities, including “Photosynthesis”.
GO terms linked to stress response (e.g., response to oxi-
dative stress, abiotic or biotic stimulus, or wounding) were
also enriched in at least one treated modality.

Specificities of the transcriptional response of the sensitive
pool to the ALS inhibitors iodosulfuron +mesosulfuron
(treated vs. UT)
Respectively 35,423 and 7999 contigs were up-regulated
or down-regulated only in the sensitive pool in at least
one treated modality compared to UT (54.0 and 12.2 %
of the contigs in ALOMYbase, respectively). The num-
ber of contigs regulated after herbicide application is
shown in Fig. 4. Among the annotated contigs, 23 that
had an annotation related to peptide phosphorylation
had an expression level higher than in the resistant pool.
Among the 44 GO Biological Processes significantly

enriched (p-value < 10−2) in up-regulated contigs only in
the sensitive pool (Additional file 3: Table S7), nine were
enriched in several treated modalities. They were in-
volved in gene expression regulation, protein, amino-
acid, lipid or carbohydrate metabolism, stress response
or cell cycle control. Among these, the GO term most
significantly enriched was “Protein amino acid phos-
phorylation” that included 175 contigs predicted to en-
code kinases. “Response to oxidative stress” was also
highly significantly enriched in three treated modalities,
with the 19 up-regulated contigs assigned to this term
predicted to encode peroxidases. Other GO terms linked
to stress response or amino-acid-metabolism were also
enriched (Additional file 3: Table S7).
Among the 13 GO Biological Processes significantly

enriched (p-value < 10−2) in down-regulated contigs
(Additional file 3: Table S8), two were enriched in sev-
eral treated modalities (“Respiratory chain complex IV
assembly” and “Oligopeptide transport”). GO terms as-
sociated with biosynthesis pathways (including “Aspara-
gine biosynthetic process”), gene expression regulation,
photosynthesis or stress response were also significantly
enriched.

Specificities of the transcriptional response of the resistant
pool to the ALS inhibitors iodosulfuron +mesosulfuron
(treated vs. UT)
Respectively 8843 and 27,484 contigs were up-regulated
or down-regulated only in the resistant pool in at least
one treated modality compared to UT (13.5 and 41.9 %
of the contigs in ALOMYbase, respectively). The num-
ber of contigs regulated is shown in Fig. 4. Seventy-four
contigs were up-regulated in all treated modalities, of
which 11 could be assigned an annotation. Even after

up-regulation, these contigs had a very low expression
level (average RPKM value of 1.25). 193 contigs were
down-regulated in all treated modalities, of which 52
could be assigned an annotation. Thirty-seven of these
contigs had an expression level lower than in the sensitive
pool. The most down-regulated contigs were annotated as
one cytochrome P450, one inosine/uridine-preferring
nucleoside hydrolase and one ribonuclease.
Among the 24 GO Biological Processes significantly

enriched (p-value < 10−2) in up-regulated contigs in at
least one treated modality (Additional file 3: Table S9),
three were enriched in several treated modalities
(“Photosynthetic electron transport chain”, “Lipid A
biosynthetic process” and “ATP synthesis coupled pro-
ton transport”). Overall, the enriched GO Biological
Processes were involved in gene expression regulation,
ATP metabolism, photosynthesis and lipid metabolism
(Additional file 3: Table S9).
Among the 28 GO Biological Processes significantly

enriched (p-value < 10−2) in down-regulated contigs in at
least one treated modality (Additional file 3: Table S10),
four were enriched in several treated modalities (“Lipid
metabolic process”, “Protein amino acid phosphoryl-
ation”, “Asparagine biosynthetic process” and “Lipid
transport”) (Additional file 3: Table S10). GO terms
linked to stress response were significantly enriched in
one treated modality.

Contigs showing differences in expression between
phenotypes (resistant vs. sensitive)
A total of 13,921 contigs were differentially regulated
between the resistant pool and the sensitive pool in
at least one experimental modality (Additional file 6:
Figure S6). Seeking constitutive differences in contig
expression between phenotypes identified 339 contigs
up-regulated in all modalities in the sensitive pool
(Additional file 6: Figure S6), of which 91 could be
assigned an annotation. They included six cytochromes
P450, one glutathione-S-transferase and one peptidase/
thiolesterase. Ten GO Biological Processes mostly involved
in stress response and post-translational protein modifica-
tion were significant enriched in up-regulated contigs in
the sensitive pool (Table 2).
Conversely, 258 contigs were up-regulated in all

modalities in the resistant pool, of which 65 could be
assigned an annotation. They included two cyto-
chromes P450. Five GO Biological Processes were sig-
nificantly enriched in up-regulated contigs in the
resistant pool (Table 2). Contigs assigned to these
Biological Processes were predicted to encode two
RNA-directed DNA polymerases, three reverse tran-
scriptases, three disease resistance proteins, one tubu-
lin, one expansin and one haem peroxidase.
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Identification of candidate NTSR contigs
A commercial herbicide containing iodosulfuron +meso-
sulfuron was used in our experiments because commercial
formulations, and not solely the herbicide molecule(s),
exert the pressure selecting for resistance in weed popula-
tions. To avoid possible confusing effects due to the for-
mulation, candidate NTSR contigs were selected on the
basis of an up-regulation ≥ 2-fold in the resistant pool
compared to the sensitive pool at each time-point includ-
ing UT. Affiliation of candidate contigs to one gene family
presumably involved in NTSR was an additional selection
criterion. Eleven candidate NTSR contigs were identified.
Five were annotated as cytochromes P450, three as
glycosyltransferases, one as a peroxidase, one as a helix-
loop-helix DNA-binding (transcription factor) and one as a
disease resistance protein. The expression level of the 11
contigs was measured in all 42 individual RNA samples
used to generate the 14 pooled samples subjected to RNA-
Seq (Additional file 3: Table S11). Variation in contig ex-
pression that could be substantial was observed between
phenotypes, among modalities, and also within modalities
(Additional file 7: Figure S7). Despite this variation, all 11
contigs were up-regulated in the resistant pool compared
to the sensitive pool at each time-course point, in agree-
ment with ALOMYbase expression data (Additional file 7:
Figure S8).

The expression levels of the 11 candidate contigs was
measured using RT-qPCR in 29 additional, untreated F2
plants: 16 were resistant and 13 sensitive to iodosul-
furon +mesosulfuron. Five of the 11 contigs displayed a
significantly higher expression level in the resistant
plants (Fig. 5). They putatively encoded cytochromes
P450 from families 71A, 71B or 81D (referred to here-
after as CYP71A, CYP71B3 and CYP81D), one peroxid-
ase (referred to hereafter as Perox2) and one disease
resistance protein (referred to hereafter as DP01). There
was a 4919-, 30,989-, 122-, 1008- and 15,764-fold difference
in expression between the highest and lowest relative ex-
pression levels observed for CYP71A, CYP71B3, CYP81D,
Perox2 and DP01, respectively (Additional file 7: Figure S9).
This was due to the expression of each of the five contigs
being almost undetectable in a few plants, and very high in
a few others. For all these plants, both biological replicates
showed the same extreme expression level and an expres-
sion level of the reference genes similar to those of the
other plants analysed. No plant displayed an extreme ex-
pression level for more than one contig.
Although some sensitive plants had expression levels

higher than some resistant plants for a given contig, the
highest expression levels for each contig were always ob-
served in resistant plants (Additional file 7: Figure S9).
The 11, three, nine, 10 and 12 plants most transcribing

Table 2 GO Biological Processes significantly enriched in contigs up-regulated in the resistant pool compared to the sensitive pool
and in the sensitive pool compared to the resistant pool

Resistant Pool/sensitive Sensitive Pool/resistant

Enrichment in contigs up-regulated over the whole time-course

GO.ID Term p-value GO.ID Term p-value

GO:0006278 RNA-dependent DNA replication 0.00063 (***) GO:0006950 Response to stress 0.008 (**)

GO:0006952 Defence response 0.01069 (*) GO:0006468 Protein amino acid phosphorylation 0.015 (*)

GO:0051258 Protein polymerization 0.02974 (*) GO:0006979 Response to oxidative stress 0.026 (*)

GO:0009664 Plant-type cell wall organization 0.03267 (*) GO:0032196 Transposition 0.028 (*)

GO:0006950 Response to stress 0.04763 (*) GO:0043687 Post-translational protein modification 0.028 (*)

GO:0016310 Phosphorylation 0.029 (*)

GO:0006793 Phosphorus metabolic process 0.038 (*)

GO:0006952 Defence response 0.042 (*)

GO:0006464 Protein modification process 0.043 (*)

Enrichment in contigs up-regulated in all herbicide-treated modalities

GO:0006952 Defence response 0.00012 (***) GO:0006313 Transposition, DNA-mediated 0.00039 (***)

GO:0006278 RNA-dependent DNA replication 0.00091 (***) GO:0006950 Response to stress 0.01159 (*)

GO:0051258 Protein polymerization 0.03208 (*) GO:0006468 Protein amino acid phosphorylation 0.0252 (*)

GO:0009664 Plant-type cell wall organization 0.03524 (*) GO:0050896 Response to stimulus 0.02964 (*)

GO:0006979 Response to oxidative stress 0.03143 (*)

GO:0043687 Post-translational protein modification 0.04534 (*)

GO:0016310 Phosphorylation 0.04692 (*)

***, p-value < 0.001; **, p-value < 0.01; *, p-value < 0.05
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CYP71A, CYP71B3, CYP81D, Perox2 or DP01, respect-
ively, were all resistant to iodosulfuron +mesosulfuron.
Principal Component Analysis implemented using ex-
pression data obtained for the five contigs allowed clear
separation of most, but not all, resistant F2 plants from
the sensitive F2 plants (Fig. 6). Separation occurred

along axes determined by the expression levels of two
groups of contigs: CYP71A, CYP71B3, Perox2 and DP01
for one axis, and CYP81D for the other (Fig. 6).
Several NTSR genes or candidate genes had previously

been identified in grasses (Table 3). Among them, the
glutathione-S-transferase AmGSTF1 plays a significant

Fig. 5 Expression of the 11 candidate NTSR contigs in 29 resistant or sensitive F2 plants. Comparison of the relative expression levels (log10)
measured by RT-qPCR of the 11 contigs in F2 plants resistant (R) or sensitive (S) to iodosulfuron +mesosulfuron. The p-values of the Wilcoxon test
for pairwise comparison between resistant and sensitive plants are given (*, p < 0.05; ***, p < 0.001). CYP, cytochrome P450; Perox, peroxidase; GT,
glycosyltransferase; HeLo, helix-loop-helix DNA-binding protein; DP, disease resistance protein
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role in A. myosuroides NTSR to acetyl-coenzyme A
carboxylase (ACCase) inhibitors, a group of leaf-applied
herbicides distinct from ALS inhibitors [13, 14]. In
Lolium rigidum, another major grass weed, four contigs
annotated as two cytochromes P450, one monooxygen-
ase and one glycosyl-transferases were also proposed to
have a link with NTSR to ACCase inhibitors [15]. More
recently, four additional Lolium sp. contigs annotated as
two cytochromes P450, one glycosyl-transferase and one
glutathione-S-transferase were proposed to be associated
with NTSR to ALS inhibitors [19]. These contigs were
different from those linked to NTSR to ACCase inhibi-
tors in Lolium rigidum [19]. Last, one rice cytochrome
P450 and one Echinochloa phyllopogon cytochrome
P450 were also recently demonstrated to confer NTSR
to ALS-inhibiting herbicides [16, 17]. A BLASTp search
in ALOMYbase identified the most probable ALOMY-
base homologs of these genes or contigs (Table 3; E-
values between 5.52E-47 and 0.00). The ALOMYbase
homologs identified did not include any of the five can-
didate contigs identified in our work. Overall, RNA-Seq
expression patterns of the six ALOMYbase homologs of
genes or contigs associated to NTSR to ACCase inhibi-
tors (Table 3) constantly increased with the time after
herbicide application in both phenotypes, and their dif-
ference in expression between phenotypes was above
two-fold in at most one herbicide-treated modality only.
This was also true for the homologs of two of the con-
tigs associated to NTSR to ALS inhibitors in Lolium sp.
The RNA-Seq expression levels of the ALOMYbase ho-
mologs of the two other contigs associated to NTSR to
ALS inhibitors in Lolium sp. was either stable in both

phenotypes, or stable in the sensitive phenotype and
variable in the resistant phenotype without reaching a
two-fold difference in expression between phenotypes
(Table 3). RNA-Seq expression level of the ALOMYbase
homolog of the two genes associated to NTSR to ALS
inhibitors in rice or in E. phyllopogon was highest in the
sensitive pool. This contig was up-regulated by herbicide
application in the sensitive pool only (Table 3). ALOMY-
base homologs of known NTSR genes or candidate con-
tigs could therefore not be considered as contigs
potentially involved in NTSR to ALS inhibitors in our
study.

Discussion
ALOMYbase, the first A. myosuroides transcriptomic
resource
Our main aim was to establish a resource to study tran-
scriptomic patterns in A. myosuroides plants resistant or
sensitive to leaf-applied herbicides in the absence of
herbicide and at the early stages of response to herbi-
cide, using experimental conditions as similar as possible
to realistic field conditions. Herbicide damage to plants
starts occurring 3 to 8 h after herbicide application
(reviewed in [10]). To be efficient, NTSR must be imple-
mented before herbicide damage is irreversible, and
must be upheld long enough to allow resistant plants to
recover [10]. Accordingly, RNA-Seq data was obtained
from a time course experiment ranging from UT until
73HAT. A commercial iodosulfuron +mesosulfuron for-
mulation that is applied in the field was used together
with its recommended adjuvant in our experiments, be-
cause NTSR is selected for in the field by recurrent

Fig. 6 Principal Component Analysis of candidate contig expression data. Expression data was obtained using RT-qPCR for five contigs (CYP71A,
CYP71B3, CYP81D, Perox2 and DP01) in 35 A. myosuroides F2 plants. Red dots, resistant plants; green dots, sensitive plants. “*” indicate the plants
used for RNA-Seq
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Table 3 ALOMYbase most probable homologs of published NTSR genes or candidate genes identified in grasses and their RNA-Seq expression patterns

Genea Accession (GenBank) Reference Species Herbicide mode
of actionb

Most probable ALOMYbase homolog

Accession E-value Expression pattern

In the resistant pool In the sensitive pool

AmGSTF1 (glutathione-S-transferase) AJ010454 [13, 14] A. myosuroides ACCase Alomy081323 1.12E-87 Up over the treated modalities Up over the treated modalities

Esterase AJ698940 [12] A. myosuroides ACCase Alomy016613 5.18E-140 Up until 36HAT, then down Up until 36HAT, then down

CYP72A GAYU01000008 [15] Lolium rigidum ACCase Alomy031474 7.90E-179 Up over the treated modalities Up over the treated modalities

CYP72A GAYU01000010 [15] Lolium rigidum ACCase Alomy009176 2.51E-283 Up over the treated modalities Up over the treated modalities

Nitronate monooxygenase GAYU01000016 [15] Lolium rigidum ACCase Alomy009031 4.99E-76 Up over the treated modalities Up over the treated modalities

Glycosyl-transferase GAYU01000013 [15] Lolium rigidum ACCase Alomy080565 5.28E-101 Up over the treated modalities Up over the treated modalities

CYP72A254 AB755796 [16] Echinochloa
phyllopogon

ALS Alomy010097 1.94E-245 Stable Up over the treated modalities

CYP72A31 Os01g060220c [17] Oryza sativa ALS Alomy010097 3.26E-164 Stable Up over the treated modalities

GTA (glycosyl-transferase) LOLSS006751d [19] Lolium sp. ALS Alomy047057 1.30E-119 Up over the treated modalities Up over the treated modalities

GSTA (glutathione-S-transferase) LOLSS067288d [19] Lolium sp. ALS Alomy098098 5.52E-47 Up over the treated modalities Up over the treated modalities

CYP72A LOLSS002187d [19] Lolium sp. ALS Alomy016824 0.00 Down until 24HAT, then up Stable

CYP81B1 LOLSS010577d [19] Lolium sp. ALS Alomy007987 0.00 Stable but a peak at 24HAT Stable
aCYP, cytochrome P450
bGene or candidate gene conferring NTSR to herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) or acetolactate synthase (ALS)
cAccession in the Rice Genome Annotation Project database, http://rice.plantbiology.msu.edu/
dAccession in LOLbase [19]
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applications of not only herbicide molecules, but also
associated formulations and adjuvants. Last, resistant
and sensitive F2 plants derived from a pairing between a
sensitive plant and a resistant plant from a population
where NTSR had evolved under herbicide selective pres-
sure were used as starting plant material because using
plants with a similar genetic background was expected
to facilitate identification of transcriptomic differences
related to NTSR [10].
As there is no genomic resource for A. myosuroides,

the Illumina technology was selected for sequencing be-
cause it is the technology of choice for de novo tran-
scriptome deep sequencing and assembly without a
reference genome [25]. After discarding assembly waste,
ALOMYbase contained 65,558 contigs potentially from
expressed genes that encoded 32,138 putative peptides
(Table 1). This is to be compared to the 95 nucleotide
sequences from A. myosuroides that had been deposited
in GenBank/EMBL to the 5th of June 2015. Our work
therefore tremendously increased the sequence data
available for A. myosuroides.
The contigs in ALOMYbase were assembled for RNA-

Seq data obtained from the aerial part of six F2 plants at
the vegetative growth stage. Thus, ALOMYbase was not
expected to be a comprehensive A. myosuroides tran-
scriptomic resource. Accordingly, the completeness of
ALOMYbase as estimated by CEGMA analysis was
61.3 %. Considering our starting material and CEGMA
estimates of completeness for the transcript sets associ-
ated to the five grass genomes (79.8 to 99.2 %), A.
myosuroides transcriptome representation in ALOMY-
base was deemed satisfactory for our purpose.
As A. myosuroides genetic variability is high [40], the

two parental plants used to generate the F2 population
were most likely genetically different. Thus, nucleotide
variation was certainly present among the F2 plants used
for RNA-Seq, which likely introduced some redundancy
among the assembled contigs: more than one contig in
ALOMYbase may represent a same unigene and/or sev-
eral contigs may represent different segments of the
same unigene. The precise size of A. myosuroides gen-
ome is unknown. Estimations based on DNA cell con-
tents give an expected genome size between 1200 and
4330 Mb [41, 42], i.e., a relatively large genome. Large
genomes have a low proportion of transcribed se-
quences encoding proteins (e.g., 5 to 8 % of the large
genomes of fully sequenced legume species genomes
[38]). From the range of A. myosuroides genome size
estimates, ALOMYbase sequence data would represent
1.6 to 5.7 % coverage of the A. myosuroides genome.
Even though redundancy was present in ALOMYbase,
this value was deemed acceptable for a transcriptomic
resource obtained only from the aerial part of young
plants. Five grass species currently have a fully

sequenced genome: the weed B. distachyon (270 Mb,
25,532 genes encoding proteins), and the crops O.
sativa (rice, 380 Mb, 40,331 genes), S. bicolor
(sorghum, 730 Mb, 34,497 genes), H. vulgare (barley,
5100 Mb, c.a. 32,000 genes) and Z. mays (maize,
2100 Mb, 63,540 genes). The genomes of these species
contain 95, 106, 47, 6 and 30 genes encoding proteins per
Mb genome, respectively. Depending on A. myosuroides
genome size estimate, the 32,138 peptides predicted to be
encoded by the potentially active contigs in ALOMYbase
corresponded to seven to 27 potential genes encoding
proteins per Mb genome. Even considering partial
transcriptome coverage and occurrence of redundancy,
this is in the range of values observed for the grass species
with genome sizes similar to that of A. myosuroides (barley
and maize).
The N50 size value of the contigs in ALOMYbase was

1240 nucleotides (Table 1), a value higher than those ob-
tained for other recent plant de novo transcriptome as-
semblies based on Illumina sequence reads [43, 44] or
on a combination of Illumina and 454 pyrosequencing
reads [45], and similar to that obtained with 454 se-
quence reads [15]. The average contig size in ALOMY-
base (1046 nucleotides) matched the average length of
gene coding sequences in grasses (1000 to 1300 nucleo-
tides [46]).
The predicted peptide content of ALOMYbase was

compared to those of the five fully sequenced grass ge-
nomes. In total, 30.6 % of the protein families identified
using OrthoMCL were shared among ALOMYbase and
the five grass genomes (Additional file 2: Figure S3). The
five grass genomes shared 41.7 % of the protein families
identified. These proportions were in agreement with a
previous genome-wide study showing that genome peptide
contents was largely shared among grass species, including
peptide family representation [47]. While ALOMYbase
only represents a part of the total A. myosuroides transcrip-
tome, these results suggest a good coverage and a correct
representation of the protein families of A. myosuroides
genome in ALOMYbase. Considering the number of
shared protein families, ALOMYbase content was closer to
those of H. vulgare and B. distachyon genomes (Additional
file 2: Figure S3). Similarly, rank correlation for the number
of predicted peptides assigned to Pfam families was highest
between ALOMYbase and B. distachyon genome. The six
grass species considered belong to three major subfam-
ilies in the Poaceae: Pooideae (A. myosuroides, H. vul-
gare and B. distachyon), Panicoideae (Z. mays and S.
bicolor) and Ehrhartoideae (O. sativa) [48]. Thus, simi-
larities in protein family representation are consistent
with phylogenetic proximity, as already observed [47].
Peptide annotation identified 2017 ALOMYbase con-

tigs potentially encoding peptides assigned to major fam-
ilies involved in NTSR [5, 10]. Peptides annotated as
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cytochrome P450 or ABC transporters were particularly
abundant in ALOMYbase. This could be due to the
probable heterozygous status of the plants sequenced.
Heterozygosity has been reported to cause redundancy
during assembling, especially in fast-evolving gene fam-
ilies like cytochromes P450 [49]. Other possibilities
would be gene evolution via duplication and divergence,
a process particularly frequent for cytochromes P450
[50], or occurrence of splice variants, which is expected
in plants undergoing a stress because alternative splicing
is involved in the regulation of stress response [51]. Even
with redundancy present in ALOMYbase, our data sug-
gests A. myosuroides genome would be rich in genes en-
coding proteins potentially involved in NTSR, which
could be a reason why NTSR is so widespread and fre-
quent in this species [28].
Particularities in functions such as stress response

generally imply particularities in gene expression regula-
tion [47]. A good representation of the transcriptome of
the aerial part of A. myosuroides young plants and
confirmation of the relevance of RNA-Seq-based expres-
sion data using RT-qPCR make ALOMYbase a reliable
resource to investigate the transcriptomic response to
herbicides inhibiting ALS in A. myosuroides using
RNA-Seq data.

A. myosuroides general response to the ALS-inhibiting
herbicides iodosulfuron +mesosulfuron
ALS inhibitors are among the most broadly and frequently
used herbicides. Yet, their effects are still not totally eluci-
dated [30]. Most studies addressing plant response to ALS
inhibitors were performed on broadleaved plants, particu-
larly A. thaliana [33, 34] and Pisum sativum [52–54].
Briefly, ALS inhibition is followed by plant growth arrest
and the subsequent slow death of treated plants [30]. Ap-
plication of ALS-inhibiting herbicides causes a rapid in-
duction of specific stress response pathways, including
detoxification-related genes [33, 34]. The biosynthesis of
branched-chain amino acids (BCAAs: valine, leucine and
isoleucine) is interrupted, causing a decrease in the cell
contents in free amino-acids, including BCAAs, and a re-
duction in protein synthesis [30, 55]. This is rapidly
followed by an increase in the cellular free amino-acid con-
tents resulting from increased protease-mediated protein
degradation and reduced protein synthesis rates [56–58].
Other effects of ALS inhibitors include carbon metabolism
impairment leading to an increase in the leaf cell
carbohydrate contents and induction of aerobic fer-
mentation [53, 57, 58]. Central energy pathways are
also modified in response to oxidative damage [34].
Using a time-course experiment designed as recom-

mended [59] to sample the transcriptome at different
times of the day during the early response of A.
myosuroides to ALS inhibitors allowed analysis of the

part of the transcriptomic response to iodosulfuron +
mesosulfuron common to resistant and sensitive plants
(Additional file 3: Table S5 and S6). The transcriptional
response started at 6HAT with an up-regulation of con-
tigs assigned to thiamin biosynthesis process and oxida-
tive stress response. Thiamin had been proposed to be
involved in several abiotic and biotic stress responses,
including protection against oxidative stress [60–62].
Oxidative stress associated to ALS inhibitor action had
been reported to be transient and moderate, and not a
cause for plant death [63], which is consistent with the
early and transient response observed here in A. myosur-
oides plants. From 24HAT on, there was a strong up-
regulation of contigs assigned to protein and BCAAs
biosynthesis. This is likely a direct consequence of ALS
inhibition. Contigs assigned to “Multidrug transport”
were up-regulated from 24HAT on, especially multi anti-
microbial extrusion proteins (MATE), which is similar to
a previous finding of MATE-encoding contigs being up-
regulated in A. thaliana in response to three ALS inhibi-
tors [34]. Contigs assigned to “Respiratory gaseous
exchange” were also up-regulated. They included seven
putative alternative oxidases that are part of the electron
transport chain in mitochondria. This may reflect the ac-
tivation of the alternative respiratory pathway, i.e. aerobic
fermentation consecutive to carbohydrate accumulation.
This is consistent with previous studies [53, 54, 58, 64, 65].
From 36HAT on, contigs assigned to processes driving
gene regulation were up-regulated, while contigs assigned
to photosynthesis were down-regulated. This is consistent
with plant growth arrest following ALS inhibition. At the
latest time-point studied (73HAT), there were few add-
itional changes in the processes enriched in up-regulated
contigs. However, there was a drastic increase in the bio-
logical processes enriched in down-regulated contigs. In
particular, many contigs assigned to various stress response
pathways, including oxidative stress response, were down-
regulated at 73HAT, as were contigs assigned to oxygen
transport and carbon fixation. The effects of ALS inhibitor
action on A. myosuroides plants reflected by their transcrip-
tional response were consistent with the literature. They
can also be considered to reflect the two first phases of
herbicide stress response [10, 66]: the initial shock phase
when stress-signalling pathways are triggered (from 6HAT
to 24HAT), and the acclimation phase when plant re-
sources are re-oriented towards the establishment of de-
fences (from 24HAT to 73HAT).
Similarities in the response to ALS inhibitors were ob-

served between A. myosuroides and A. thaliana. The ex-
pression patterns of the 93 probable ALOMYbase
orthologs of A. thaliana genes used as markers for the
signature of the response to ALS-inhibiting herbicides
were established. ALOMYbase orthologs of A. thaliana
marker genes in groups 1a and 1b showed expression
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patterns remarkably similar to those of their A. thaliana
orthologs in both the resistant and the sensitive pools
(Additional file 3: Table S3). Similarities in the expres-
sion patterns increased with time, with a maximum
similarity observed at 73HAT. Our data thus support
previous findings that grasses and broadleaved plants
share common regulatory mechanisms of gene expres-
sion in response to abiotic stresses [67].
From all the foregoing, it is clear that ALOMYbase

quantitative and qualitative data are reliable and relevant
to study the response to ALS inhibitors in A. myosuroides.
Plants resistant to iodosulfuron +mesosulfuron because of
NTSR reacted to the stress exerted by the herbicide appli-
cation, with a part of their transcriptomic response being
similar to that of sensitive plants and consistent with the
effects of ALS inhibitors described in the literature. This is
in contrast to a previous study where, following ALS
inhibitor application, no transcriptomic changes were ob-
served in plants resistant because of a mutant herbicide-
resistant ALS, while their sensitive counterparts showed
extensive transcriptomic changes [33]. Here, A. myosur-
oides plants resistant because of NTSR were affected by
herbicide action in a first step, but ultimately overcame it,
as previously proposed [10]. As expected, determinants of
the mechanisms allowing NTSR plants to withstand
herbicide action are clearly to be sought in the part of
herbicide response that is specific to the resistant
phenotype.

Differential response of resistant and sensitive plants to
the ALS-inhibiting herbicides iodosulfuron +mesosulfuron
Overall, there were many more up-regulated contigs
than down-regulated contigs in the sensitive plants fol-
lowing herbicide application, while the opposite was ob-
served for the resistant plants (Fig. 4). This could reflect
a random response to the herbicide stress in the sensi-
tive plants, while the response in the resistant plants
would be more focused and associated with a down-
regulation of functions not crucial to overcome ALS in-
hibitor action. In the sensitive plants, the induction of
oxidative stress response seemed more marked, with a
specific up-regulation of contigs assigned to this process
that could reflect an herbicide stress stronger than in the
resistant plants. In the resistant plants, contigs assigned
to energy production were up-regulated from 12HAT
on, while no significant up-regulation was observed in
the sensitive plants. Plant acclimation to stress is an ac-
tive process that requires extra energy [66]. This obser-
vation may thus correspond to an earlier and stronger
onset of the phase of acclimation to the herbicide stress
in the resistant plants. General analysis of contigs differ-
entially expressed between the resistant and the sensitive
plants did not allow identification of biological processes
that could directly explain NTSR.

Candidate NTSR contigs
The primary aim of this work was to identify as many as
possible of the contigs presents in plants resistant and/
or sensitive to ALS inhibitors before herbicide applica-
tion and at the early stages of herbicide response, in
order to establish a transcriptomic resource as compre-
hensive as possible to allow subsequent studies of A.
myosuroides response and NTSR to ALS inhibitors. For
this purpose, and because performing RNA-Seq on 42
RNA samples was not affordable, the 42 individual RNA
samples studied were sequenced as pooled samples.
Transcriptomic data from each pooled sample reflected
the average variation in gene expression induced by bio-
logical variation among individuals (using three F2
plants per phenotype and per experimental modality)
and by the environment (using two clones per F2 plant
and per experimental modality). The pooled samples
used for RNA-Seq did not contain distinct biological
replicates, as is generally recommended to identify con-
tigs differentially expressed among experimental modal-
ities (e.g., [21, 25]). This experimental design was thus not
optimal for the purpose of identifying contigs specifically
up-regulated in resistant plants that could be candidate
NTSR contigs [10], especially because we observed that
variation in gene expression could be substantial among
the individual samples constituting each pooled sample
(Additional file 4: Figure S4; Additional file 7: Figure S7).
However, A. myosuroides transcriptomic response to ALS
inhibitor action obtained from ALOMYbase expression
data was fully consistent with the literature. Despite the
limitations inherent to our experimental design, this en-
couraged us to seek potential NTSR determinants using
ALOMYbase expression data. Contigs with a constitutive
up-regulation in the resistant plants that was maintained
during the early phases of the transcriptional response to
iodosulfuron +mesosulfuron were targeted because NTSR
is expected to be most effective in avoiding irremediable
physiological damage if constitutive, and because contigs
that could be used for NTSR detection would be most use-
ful if constitutively differentially expressed in resistant
plants (i.e., in the absence of herbicide application).
The five contigs identified herein with a potential link

to NTSR were predicted to encode three cytochromes
P450 (CYP71A, CYP71B and CYP81D), one peroxidase
(Perox2) and one disease resistance protein (DP01). Cy-
tochromes P450 in families CYP71 and CYP81 had been
shown to be directly involved in herbicide degradation
in crop or model species [68]. In particular, wheat
CYP71C6 had been shown to catalyse degradation of a
range of ALS inhibitors [69]. CYP71A, CYP71B and
CYP81D are thus potentially interesting candidate NTSR
contigs in A. myosuroides. The possible roles of Perox2
and DP01 in NTSR are unclear. ALS inhibitors directly
cause oxidative stress, but only as a transient side-effect
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of ALS inhibition [53]. Thus, a direct role of Perox2 in
NTSR is dubious. Peroxidases are involved in a variety
of plant physiological processes, including abiotic stress
response [70]. Perox2 would rather be a NTSR marker,
i.e., a contig which expression level is correlated with
NTSR but that has no direct role in NTSR [10]. The
same applies to DP01, which potentially encodes a pep-
tide with homologies to a protein involved in response
to a biotic stress.
The contigs identified herein differed from NTSR

genes or candidate transcripts identified in previous
studies. Conversely, previously identified NTSR genes or
candidate contigs could not be linked to NTSR in the
plants studied in our work (Table 3). In particular, the
glutathione-S-transferase AmGSTF1 that had been
shown to be a major player in A. myosuroides NTSR to
herbicides inhibiting ACCase [13, 14] was not identified
in our work as a potential candidate contig involved in
NTSR to ALS inhibitors. The same applies to the ALO-
MYbase homologs of other genes or candidate tran-
scripts associated to NTSR to ACCase inhibitors [12, 15]
(Table 3). However, these genes or contigs were regu-
lated by herbicide application (Table 3). This suggests
that they may be involved in the broad response to iodo-
sulfuron +mesosulfuron, but not directly in NTSR to
these herbicides. A. myosuroides response pathways to
ACCase inhibitors and to ALS inhibitors, and thus NTSR
to each group of herbicides, may be interrelated, as sug-
gested previously [5]. The ALOMYbase homologs of previ-
ously identified genes or contigs associated to NTSR to
ALS inhibitors [16, 17, 19] were also not involved in NTSR
to ALS inhibitors in the A. myosuroides plants studied
herein, which is fully consistent with NTSR being underlain
by a diversity of mechanisms that vary among species,
populations and individuals [5, 6, 9, 10].
In summary, we identified five contigs that are potential

NTSR genes or markers. The expression levels of the five
contigs varied among the F2 plants analysed: some resistant
plants showed a low level of expression for these contigs,
and some sensitive plants displayed a high level of expres-
sion for some of these contigs. Such variation among indi-
vidual plants in the expression of genes with a link with
NTSR had previously been observed [15, 16, 19, 71]. Princi-
pal Component Analysis suggested two groups of NTSR
mechanisms could be present in the F2 plants studied, but
did not allow separating all resistant plants from all sensi-
tive plants. Our data suggested that the resistant F2 plants
studied were not all resistant because of the same NTSR
mechanisms, and that not all contigs with a role in NTSR
were identified in our study. As all F2 plants studied herein
derived from a single parental plant with NTSR to ALS in-
hibitors, this suggests the occurrence of a set of genes
endowing NTSR in the parental plant with NTSR. This is
in accordance with previous data showing that NTSR is

under polygenic control in A. myosuroides [72]. Further in-
vestigation is clearly necessary to confirm the link of the
five contigs identified with NTSR, and in particular
whether the three putative cytochromes P450 have a de-
grading activity against iodosulfuron and mesosulfuron.

Conclusions
We obtained RNA-Seq data from the aerial part of
young herbicide-resistant and herbicide-sensitive A.
myosuroides plants that provided substantial transcrip-
tome coverage. This data was assembled to generate
ALOMYbase, the first A. myosuroides transcriptomic re-
source. ALOMYbase was used to get insight into the
transcriptomic variation occurring in plants resistant or
sensitive to iodosulfuron +mesosulfuron following the
application of this herbicide. In both resistant and sensi-
tive A. myosuroides plants, the transcriptomic response
to iodosulfuron +mesosulfuron mirrored known effects
of ALS inhibitors and were consistent with the literature
data. Striking similarities with the transcriptomic re-
sponse of A. thaliana to ALS inhibitors were observed.
Specificities in the response to iodosulfuron +mesosul-
furon were observed in the resistant and in the sensitive
A. myosuroides plants, but our experimental design did
not allow identification of processes involved in NTSR.
Our data confirmed that gene regulation is at the root of
herbicide response and of NTSR. Considering the limita-
tions in our experimental design, contigs potentially
involved in constitutive NTSR were tentatively identi-
fied. High expression levels of five contigs, of which
three potentially encoded cytochromes P450, were corre-
lated with NTSR in the F2 population studied. These
contigs are potential NTSR candidates that remain to be
fully validated. ALOMYbase is thus a transcriptomic re-
source for A. myosuroides that will be of great use for fu-
ture research aiming at unravelling the complex,
quantitative genetic bases of constitutive and herbicide-
induced NTSR to leaf-applied herbicides in this species,
understanding its evolution and devising efficient and
long-lasting A. myosuroides control strategies.

Methods
Plant material
A. myosuroides is genetically highly variable [40]. Be-
cause differences in gene expression can be due to differ-
ences in the plant genetic background, genetically
homogenised plant material was generated by controlled
pairings. One herbicide-resistant plant from the field
population CY101 [72] was paired with one herbicide-
sensitive plant from the reference population SA98 that
exclusively contains herbicide-sensitive plants [72]. F1
progeny seedlings were checked for the absence of ALS
mutations endowing herbicide resistance by genotyping
as previously described [73]. F1 plants were then
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transplanted into individual 2 L, plastic pots in a green-
house (20 °C day, 15 °C night). At the four tiller stage,
they were subjected to vegetative propagation: all indi-
vidual tillers of each plant were separated, transplanted
into individual pots and fertilised using a slow-release
fertiliser (FEPCOS-BIO, SONOFEP, Saulon-la-Rue, France).
This resulted in four clones of each plant at the three-leaf
growth stage, at which ALS-inhibiting herbicide application
is recommended. All clones had a similar size, height and
habit. Herbicide sensitivity of each F1 plant was assessed
72 h after cloning by spraying two clones per plant with the
commercial herbicide Atlantis WG (active ingredients:
iodosulfuron 0.6 % w/w +mesosulfuron 3 % w/w, Bayer
CropScience) at the French field rate (3 g.ha−1 iodosul-
furon + 15 g.ha−1 mesosulfuron) with the adjuvant Actirob
B (methylated rapeseed oil, Bayer CropScience, 1 L.ha−1).
In the following, the herbicide mixture applied will be re-
ferred to as “iodosulfuron +mesosulfuron”. Herbicide ap-
plication was as described [72]. The two remaining clones
per F1 plant were sprayed with water (untreated control).
Four clones of plants from the reference population SA98
were included in the spraying experiment to check herbi-
cide application efficacy. Visual phenotype rating was per-
formed 4 weeks after treatment, when the reference
sensitive control plants were clearly dead [72]. Plants were
assigned to three phenotypes classes: highly resistant
(sprayed clones identical to the untreated clones), moder-
ately resistant (treated clones survived herbicide application
but displayed a reduced growth and/or herbicide symptoms
compared to the untreated clones) and sensitive (treated
clones killed), as previously described [72]. One water-
treated clone of one sensitive F1 plant and one water-
treated clone of one resistant F1 plant were then paired,
yielding a F2 population. This F2 population was used in all
the subsequent experiments.
Visual phenotype rating of the F2 plants using iodosul-

furon +mesosulfuron was as before. All clones had a
similar size, height and habit. F2 plants with contrasted
phenotypes (i.e., three highly resistant and three sensitive
plants) were selected for transcriptome analysis using
RNA-Seq.

Sample collection
Our aim was to identify as many transcripts present in
each phenotype before and during the early phase of re-
sponse to ALS inhibitors as possible, considering that (i)
herbicide damage to plants starts occurring 3 to 8 h after
herbicide application and (ii), to be efficient, NTSR must
be implemented before herbicide damage is irreversible,
and must be upheld long enough to allow resistant
plants to recover (reviewed in [10]). Many stress respon-
sive genes are under rhythmic regulation and show
time-of-day dependence in their regulation: transcrip-
tome sampling during an off-peak regulation period may

thus lead to an incomplete representation of the herbi-
cide response [59]. Accordingly, to capture as much as
possible of the transcriptomic herbicide response to ALS
inhibitors as possible, a time-course experiment was per-
formed containing a range of time-points positioned at
different times of the day [59].
Untreated clones from each of the six F2 plants

intended for RNA-Seq were grown until they had devel-
oped 16 tillers, and subsequently split into individual til-
lers. Each clone was transplanted into an individual pot
as before. All clones had a similar size, height and habit.
Two clones (biological replicates) intended for RNA-Seq
were used per plant in each of six time-points (i.e. 12
clones per plant in total): untreated (UT), 6, 12, 24, 36
and 48 h after treatment (HAT). The four remaining
clones of each plant were not sampled for RNA-Seq: two
clones sprayed with iodosulfuron +mesosulfuron (pheno-
type control) and two clones sprayed with water
(untreated control) together with the clones intended for
the time-course experiment were used to check plant
phenotype (i.e., resistant or sensitive) 4 weeks after treat-
ment. Herbicide application was as before, and included
clones from reference sensitive plants as a check for herbi-
cide application efficacy. An additional experimental mo-
dality consisting of samples collected 73HAT was
included in the RNA-Seq experiment. This modality came
from a second time-course experiment performed 8 weeks
after the first one following the same procedure. It con-
tained two clones from each of the same six plants used in
the first time-course that were treated with iodosulfuron
+mesosulfuron as before. The 73HAT modality was in-
cluded to identify contigs expressed at a later time-point
after herbicide application and to check the trends in gene
expression patterns observed in the first time-course.
One sample collected for RNA extraction consisted of

the aerial part of the two clones of one given F2 plant at
one given time-point. Plant material was immediately
placed into liquid nitrogen in order to avoid RNA deg-
radation and/or induction of plant response to wound-
ing, and stored at −80 °C until plant phenotype had
been checked 4 weeks after herbicide application. A total
of 42 samples were thus collected (six plants with two
clones each × seven time-points, including 73HAT).

RNA extraction and sequencing
Total RNA from the 42 samples was extracted using the
RNeasy Plant Mini Kit (Qiagen, Courtaboeuf, France)
according to the manufacturer’s instructions. Potential
genomic DNA contaminations were removed using the
RNase-Free DNase Set (Qiagen).
Our aim was to generate a transcriptomic resource in-

cluding as many as possible of the transcripts present in
the aerial part of plants with a resistant or a sensitive
phenotype before herbicide application and at the early
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stages of herbicide response. Pooled RNA samples were
sequenced because we considered there could be differ-
ences in expression patterns among plants. Pooling sam-
ples was expected to allow capture of a maximum of
transcripts by sequencing a minimum of samples. One
pooled sample consisted of an equimolar mixture of the
individual RNA samples extracted from the six biological
replicates per phenotype in a given experimental modal-
ity in the time-course experiment (i.e., two clones for
each of the three resistant or sensitive F2 plants in each
experimental modality). A total of 14 pooled RNA sam-
ples were thus produced and used for RNA-sequencing.
RNA quality control was carried out on an Agilent

2100 Bioanalyzer (Waldbroon, Germany) according to
the manufacturer’s instructions. The RNA integrity num-
ber was between 8 and 9 for all pooled samples. A non-
normalised cDNA library was generated for each of the 14
pooled samples. Library preparation and sequencing were
performed by Fasteris (Plan-les-Ouates, Switzerland) using
Illumina protocols: 1 μg RNA from each of the 14 pooled
samples was processed using TruSeq RNA Sample Prep
kit (Illumina). Transcripts were purified and fragmented
by zinc breaking using mRNA-SEQ kit (Illumina).
Double-stranded cDNA fragments were prepared with
random primers and RNaseH. Libraries were subjected
to 15 PCR cycles. Fragments were purified on agarose
gel to recover fragments with inserts in the range of
160–240 base pairs. All libraries were sequenced in
two independent flow cell lanes (technical replicates)
on an Illumina HiSeq2000 system. Sequencing was
carried out following the manufacturer’s instructions
for the generation of single-end, 100-base long reads.
Sequence data was extracted using the CASAVA 1.8.1
pipeline (Illumina). The sequence reads from all 14 li-
braries were analysed according to Fasteris quality
control, using an indexed PhiX reference sequence on
each call lane to estimate sequencing error.

De novo transcriptome assembly and annotation
The F2 plants used for RNA-Seq were issued from gen-
etically unrelated parental plants. Nucleotide variation
among these plants was thus expected. This was antici-
pated to complicate de novo transcriptome assembly. A
custom iterative procedure was thus designed to handle
heterozygosity and sequencing errors. The first step of
the assembling procedure was based on iterative Velvet
runs [74] configured with stringent parameters (k-mer
ranging from 41 to 85 with a step of 4, and a max_diver-
gence set to 0.01). Reads were considered as stranded
(−strand_specific parameter) even if the actual data were
not. At each iteration, the contig sequences assembled
during the previous iteration were integrated as long
reads (−long). This highly time-consuming procedure
generated a set of accurate long reads. As these data

were very similar in quantity and quality to Sanger EST
data, an iterative pipeline was developed that integrated
a “containment clustering”-like program (nrcl-like pro-
gram) and the cap3 assembler [75] that is widely used to
assemble Sanger ESTs. Each iteration in the pipeline
combined a nrcl run that removed redundancy by in-
cluding short redundant contigs into longer contigs to a
cap3 assembly that merged contigs. At each iteration,
less and less stringent parameters were used because
each iteration added constraints to the subsequent one.
The thresholds used both for nrcl and cap3 were an
“Identity percentage” ranging from 92 to 99 %, a length
of the overhang of 20 nucleotides, an “High-scoring Seg-
ment Pair” (HSP) length of 100 and 75 nucleotides,
respectively.
The quality of the assembly was manually checked on

a set of contigs expected to correspond to single-copy
genes. The assembly parameters were selected so that
single consensus sequences were obtained for this set of
genes. Putative coding sequences were sought in the as-
sembled contigs using FrameDP trained on A. thaliana,
B. distachyon and M. truncatula proteomes [76]. Putative
peptide annotation was performed using an automatic
InterproScan analysis [77] and included Gene Ontology
(GO) terms, Enzyme Commission (EC) codes and Pfam
domains. Similarity searches for peptide annotation were
also conducted against TAIR10, Brachypodium distachyon
proteome, Swiss-Prot and TrEMBL using the BLASTp
algorithm with an E-value < 10−5. Additional Pfam domain
assignation was performed using the Pfam-A 27.0
database and the hmmsearch program [78].

Comparison with other grass species (Poaceae)
The predicted peptide contents of A. myosuroides tran-
scriptomic database (ALOMYbase) was compared to those
of the five grass (Poaceae) species for which a full genome
sequence is available: the weed Brachypodium distachyon
and the crop species Hordeum vulgare (barley), Zea mays
(maize), Oryza sativa (rice) and Sorghum bicolor (sorghum).
All data were collected from Phytozome v.9.0, except H.
vulgare data that were collected from the MIPS database
(http://mips.helmholtz-muenchen.de/plant/barley). Inter-
ProScan annotation was performed anew for the five grass
genomes using the same procedure as for ALOMYbase to
homogenise functional annotation and more accurately
identify peptides assigned the same annotations in all spe-
cies. Comparison of the Pfam families present in ALOMY-
base and in the five grass genomes was performed using
OrthoMCL [79] with an 80 % match cutoff threshold for
ortholog clustering. A Pfam family was considered present
in one species if at least one peptide in this species was
assigned to this family. The distribution of the predicted
peptides among Pfam families was compared among
ALOMYbase and the grass genomes.
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The completeness of A. myosuroides transcriptome
assembly was assessed using CEGMA VM (Core
Eukaryotic Genes Mapping Approach) that checks the
presence of a core protein set consisting of 248 highly
conserved proteins found in a wide range of eukaryotes
[39] (http://korflab.ucdavis.edu/datasets/cegma). For com-
parison purpose, CEGMA analysis was also performed on
the set of transcripts available for each of the five
grass species with a full genome.

Contig expression analysis
To measure gene expression in each experimental mo-
dality, all the corresponding sequence reads were mapped
against the assembled contigs using the glint software
(Faraut & Courcelle; http://lipm-bioinfo.toulouse.inra.fr/
download/glint/, unpublished) configured to keep only
the best scoring reads with the following parameters: no
gap in alignment, maximum mismatch number = 5, mini-
mum score = 24 and length of each read aligned ≥ 50 %.
Redundancy was expected in the assembly. Thus, a given
read in an experimental modality could be mapped to dif-
ferent contigs, so that differential expression analysis was
not biased by redundancy. The total number of reads
mapped per contig was computed for each experimental
modality and normalized using the RPKM method [80].

RT-qPCR validation of RNA-Seq expression patterns using
the original RNA samples
Primers were designed based on the sequence of 21
contigs showing in silico expression levels stable or
variable among experimental modalities, and checked
with NetPrimer (Premier Biosoft, Palo Alto, California).
Amplification specificity and qPCR efficacy were checked
for each contig as described [81]. Primer pairs retained for
contig expression measurement had an efficiency value
between 80 and 110 % (Additional file 3: Table S2). The
expression level of the 21 contigs was measured in
each of the 42 individual RNA samples used to create
the 14 pooled samples subjected to RNA-Seq. Ana-
lyses were performed in duplicate (technical repli-
cates) for each sample. Reverse transcription was
performed using the Masterscript RT-PCR System kit
(5 PRIME, Hamburg, Germany) starting from 5 μg
total RNA. The StepOnePlus™ Real-Time PCR System
Thermal Cycling Block (Applied Biosystems, Foster
City, USA) was used to perform qPCRs in fast optical
0.1 mL, 96-well reaction plates (MicroAmp™, Applied
Biosystems, Cheshire, UK). Reaction mixes, PCR programs,
contig expression measurement and normalization
with three previously validated reference genes using
a five-point standard dilution curve were as de-
scribed [81].

Identification of differentially expressed contigs and GO
term enrichment
Contigs with differences in expression among experi-
mental modalities were identified via pairwise differential
expression analysis using the DESeq package in the R
statistical software [82]. The following criteria were used
to identify differentially expressed contigs: change in ex-
pression ≥ 2-fold and RPKM ≥ 1.8 in at least one of the
experimental modalities.
The TopGO package [83] was subsequently used to

identify the Gene Ontology (GO [84]) biological processes
significantly enriched in contigs with a differential regula-
tion among experimental modalities, considering contigs
with a minimum length of 400 nucleotides, an RPKM
value ≥ 1.8 in at least one experimental modality and a dif-
ference in expression ≥ 2-fold between the experimental
modalities compared. The elim method was implemented
to eliminate local similarities and dependencies between
GO terms [83]. The transcriptomic response to iodosul-
furon +mesosulfuron of each phenotype (resistant or
sensitive) over time was assessed by performing TopGO
pairwise comparisons between each treated experimental
modality and the corresponding UT modality. To identify
phenotype-associated differences in herbicide response,
pairwise comparisons were performed between pheno-
types at each time point.

Candidate NTSR contig identification
Contigs with a possible role in NTSR were identified after
comparison of the transcriptomic patterns of the resistant
and the sensitive pool over the time-course experiment.
The expression level of candidate contigs was measured in
the original 42 individual RNA samples using RT-qPCR as
before. For further validation, the expression level of the
candidate contigs was also measured in untreated clones
of 29 additional F2 plants that had been characterised
using iodosulfuron +mesosulfuron. Briefly, each plant was
split into six clones. Two clones intended for RNA extrac-
tion were collected as before immediately prior to
treatment. Iodosulfuron +mesosulfuron was applied on
two clones per plant as before (phenotype control). The
last two clones were water-treated controls. 4 weeks after
herbicide application, F2 plants which treated clones were
killed or survived and healthily grew were rated sensitive
or resistant, respectively.

Data access
The raw reads have been deposited in the NCBI Sequence
Read Archive (SRA) database (BioProject PRJNA234492,
SRR1139294 to SRR1139349). The 65,558 contigs and the
corresponding 32,138 predicted peptides sequences in
ALOMYbase are available at https://iant.toulouse.inra.fr/
A.myosuroides2013?download=1.
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Additional files

Additional file 1: Figure S1. Number of Illumina sequence reads
obtained for each experimental modality. Figure S2. Percentages of
contigs with at least one mapped read and % of reads mapped to a
contig for each experimental modality. Mapping data for libraries derived
from the resistant pool (R, red and brown bars) and from the sensitive
pool (S, blue bars). UT, untreated; xHAT, x hours after herbicide
application. (DOCX 80 kb)

Additional file 2: Figure S3. OrthoMCL analysis results showing groups
of peptides shared among ALOMYbase and grass genomes. The six-way
Venn diagram shows the number of OrthoMCL groups of peptides
shared among ALOMYbase and B. distachyon, H. vulgare, Z. mays, O. sativa
and/or S. bicolor. An 80 % match cutoff threshold was implemented for
ortholog clustering. (PPTX 104 kb)

Additional file 3: Table S1. Pfam families most represented in
ALOMYbase. Table S2. Primers used for RT-qPCR validation of ALOMYbase
RNA-Seq expression data. Table S3. Expression patterns of the ALOMYbase
contigs that are the most likely homologs of transcripts identified in
Arabidopsis thaliana as herbicide response markers allowing to differentiate
the action of five herbicides, including four ALS inhihitors (IMAZ,
imazapyr; PRIM, primisulfuron; CLOR, clorasulam; SULF, sulfometuron).
Table S4. Functional annotation of the 253 contigs up-regulated in all
herbicide-treated modalities in both the resistant and the sensitive
pools. Table S5. GO Biological Processes significantly enriched in contigs
up-regulated in both phenotypes (resistant and sensitive pools) after
herbicide application. Table S6. GO Biological Processes significantly
enriched in contigs down-regulated in both phenotypes (resistant
and sensitive pools) after herbicide application. Table S7. GO Biological
Processes significantly enriched in contigs up-regulated after herbicide
application only in the sensitive pool. Table S8. GO Biological
Processes significantly enriched in contigs down-regulated after
herbicide application only in the sensitive pool. Table S9. GO
Biological Processes significantly enriched in contigs up-regulated
after herbicide application only in the resistant pool. Table S10. GO
Biological Processes significantly enriched in contigs down-regulated after
herbicide application only in the resistant pool. Table S11. Primers used
for RT-qPCR measurement of candidate NTSR contig expression. (XLSX
125 kb)

Additional file 4: Figure S4. RT-qPCR expression patterns of the 21
contigs used for RNA-Seq expression data validation. The expression
values were measured in each of the three resistant F2 plants (R1, R2, R3;
red bars) and each of the three sensitive F2 plants (S1, S2, S3; green bars)
used for RNA-Seq in each experimental modality. RT-qPCR expression
data is normalised using three reference genes. (PPTX 876 kb)

Additional file 5: Figure S5. RT-qPCR validation of the RNA-Seq
expression patterns of 21 contigs. The expression values were
computed for the resistant (R, black bars) or the sensitive pool
(S, white bars) for each experimental modality. Normalised expression
values were measured by RT-qPCR and averaged for the F2 three plants in
each pool (A) or were computed as RPKM values from RNA-Seq data (B).
Pearson’s coefficient correlation computed between RT-qPCR and RNA-Seq
expression patterns are given in red. (PPTX 148 kb)

Additional file 6: Figure S6. Number of contigs differentially regulated
between phenotypes. Six-way Venn diagrams show the number of
contigs up-regulated at each time-point in the sensitive pool compared to
the resistant pool (A) or in the resistant pool compared to the sensitive pool
(B). UT, untreated; xHAT, x hours after herbicide treatment. (PPTX 111 kb)

Additional file 7: Figure S7. RT-qPCR expression patterns of 11
candidate NTSR contigs. The expression values were measured in each of
the three resistant F2 plants (R1, R2, R3; red bars) and each of the three
sensitive F2 plants (S1, S2, S3; green bars) in each experimental modality
used for RNA-Seq. RT-qPCR expression data is normalised using three
reference genes. CYP, cytochrome P450; Perox, peroxidase; GT,
glycosyltransferase; HeLo, helix-loop-helix DNA-binding protein; DP,
disease resistance protein. Figure S8. RT-qPCR validation of the RNA-Seq
expression patterns of the 11 candidate NTSR contigs. The expression
values were computed for the resistant (R, black bars) or the sensitive

pool (S, white bars) for each experimental modality. Normalised
expression values were measured by RT-qPCR and averaged for the three
F2 plants in each pool (A) or were computed as RPKM values from
RNA-Seq data (B). Pearson’s coefficient correlation computed between
RT-qPCR and RNA-Seq expression patterns are given in red. CYP,
cytochrome P450; Perox, peroxidase; GT, glycosyltransferase; HeLo,
helix-loop-helix DNA-binding protein; DP, disease resistance protein.
Figure S9. Individual relative expression levels (log10) measured by
RT-qPCR of the five candidate NTSR contigs showing a higher expression in
resistant plants plotted by increasing value for 35 A. myosuroides F2 plants.
Green, sensitive plants; red, resistant plants. (*) indicate the three resistant
and the three sensitive F2 plants used for RNA-Seq. (PPTX 1295 kb)
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