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Abstract: 29 

Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental 30 

optical properties of ecosystems. However, the value of these properties for predicting plant 31 

species distribution remains unclear. Here, we assess whether such data can add value to 32 

topographic variables for predicting plant distributions in French and Swiss alpine grasslands. 33 

We fitted statistical models with high spectral and spatial resolution reflectance data and 34 

tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf 35 

area index. We found moderate added-value of AIS-data for predicting alpine plant species 36 

distribution. Contrary to expectations, differences between species distribution models were 37 

not linked to their local abundance or phylogenetic/functional similarity.  Moreover, spectral 38 

signatures of species were found to be partly site-specific. We discuss current limits of AIS-39 

based species distribution models, highlighting issues of scale and informational content of 40 

AIS-data.  41 

 42 

Keywords:  43 

species distribution, reflectance, hyperspectral data, alpine grasslands. 44 

 45 

1. INTRODUCTION 46 

Spatial modelling of species distributions is commonly used to forecast environmental change 47 

effects, detect biodiversity hotspots or predict species’ invasions [1]. As fine-grained 48 

environmental descriptors are difficult to obtain, coarse-grained (from hundred of metres to 49 

kilometres) topo-climatic descriptors are usually used. Recent advances in airborne imaging 50 

spectroscopy (AIS) have allowed the acquisition of images with high spectral and sub-metre 51 

spatial resolution [2]. Spectral information provided by remotely-sensed reflectance is 52 

influenced by phenology, variations in morphological, structural and biochemical properties 53 



of species [3], as well as by local environmental conditions (e.g. hydric stress, soil properties 54 

or productivity [4,5]) that determine species habitat suitability [6]. Nevertheless, previous 55 

attempts to predict species distributions with hyperspectral data have generated mixed results 56 

[7,8]. Sub-metre resolution allows the targeting of small plants and micro-habitats where 57 

species find refuge, highlighting potential benefits of hyperspatial remote sensing for 58 

biodiversity monitoring [9]. However, despite increased spatial and spectral resolution of 59 

airborne data, little is known about its value in modelling species’ distributions in species-rich 60 

ecosystems characterised by fine-scale heterogeneity. 61 

Here, we explore the predictive power of AIS-data for modelling plant species distributions in 62 

alpine grasslands in two distinct regions. Specifically, we aim to: i) identify key remotely-63 

sensed spectral information for predicting the distribution of grassland species; and ii) assess 64 

whether AIS-data substantially improves model predictions. We also test for any phylogenetic 65 

or functional dependency of model characteristics among species. 66 

 67 

2. MATERIAL AND METHODS 68 

(a) Study sites and species data 69 

The study was conducted in the Western French (FR) and Western Swiss (CH) Alps (Electronic 70 

Supplementary Material (ESM) 1). The French site included 103 vegetation plots of 2-5m in radius, 71 

located between 2000 and 2830 metres above sea level (m.a.s.l.). The Swiss site included 68 quadrats  72 

(2 by 2 m) located between 1650 and 2150 m.a.s.l. Species cover was visually estimated using the 73 

Braun-Blanquet abundance scale. In total 160 species were selected for species distribution analysis 74 

(119 species in FR, 78 in CH). Thirty-seven species were common to both sites (see ESM 1 for the 75 

details on selection criteria).  76 

 77 

(b) Remote sensing data 78 



AIS-data were acquired with the dual Airborne Imaging Spectroradiometer for Applications (AISA; 79 

Specim Ltd., Finland). Raw AISA images contained 359 spectral bands between 400 and 2450 nm 80 

with spectral resolution ranging from 4.3 to 6.3 nm, and a pixel size of 0.8 m. After image processing, 81 

we extracted two types of AIS-predictors: i) reflectance in 75 spectral bands (avoiding bands with 82 

noisy radiometric response), and ii) four vegetation indices. Vegetation indices characterized leaf 83 

chlorophyll  (TCARI/OSAVI and ANCB) [10], leaf water content  (SIWSI) [11] and leaf area index 84 

(MTVI2) [12] (for details see ESM 1). Removal of poorly-vegetated plots resulted in datasets with 70 85 

FR and 53 CH plots. 86 

 87 

(c) Topographic predictors 88 

We computed five predictors derived from digital elevation models at 50 m resolution for FR and 25 89 

m resolution for CH, representing meso-scale habitat conditions : i) elevation (metre), ii) slope 90 

(degree), iii) aspect (degree), iv) topographic position index (unitless), and v) topographic wetness 91 

index (unitless) (see ESM 1). 92 

 93 

(d) Species distribution modelling 94 

Species distribution models (SDMs) were fitted with five different sets of variables: i) topographic 95 

predictors only, ii) reflectance predictors only, iii) vegetation indices only, iv) topographic and 96 

reflectance predictors combined, and v) topographic predictors and vegetation indices combined. We 97 

first used a conditional Random Forest algorithm to estimate the unbiased relative importance of 98 

predictors in the case of multi-colinearity, then ran final models based on selection of the most 99 

important predictors [13] (see ESM 1). Their predictive accuracy was evaluated within each study site 100 

separately using a repeated split-sample procedure (100 iterations).  70% of the sample points were 101 

used for model calibration and 30% for model evaluation in each iteration.  102 

 103 

(e) Model differences among species 104 



The relative importance of AIS-predictors and the predictive accuracy of SDMs were tested against 1) 105 

species’ phylogenetic relatedness, 2) species’ functional similarity, including a set of morphological 106 

and physiological traits that are well correlated with the reflectance of canopy stands [14] (see ESM 2, 107 

section 5), and 3) species’ abundance patterns within plots. Phylogenetic and functional tests were 108 

computed as described in [15] (see ESM 2, section 5). 109 

 110 

3. RESULTS 111 

When fitting SDMs with reflectance data the analysis of predictor importance indicated 112 

similarities in the selected spectral bands among sites (Figure 1). The most important spectral 113 

bands were located between 500 and 900 nm for both sites, but site-specific differences in 114 

important spectral bands were also apparent (1500-1800 nm in FR, 1200-1500 nm and 2000-115 

2500 nm in CH). These site differences existed for species present at only one or both sites 116 

(ESM 2, Figure 1). On average, all vegetation indices showed similar importance for SDM 117 

fitting (ESM 2, Figure 2).  118 

The prediction accuracy of SDMs based solely on topographic predictors, reflectance data or 119 

vegetation indices did not differ significantly. However, SDMs including both AIS and 120 

topographic predictors tended to be more accurate (Figure 2 and ESM 2, Table 1). The 121 

improvement was marginally significant for vegetation indices (Wilcoxon rank sum test, p 122 

=0.079) but non-significant for reflectance in FR. Conversely, CH showed significant 123 

improvement when using reflectance (Wilcoxon rank sum test, p = 0.012), but non-significant 124 

effects when using vegetation indices. Improvements when including AIS-predictors differed 125 

among species, with few species showing ≥10% improved predictions and many showing 126 

reduced predictive accuracy (ESM 2, Figure 3). These variations were independent of species’ 127 

abundance patterns and species’ phylogenetic or functional similarity (ESM 2, Figures 4-13).  128 

 129 

4. DISCUSSION 130 



Overall, topographic and AIS-based SDMs revealed similar predictive accuracies in both 131 

sites. Model accuracy was on average higher in FR than in CH, while the topographical and 132 

spectral ranges observed in CH were much narrower than in FR (ESM 1, Figures 2, 4, 5). This 133 

agrees with previous studies where accuracy of SDMs derived from satellite images increased 134 

with steepness of ecological gradients [6]. Unlike vegetation indices, we found that 135 

importance of spectral bands differed between sites. Site-specific differences may partly 136 

reflect canopy differences due to nutrient status or soil chemistry since reflectance in these 137 

spectral regions is sensitive to light absorption by water [12], biochemical constituents [14] 138 

and scattering by plant architecture [11]. Additional field measurements of vegetation 139 

properties could probably improve ecological understanding of these spectral regions in 140 

SDMs. 141 

The distribution models fit differed between species. Overall, models including both 142 

topographic and AIS-predictors tended to be more accurate, even though significant 143 

improvements were confined to a limited number of species. This contrasts with results 144 

reported for invasive weeds [16], but agrees with results from meadows [7] where plant 145 

assemblages are inextricably mixed at the fine scale. Benefits of high spatial resolution of 146 

remote-sensing data is a subject of debate [17]. Although our methodology considers the 147 

existence of geometric misalignment between AIS-images and plot georeferencing, it still 148 

represents a source of uncertainty for matching reflectance of small pixels with local species 149 

occurrence. The significance of this uncertainty for species distribution modelling remains to 150 

be assessed.  151 

We expected that differences between species models in terms of predictive accuracy and 152 

relative importance of AIS-predictors would be linked to i) abundance of species within-plots 153 

since locally-dominant species contribute more to canopy reflectance, and ii) phylogenetic or 154 

functional similarity, assuming that similar species show either comparable spectral signatures 155 



or similar habitat requirements as reflected by AIS-data. These hypotheses were not 156 

supported. We suggest two possible explanations for such idiosyncrasy. Firstly, accurate 157 

estimation of species’ similarity may be limited by uncertainties in phylogenetic trait 158 

conservatism or availability of plant functional trait data. Phylogenies can often contribute to 159 

the integrated comparison of plant functional and life-history traits among species. However, 160 

the evolution of traits is characterized by both conservatism and diversification, and close 161 

links between functional similarity and phylogenetic relatedness are not always found [18]. In 162 

the present study, we described species’ functional similarity using morphological and 163 

ecophysiological traits that are recognized as key canopy reflectance drivers [14]. However, 164 

biochemical traits such as leaf nitrogen, chlorophyll or phosphorus content were not available 165 

for all species, and should be included wherever possible. Secondly, AIS-based SDMs may 166 

reflect both species’ spectral signature and micro-habitat suitability [19] (contrary to 167 

topography-based models which reflect solely habitat suitability at meso-scales). These two 168 

factors may differ in importance when fitting AIS-variables across species and sites. This 169 

would explain why AIS-based models of both locally-dominant (species detection scenario, 170 

e.g. Dryas octopetalla), and low-abundance species (habitat suitability scenario, e.g. 171 

Helictotrichon sedense) show equivalent accuracy despite very different species contributions 172 

to canopy characteristics and functional traits. Future research should focus on discriminating 173 

between species detection and habitat suitability for an array of species and ecosystem types 174 

(of varying degree of vegetation complexity), to better assess the ecological relevance of 175 

imaging spectroscopy for species’ distribution modelling.  176 

 177 

Data accessibility: 178 

Data available from the Dryad Digital Repository: doi:10.5061/dryad.n13hn 179 
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Figure 1: Relative importance of reflectance intensity in spectral bands for predicting species 253 

distributions at study sites in France (FR) and Switzerland (CH). Variable importance was 254 

assessed using conditional inference in Random Forest models. Gray areas represent bands 255 

used for the calculation of vegetation indices. 256 

 257 

Figure 2: Prediction accuracy of species distribution models (based on the area under the 258 

curve of a receiver-operating characteristic plot: AUC) built with Random Forest models at 259 

study sites in France (FR) and Switzerland (CH). Topo indicates topographic-predictors, BS 260 

indicates reflectance recorded in the spectral bands and VI indicates vegetation indices.  261 
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Electronic Supplementary Material 1:  269 

Details on data acquisition, processing and modelling. 270 

 271 

 272 

 273 

1) The study sites 274 

 275 

ESM 1 Table 1: Topographic, environmental and floristic characteristics of the two study 276 

areas. 277 

 278 
 French site (FR) Swiss site (CH) 

Location name Roche Noire Anzeindaz 

Geographic coordinates 45°2.3’ to 45°4.2’N 

6°21.6’ to 6°25.2’E 

 

46°15’ to 46°18’N, 7°07’ 

to 7°11’E 

Elevation range 1900 m to 3000 m 1650 m to 2150 m 

Mean annual temperature 4.8°C 1.3 °C 

Mean summer  precipitation 180 mm 485 mm 

Bed rock Flysch Calcareous 

Number of inventoried plots 

 

103 68 

 

 279 

 280 

 281 



 282 
 283 

 284 

 285 

2) Floristic data 286 

 287 

Vegetation sampling was based on random stratified sampling designs to ensure covering 288 

equally well the different vegetation types of both FR and CH. Size of vegetation plots was 289 

chosen to approach exhaustive recording of the species. As vegetation structure differed 290 

between both sites, 2 m quadrat was chosen for CH and plots of 5 m in radius for FR. In 291 

addition, few plots of 2 m in radius were chosen in FR for sampling snowbelts. In such 292 

habitats species coexist at very fine scale so that reduced plot size still allow exhaustive 293 

sampling of the species of local vegetation patches. However, snowbelts are also 294 

characterised by fine scale vegetation changes in space. Thus, plots of 2 m in radius, compare 295 

to 5 m in radius, avoided bias in sampling associated vegetation type by edge effects. 296 

 297 

 298 

ESM 1 Fig. 1: Location of the two study areas. The minimum distance between 
vegetation plots is 21.91 m (mean of 1327.71 m) for FR and 12.67 m (mean of 
1307.44 m) for CH.  
 

 



 299 
 300 

 301 

 302 

 303 

 304 

ESM1 Fig 2: Correspondence analysis of floristic data. Between site inertia ratio = 
0.06 with Pvalue<0.001(Permutation test with 9999 permutations, alternative is 
greater).  



  305 

CHFR

Festuca violacea aggr
Carex sempervirens

Poa alpina
Cerastium arvense  sl

Geum montanum
Anthoxanthum odoratum aggr

Pulsatilla alpina sl
Myosotis alpestris

Potentilla aurea
Trifolium alpinum
Gentiana acaulis

Geranium sylvaticum
Polygonum viviparum
Meum athamanticum

Plantago alpina
Centaurea uniflora
Festuca paniculata

Lotus alpinus
Potentilla grandiflora

Veronica allionii
Alchemilla xanthochlora aggr

Alopecurus alpinus
Arnica montana

Rumex nebroides
Leontodon helveticus
Leontodon hispidus sl

Pedicularis rostratospicata
Senecio doronicum

Campanula scheuchzeri
Carlina acaulis subsp caulescens

Luzula nutans
Viola calcarata

Luzula lutea
Hieracium villosum

Sempervivum montanum
Anthyllis vulneraria sl

Phleum rhaeticum
Gentiana punctata

Nardus stricta
Pachypleurum mutellinoides

Phyteuma michelii
Ranunculus kuepferi
Vaccinium myrtillus

Galium lucidum
Helianthemum grandiflorum

Phyteuma orbiculare
Pulmonaria angustifolia

Thymus praecox subsp polytrichus
Achillea millefolium
Androsace vitaliana

Carduus defloratus sl
Euphorbia cyparissias
Hieracium armerioides

Homogyne alpina
Kobresia myosuroides

Leucanthemopsis alpina
Ranunculus montanus aggr

Trifolium pratense sl
Vaccinium uliginosum subsp microphyllum

Laserpitium halleri
Antennaria carpatica

Botrychium lunaria
Carex foetida

Cirsium spinosissimum
Festuca laevigata

Galium mollugo subsp erectum
Helictotrichon sedenense

Myosotis arvensis
Oxytropis lapponica
Ranunculus acris sl

Sempervivum arachnoideum
Silene vulgaris sl

Taraxacum alpinum
Trifolium repens sstr

Antennaria dioica
Carex curvula subsp rosae

Lilium martagon
Pedicularis tuberosa

Rhinanthus alectorolophus
Saxifraga paniculata

Sesleria caerulea
Trifolium montanum

Achillea nana
Biscutella laevigata
Festuca nigrescens
Festuca rubra aggr

Sibbaldia procumbens
Silene acaulis
Silene nutans
Trifolium thalii

Alchemilla pentaphyllea
Alchemilla splendens

Aster alpinus
Deschampsia flexuosa

Dryas octopetala
Gentiana brachyphylla

Gentiana lutea
Laserpitium latifolium

Minuartia sedoides
Minuartia verna

Nigritella corneliana
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Erigeron uniflorus
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Hieracium peleterianum
Lotus corniculatus aggr
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Senecio incanus
Stachys pradica
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Trisetum flavescens
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Campanula scheuchzeri
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Potentilla aurea
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Ranunculus montanus aggr
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Leontodon hispidus sl
Plantago alpina

Carex sempervirens
Galium anisophyllon

Soldanella alpina
Anthoxanthum odoratum aggr

Lotus corniculatus aggr
Nardus stricta

Trifolium pratense sl
Phleum rhaeticum

Anthyllis vulneraria sl
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Euphrasia minima

Crepis aurea
Festuca rubra aggr

Sesleria caerulea
Festuca violacea aggr

Trifolium thalii
Aster bellidiastrum

Plantago atrata sstr
Agrostis rupestris

Alchemilla conjuncta aggr
Trifolium repens sstr

Festuca quadriflora
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Helictotrichon versicolor
Phyteuma orbiculare

Salix retusa
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Gentiana purpurea
Luzula multiflora

Trollius europaeus
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Arnica montana
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Polygala alpestris
Potentilla crantzii

Vaccinium gaultherioides
Hieracium lactucella
Vaccinium myrtillus
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Carlina acaulis subsp caulescens
Helianthemum nummularium sl

Luzula alpinopilosa
Pedicularis verticillata

Prunella vulgaris
Taraxacum officinale aggr

Vaccinium vitis.idaea
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Alchemilla glabra aggr
Aposeris foetida

Campanula barbata
Cerastium fontanum sl

Gentiana verna
Leucanthemum vulgare aggr

Ranunculus acris sl
Salix herbacea

Trifolium badium
Crocus albiflorus

Thymus praecox subsp polytrichus
Alchemilla vulgaris aggr
Cirsium spinosissimum
Loiseleuria procumbens

Myosotis alpestris
Thesium alpinum
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ESM1 Fig 3: Species rank-
frequency curves for the 
French (FR) and Swiss 
(CH) sites.  



3) Topographic predictors 306 

 307 

We computed five predictors derived from digital elevation models at 50 m resolution for FR 308 

and 25 m resolution for CH, providing useful information on meso-scale habitat conditions in 309 

species distribution models [1]. Topographic predictors were: 1) elevation (in meters); 2) 310 

slope (in degrees); 3) aspect (in degrees from north); 4) Topographic Position Index (TPI), an 311 

integrated measure of topographic exposure (unitless) [2]; 5) Topographic Wetness Index 312 

(TWI), which quantifies topographic control on soil moisture (unitless), [3]. The last is 313 

calculated as follows TWI = ln(a / tan(b)) where a is the area of the upstream contribution 314 

(flow accumulation) and b is the slope in radians .  315 

 316 

 317 

 318 
 319 

 320 

 321 

 322 

 323 

 324 

 325 

4) Remote sensing predictors 326 

 327 

a. Airborne image acquisition and processing 328 

The airborne imaging spectroscopy (AIS) data were acquired with an AISA Dual system 329 

(Specim, Ltd. Finland). Images of the French study site (FR) were collected on 23rd July 2008 330 

ESM1 Fig 4: Principal component analysis of the topographic predictors. Between site 
inertia ratio = 0.14 with Pvalue<0.001(Permutation test with 9999 permutations, 
alternative is greater). This result shows that topographical conditions of vegetation 
plots differ between the French (FR) and Swiss (CH) sites. 
 



and for the Swiss study site (CH) on 24th July 2008 under clear sky and sunny conditions. 331 

Images were acquired in a high spectral and spatial resolution mode, which resulted in a 332 

spectral image data cube with 359 narrow spectral bands between 400 and 2450 nm and the 333 

ground pixel size of 0.8 m. 334 

 335 

The basic processing of AISA Dual images comprised of radiometric, geometric, and 336 

atmospheric correction. The radiometric correction that converted image digital numbers into 337 

radiance values [W.m-2.sr-1.µm-1] was performed in the CaliGeo software (CaliGeo v.4.6.4 - 338 

AISA processing toolbox, Specim, 2007) using the factory delivered radiometric calibration 339 

coefficients. Images were geometrically corrected using the onboard navigation data from the 340 

Inertial Navigation System and a local digital elevation model (spatial resolution of 2.5 m for 341 

FR and 1 m for CH site). Images were further orthorectified into the Universal Transverse 342 

Mercator (UTM, Zone 32N) map projection. An accuracy of the geometric correction was 343 

evaluated by calculating an average root mean square error (RMSE) between distinct image 344 

displayed and ground measured control points. Assessment resulted into an average RMSE of 345 

about 2.04 m for the French site and about 1.25 m for the Swiss site. Atmospheric corrections 346 

were combined with vicarious radiometric calibrations in the ATCOR-4 software [4]. To 347 

eliminate random noise, spectra of the atmospherically corrected images were smoothed by a 348 

moving average filter with the window size of 7 bands. Accuracy of the atmospheric 349 

corrections was evaluated by comparing image surface reflectance with a set of ground 350 

measured reference spectra. An average reflectance RMSE between the image and the ground 351 

target spectra was equal to 2.1% for the French and 1.6% for the Swiss site. As the final step 352 

of the image processing we applied a fully constrained linear spectral unmixing algorithm [5] 353 

to identify pixels with high vegetation fraction. Only pixels with vegetation fraction higher 354 

than 75% were included into further analysis of species distribution modelling. 355 

 356 

We paired the AISA image data with the georeferenced plots, where floristic species 357 

composition was investigated in-situ. Their geographical locations were superimposed over 358 

the AISA images and the reflectance function of each a research plot was averaged. Plots with 359 

high proportion of non-vegetated pixels (i.e. pixels with vegetation fraction lower than 75% 360 

due to the occurrence of stones or bare soil patches) were excluded. After this selection, we 361 

retained 70 plots at the French site and 53 plots at the Swiss site. Two types of remote sensing 362 

predictors were tested for the species distribution modelling: i) reflectance intensity of 75 363 

noise-free bands and ii) four vegetation indices (summarized in Table 2). 364 



 365 

b. Removal of spectral bands with low signal quality 366 

Only 75 spectral bands out of 359 were included in the species distribution analysis. We 367 

removed bands with poor signal quality due to the low radiometric sensitivity at the edges of 368 

both sensor spectral ranges (401-444, 876-1140 and around 2450 nm), bands strongly 369 

influenced by atmospheric water vapor absorption (i.e., 1334-1485 and 1786-1968 nm) and 370 

adjacent bands of near infrared wavelengths between 752 and 771 nm, which are highly 371 

correlated and contain redundant spectral information. 372 



 373 
 374 
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ESM1 Fig 5: Between reflectance bands correlation patterns for the French (FR) and Swiss (CH) 
sites. Although band selection (75 out of 359) led to the removal of highly correlated adjacent 
bands, many non-adjacent bands were strongly correlated. This justifies the use of unbiased 
conditional random forest in case of multicolinearity. 
 



 375 
 376 

 377 

 378 

 379 

 380 

c. Calculation of vegetation indices and the between site PCA                 381 

 382 

Four vegetation optical indices, defined in Table 2, were selected as remote sensing indicators 383 

of the vegetation biochemical and biophysical properties. Two indices are highly sensitive to 384 

leaf chlorophyll content, but insensitive to the variations in amount of green biomass 385 

(TCARI/OSAVI and ANCB650-720). MTVI2 index was chosen as an indicator of green leaf 386 

area index, while suppressing negative confounding influence of leaf chlorophyll content. 387 

Finally, SIWSI index is sensitive to plant water content. The variability of the selected optical 388 

indices is expected to be species composition specific in accordance with the species-specific 389 

changes of the related biochemical and biophysical characteristics. These four indices can 390 

thus potentially discriminate key properties of the species, justifying their use for species 391 

distribution modeling. 392 

  393 

ESM1 Fig 6: Principal component analysis of the 75 reflectance bands. Between site inertia ratio 
= 0.06 with Pvalue<0.001(Permutation test with 9999 permutations, alternative is greater). This 
result shows that reflectance pattern of vegetation plots differed between the French (FR) and 
Swiss (CH) sites. 
 



 394 

EMS 1 Table 2: Vegetation indices tested for species distribution modeling 395 
 396 
Vegetation index Equation Reference 
Transformed Chlorophyll 
  Absorbtion Reflectance Index / 
  Optimized Soil-Adjusted 
  Vegetation Index  
 
  (TCARI/OSAVI) 

TCARI = 3[R!"" − R!"# − 0.2 R!"" −
R!!" (R!"" R!"#)]  
 
 

OSAVI =
1.16(𝑅!"" − 𝑅!"#)
𝑅!"" + 𝑅!"# + 0.16

 

 Haboudane et al, 
(2002) [5] 

   
 

 

Area under curve Normalized to 
the 
  Continuum-removed Band depth 
  (ANCB650-720) 

AUC!"#!!"#
CBD!"#

 
where AUC650-720 is area under 
continuum removed reflectance 
between 650-720 nm and CBD670 is 
continuum removed band depth at 
670 nm 

Malenovský et al. 
(2013) [6] 

  
 

 

Modified Triangular Vegetation 
  Index 
  (MTVI2) 

1.5[1.2 R!"" − R!!" − 2.5(R!"# − R!!")]

(2R!"" + 1)! − 6R!"" − 5 R!"# − 0.5
 

Haboudane et al. 
(2004) [7]  

  
 

 

Shortwave Infrared Water Stress 
  Index  
  (SIWSI) 

R!"!.! − R!"#$
R!"!.! + R!"#$

 
Cheng et al. (2006) [8] 

 397 

 398 

 399 
 400 

 401 

 402 

 403 

d. Correlation of AIS-data with topographic predictors 404 

ESM1 Fig 7: Principal component analysis of the remote sensing predictors 
(vegetation indices. Between site inertia ratio = 0.05 with Pvalue=0.003 (Permutation 
test with 9999 permutations, alternative is greater). This result shows that reflectance 
indices of vegetation plots differed between the French (FR) and Swiss (CH) sites. 
 



AIS and topographical data were weakly correlated (max absolute values for Pearson 405 

correlations amounted to 0.40-0.55 between elevation and bands in the range of 2000 and 406 

2500 nm, while most of absolute values for Pearson correlation coefficients are between 0 and 407 

0.3). Absence of strong correlation allows for mixing both types of data in species distribution 408 

models, as topographic- (indicating meso-scale habitat suitability of the species) and fine-409 

scale AIS-data may represent complementary information. 410 

5) Selection of spectral bands for building final species distribution models 411 

Based on the analysis performed to quantify the importance of each of the 75 spectral bands, 412 

we built final species distribution models according to the following variable selection 413 

procedure: 414 

1. Rank bands in decreasing order of importance 415 

2. While not all bands have been considered, select the first ranked band (with the 416 

highest relative importance) and remove all bands showing correlation >0.7 with the 417 

previously selected band. 418 

This procedure was performed with random forest (RF) using conditional inference trees as 419 

base learners and was implemented with the party library [9] for R [10]. Variable importance 420 

is measured as the mean decrease in accuracy of model predictions after permuting the 421 

predictor variables.  422 
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Electronic Supplementary Material 2: 457 

Complementary results. 458 

 459 

1) Relative importance of reflectance intensity in spectral bands for predicting the 460 

distribution of species recorded only in one of the two sites or recorded in both 461 

sites. 462 

 463 
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ESM2 Fig 1: Relative importance of reflectance intensity in spectral bands for predicting 
the distribution of species recorded only in the French site (FR), only in the Swiss site 
(CH), recorded in both sites but modeled in the French site and recorded in both sites but 
modeled in the Swiss site. Gray areas represent bands used for the calculation of the 
vegetation indices. 



2) Variable importance of vegetation indices for the French site (FR) and the Swiss 469 

site (CH). 470 

 471 
 472 

 473 

 474 

3) Detailed prediction accuracy of species distribution models. 475 

 476 

ESM 2 Table 1: Summary table of prediction accuracy of species distribution models assessed with 477 
the area under the curve of a receiver-operating characteristic plot: AUC. Topo indicates models based 478 
on topographic predictors only, BS models based on reflectance selected spectral bands. VI indicates 479 
models based on vegetation indices only. Topo+BS and Topo+VI indicate respectively models based 480 
on topographic predictors and reflectance  or vegetation indices as predictors. Species are listed in 481 
alphabetic order according to their occurrence in the two sites. Green highlighting indicates species 482 
that showed at least 10% improvement of model accuracy when adding the AIS-predictors to 483 
topographic based models in at least one of the two sites. AUC values above 0.7 can be considered as 484 
models with good prediction accuracy. 485 
 486 

 
Topo BS Topo+BS VI Topo+VI 

  FR CH FR CH FR CH FR CH FR CH 

Achillea millefolium 0.686 - 0.807 - 0.811 - 0.8 - 0.827 - 

Achillea nana 0.8 - 0.703 - 0.783 - 0.737 - 0.746 - 

Alchemilla coriacea sl. 0.735 - 0.707 - 0.717 - 0.721 - 0.732 - 

Alchemilla pentaphyllea 0.893 - 0.763 - 0.897 - 0.817 - 0.884 - 

Alchemilla splendens 0.695 - 0.682 - 0.728 - 0.664 - 0.727 - 

Alopecurus alpinus 0.742 - 0.607 - 0.704 - 0.668 - 0.733 - 

Androsace adfinis subsp. brigantiaca 0.703 - 0.65 - 0.713 - 0.719 - 0.763 - 

ESM2 Fig 2: Variable importance of the RS-retrieved vegetation indices for modeling 
species distribution. FR for the French site and CH for the Swiss site. Details on the 
calculation of indices can be found in ESM1. 



Androsace vitaliana 0.666 - 0.785 - 0.786 - 0.786 - 0.76 - 

Antennaria carpatica 0.776 - 0.757 - 0.823 - 0.743 - 0.787 - 

Antennaria dioica 0.783 - 0.675 - 0.783 - 0.639 - 0.737 - 

Aster alpinus 0.703 - 0.689 - 0.664 - 0.662 - 0.711 - 

Biscutella laevigata 0.795 - 0.631 - 0.722 - 0.627 - 0.755 - 

Botrychium lunaria 0.681 - 0.704 - 0.679 - 0.722 - 0.711 - 

Carduus defloratus sl. 0.852 - 0.796 - 0.817 - 0.751 - 0.836 - 

Carex curvula subsp. rosae 0.789 - 0.803 - 0.827 - 0.82 - 0.764 - 

Carex foetida 0.78 - 0.655 - 0.721 - 0.67 - 0.763 - 

Centaurea uniflora 0.781 - 0.8 - 0.864 - 0.779 - 0.837 - 

Cerastium arvense  sl. 0.677 - 0.581 - 0.663 - 0.592 - 0.689 - 

Deschampsia flexuosa 0.658 - 0.653 - 0.597 - 0.729 - 0.657 - 

Empetrum nigrum subsp. hermaphroditum 0.943 - 0.843 - 0.933 - 0.897 - 0.931 - 

Erigeron uniflorus 0.656 - 0.664 - 0.66 - 0.672 - 0.673 - 

Euphorbia cyparissias 0.832 - 0.785 - 0.842 - 0.755 - 0.852 - 

Festuca laevigata 0.846 - 0.681 - 0.859 - 0.702 - 0.87 - 

Festuca nigrescens 0.607 - 0.705 - 0.658 - 0.686 - 0.62 - 

Festuca paniculata 0.741 - 0.746 - 0.782 - 0.783 - 0.839 - 

Galium lucidum 0.776 - 0.66 - 0.746 - 0.613 - 0.765 - 

Galium mollugo subsp. erectum 0.87 - 0.756 - 0.848 - 0.73 - 0.874 - 

Gentiana brachyphylla 0.882 - 0.664 - 0.859 - 0.736 - 0.903 - 

Gentiana lutea 0.949 - 0.801 - 0.942 - 0.737 - 0.943 - 

Gentiana punctata 0.709 - 0.706 - 0.708 - 0.692 - 0.71 - 

Gentianella campestris 0.719 - 0.656 - 0.676 - 0.686 - 0.708 - 

Geranium sylvaticum 0.775 - 0.796 - 0.801 - 0.82 - 0.821 - 

Helianthemum grandiflorum 0.775 - 0.642 - 0.74 - 0.62 - 0.752 - 

Helictotrichon sedenense 0.64 - 0.858 - 0.839 - 0.849 - 0.837 - 

Hieracium armerioides 0.633 - 0.692 - 0.666 - 0.72 - 0.645 - 

Hieracium peleterianum 0.645 - 0.692 - 0.635 - 0.673 - 0.648 - 

Hieracium villosum 0.616 - 0.608 - 0.645 - 0.613 - 0.597 - 

Kobresia myosuroides 0.68 - 0.695 - 0.732 - 0.738 - 0.73 - 

Laserpitium halleri 0.73 - 0.803 - 0.771 - 0.718 - 0.701 - 

Laserpitium latifolium 0.864 - 0.852 - 0.908 - 0.82 - 0.87 - 

Leucanthemopsis alpina 0.734 - 0.822 - 0.861 - 0.829 - 0.858 - 

Lilium martagon 0.819 - 0.806 - 0.789 - 0.783 - 0.839 - 

Lotus alpinus 0.626 - 0.624 - 0.628 - 0.602 - 0.615 - 

Luzula lutea 0.725 - 0.762 - 0.762 - 0.753 - 0.754 - 

Luzula nutans 0.623 - 0.657 - 0.669 - 0.631 - 0.633 - 

Meum athamanticum 0.829 - 0.919 - 0.931 - 0.881 - 0.888 - 

Minuartia sedoides 0.783 - 0.77 - 0.806 - 0.779 - 0.767 - 

Minuartia verna 0.753 - 0.824 - 0.817 - 0.821 - 0.896 - 

Myosotis arvensis 0.85 - 0.859 - 0.876 - 0.822 - 0.847 - 

Narcissus poeticus 0.935 - 0.875 - 0.951 - 0.886 - 0.942 - 

Nigritella corneliana 0.615 - 0.592 - 0.622 - 0.631 - 0.621 - 

Oxytropis lapponica 0.645 - 0.733 - 0.662 - 0.632 - 0.641 - 



Pachypleurum mutellinoides 0.828 - 0.831 - 0.841 - 0.797 - 0.845 - 

Pedicularis rostratospicata 0.64 - 0.592 - 0.647 - 0.624 - 0.642 - 

Pedicularis tuberosa 0.748 - 0.758 - 0.786 - 0.686 - 0.765 - 

Phyteuma michelii 0.75 - 0.686 - 0.752 - 0.66 - 0.727 - 

Potentilla grandiflora 0.801 - 0.768 - 0.809 - 0.735 - 0.785 - 

Pulmonaria angustifolia 0.781 - 0.781 - 0.801 - 0.779 - 0.837 - 

Pulsatilla alpina sl. 0.566 - 0.601 - 0.574 - 0.594 - 0.584 - 

Ranunculus kuepferi 0.727 - 0.612 - 0.693 - 0.6 - 0.698 - 

Rhinanthus alectorolophus 0.864 - 0.869 - 0.932 - 0.847 - 0.926 - 

Rumex nebroides 0.673 - 0.726 - 0.719 - 0.746 - 0.713 - 

Saxifraga paniculata 0.665 - 0.843 - 0.853 - 0.861 - 0.846 - 

Scutellaria alpina 0.864 - 0.777 - 0.894 - 0.777 - 0.879 - 

Sedum anacampseros 0.691 - 0.643 - 0.676 - 0.705 - 0.693 - 

Sempervivum arachnoideum 0.707 - 0.75 - 0.774 - 0.798 - 0.816 - 

Sempervivum montanum 0.752 - 0.719 - 0.754 - 0.736 - 0.795 - 

Sempervivum tectorum 0.745 - 0.645 - 0.756 - 0.623 - 0.776 - 

Senecio doronicum 0.841 - 0.779 - 0.826 - 0.778 - 0.83 - 

Senecio incanus 0.683 - 0.699 - 0.662 - 0.704 - 0.667 - 

Sibbaldia procumbens 0.836 - 0.721 - 0.841 - 0.858 - 0.877 - 

Silene acaulis 0.774 - 0.832 - 0.834 - 0.848 - 0.849 - 

Silene nutans 0.683 - 0.678 - 0.669 - 0.642 - 0.633 - 

Silene vulgaris sl. 0.736 - 0.813 - 0.777 - 0.711 - 0.761 - 

Stachys pradica 0.764 - 0.669 - 0.743 - 0.672 - 0.74 - 

Taraxacum alpinum 0.64 - 0.631 - 0.613 - 0.644 - 0.661 - 

Trifolium alpestre 0.874 - 0.88 - 0.916 - 0.856 - 0.942 - 

Trifolium alpinum 0.606 - 0.69 - 0.661 - 0.655 - 0.651 - 

Trifolium montanum 0.824 - 0.833 - 0.92 - 0.836 - 0.915 - 

Trisetum flavescens 0.888 - 0.871 - 0.925 - 0.886 - 0.932 - 

Vaccinium uliginosum subsp. microphyllum 0.841 - 0.798 - 0.86 - 0.811 - 0.841 - 

Veronica allionii 0.708 - 0.619 - 0.689 - 0.665 - 0.697 - 

Alchemilla xanthochlora aggr 0.629 0.601 0.612 0.603 0.608 0.588 0.59 0.636 0.617 0.631 

Anthoxanthum odoratum aggr 0.591 0.704 0.624 0.641 0.628 0.671 0.618 0.638 0.629 0.68 

Anthyllis vulneraria sl. 0.681 0.75 0.624 0.66 0.666 0.727 0.616 0.65 0.662 0.75 

Arnica montana 0.828 0.617 0.802 0.66 0.83 0.659 0.758 0.71 0.822 0.645 

Bartsia alpina 0.699 0.629 0.657 0.705 0.769 0.658 0.641 0.643 0.71 0.645 

Campanula scheuchzeri 0.641 0.643 0.685 0.709 0.685 0.681 0.698 0.651 0.661 0.629 

Carex sempervirens 0.628 0.76 0.608 0.648 0.598 0.755 0.605 0.655 0.596 0.709 

Carlina acaulis subsp. caulescens 0.81 0.723 0.786 0.744 0.823 0.771 0.791 0.691 0.853 0.783 

Cirsium spinosissimum 0.681 0.671 0.629 0.681 0.7 0.71 0.688 0.686 0.742 0.735 

Dryas octopetala 0.769 0.694 0.812 0.71 0.847 0.733 0.816 0.685 0.881 0.697 

Festuca rubra aggr. 0.681 0.658 0.706 0.76 0.711 0.79 0.709 0.716 0.693 0.706 

Festuca violacea aggr. 0.609 0.634 0.608 0.608 0.586 0.599 0.595 0.63 0.62 0.642 

Gentiana acaulis 0.729 0.72 0.709 0.68 0.758 0.72 0.645 0.693 0.737 0.738 

Geum montanum 0.645 0.603 0.593 0.709 0.607 0.68 0.579 0.758 0.638 0.687 

Homogyne alpina 0.896 0.615 0.799 0.625 0.878 0.656 0.81 0.605 0.901 0.623 



Leontodon helveticus 0.59 0.677 0.666 0.746 0.642 0.772 0.663 0.71 0.615 0.715 

Leontodon hispidus sl. 0.802 0.659 0.8 0.645 0.818 0.699 0.735 0.61 0.859 0.665 

Lotus corniculatus aggr. 0.862 0.616 0.71 0.608 0.859 0.608 0.713 0.601 0.901 0.61 

Myosotis alpestris 0.672 0.729 0.713 0.639 0.735 0.664 0.735 0.608 0.753 0.693 

Nardus stricta 0.654 0.613 0.624 0.659 0.644 0.655 0.625 0.667 0.641 0.647 

Phleum rhaeticum 0.68 0.683 0.75 0.576 0.724 0.682 0.718 0.653 0.692 0.701 

Phyteuma orbiculare 0.631 0.66 0.614 0.62 0.603 0.626 0.625 0.614 0.578 0.638 

Plantago alpina 0.619 0.618 0.621 0.621 0.619 0.631 0.671 0.59 0.635 0.588 

Poa alpina 0.788 0.647 0.619 0.633 0.795 0.655 0.625 0.627 0.764 0.64 

Polygonum viviparum 0.718 0.652 0.653 0.685 0.698 0.691 0.722 0.615 0.743 0.655 

Potentilla aurea 0.625 0.612 0.669 0.746 0.659 0.75 0.571 0.745 0.596 0.725 

Ranunculus acris sl. 0.664 0.68 0.748 0.665 0.748 0.662 0.803 0.731 0.799 0.681 

Ranunculus montanus aggr. 0.684 0.599 0.745 0.652 0.744 0.642 0.727 0.714 0.781 0.677 

Salix herbacea 0.741 0.655 0.781 0.686 0.818 0.639 0.791 0.62 0.811 0.669 

Sesleria caerulea 0.666 0.655 0.752 0.705 0.737 0.718 0.797 0.671 0.783 0.713 

Thesium alpinum 0.71 0.66 0.793 0.781 0.791 0.747 0.84 0.718 0.788 0.678 

Thymus praecox subsp. polytrichus 0.771 0.649 0.694 0.748 0.803 0.717 0.655 0.757 0.756 0.649 

Trifolium pratense sl. 0.759 0.592 0.66 0.75 0.72 0.731 0.67 0.697 0.732 0.678 

Trifolium repens sstr. 0.651 0.747 0.609 0.691 0.611 0.746 0.639 0.786 0.673 0.749 

Trifolium thalii 0.623 0.606 0.66 0.612 0.612 0.607 0.635 0.606 0.634 0.616 

Vaccinium myrtillus 0.882 0.647 0.801 0.671 0.858 0.623 0.779 0.643 0.848 0.659 

Viola calcarata 0.627 0.68 0.613 0.614 0.624 0.616 0.624 0.737 0.622 0.628 

Agrostis capillaris - 0.66 - 0.771 - 0.774 - 0.793 - 0.852 

Agrostis rupestris - 0.685 - 0.762 - 0.721 - 0.598 - 0.666 

Alchemilla conjuncta aggr. - 0.599 - 0.684 - 0.697 - 0.669 - 0.629 

Alchemilla glabra aggr. - 0.671 - 0.736 - 0.705 - 0.619 - 0.66 

Alchemilla vulgaris aggr. - 0.74 - 0.634 - 0.65 - 0.655 - 0.674 

Androsace chamaejasme - 0.658 - 0.602 - 0.643 - 0.61 - 0.646 

Aposeris foetida - 0.788 - 0.714 - 0.818 - 0.692 - 0.838 

Aster bellidiastrum - 0.705 - 0.646 - 0.741 - 0.657 - 0.758 

Campanula barbata - 0.703 - 0.789 - 0.745 - 0.787 - 0.72 

Carex ornithopoda - 0.707 - 0.638 - 0.68 - 0.612 - 0.677 

Cerastium fontanum sl. - 0.682 - 0.684 - 0.706 - 0.683 - 0.685 

Crepis aurea - 0.634 - 0.716 - 0.639 - 0.636 - 0.597 

Crocus albiflorus - 0.744 - 0.733 - 0.769 - 0.727 - 0.781 

Deschampsia cespitosa - 0.683 - 0.715 - 0.726 - 0.773 - 0.754 

Euphrasia minima - 0.585 - 0.66 - 0.624 - 0.6 - 0.606 

Festuca quadriflora - 0.634 - 0.767 - 0.737 - 0.679 - 0.647 

Galium anisophyllon - 0.767 - 0.609 - 0.753 - 0.713 - 0.771 

Gentiana campestris sstr. - 0.705 - 0.597 - 0.665 - 0.65 - 0.673 

Gentiana purpurea - 0.62 - 0.81 - 0.797 - 0.788 - 0.746 

Gentiana verna - 0.682 - 0.681 - 0.663 - 0.674 - 0.646 

Helianthemum nummularium sl. - 0.631 - 0.631 - 0.627 - 0.638 - 0.624 

Helictotrichon versicolor - 0.627 - 0.607 - 0.615 - 0.597 - 0.605 

Hieracium lactucella - 0.648 - 0.755 - 0.761 - 0.771 - 0.748 



Leucanthemum vulgare aggr. - 0.864 - 0.756 - 0.888 - 0.707 - 0.911 

Ligusticum mutellina - 0.624 - 0.677 - 0.671 - 0.741 - 0.698 

Loiseleuria procumbens - 0.66 - 0.639 - 0.601 - 0.635 - 0.624 

Luzula alpinopilosa - 0.671 - 0.69 - 0.681 - 0.711 - 0.688 

Luzula multiflora - 0.715 - 0.582 - 0.643 - 0.608 - 0.684 

Pedicularis verticillata - 0.682 - 0.657 - 0.693 - 0.627 - 0.681 

Plantago atrata sstr. - 0.6 - 0.614 - 0.607 - 0.605 - 0.593 

Polygala alpestris - 0.633 - 0.643 - 0.637 - 0.702 - 0.615 

Potentilla crantzii - 0.639 - 0.67 - 0.635 - 0.657 - 0.625 

Prunella vulgaris - 0.683 - 0.622 - 0.661 - 0.63 - 0.634 

Salix retusa - 0.68 - 0.688 - 0.764 - 0.661 - 0.748 

Scabiosa lucida - 0.647 - 0.678 - 0.727 - 0.607 - 0.633 

Soldanella alpina - 0.642 - 0.717 - 0.717 - 0.683 - 0.677 

Taraxacum officinale aggr. - 0.757 - 0.627 - 0.685 - 0.761 - 0.681 

Trifolium badium - 0.689 - 0.696 - 0.666 - 0.695 - 0.66 

Trollius europaeus - 0.667 - 0.812 - 0.8 - 0.715 - 0.75 

Vaccinium gaultherioides - 0.633 - 0.648 - 0.641 - 0.624 - 0.647 

Vaccinium vitis-idaea - 0.705 - 0.666 - 0.674 - 0.644 - 0.723 
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 493 

ESM2 Fig 3: Proportions of species distribution models for which accuracy was improved 
by 10% (dark green areas) or between 0 and 10% (light green areas) or was declined (gray 
areas) when adding the AIS-predictors to topographic based models. FR for the French 
site and CH for the Swiss site. BS indicates reflectance records in spectral bands as 
predictors and VI indicates vegetation indices as predictors. See ESM2 Table 1 for 
identity of the species that showed best model improvement. 



 494 

Weak or no improvement of species distribution models, when including AIS-predictors, 495 

suggests that the ecological information represented by AIS-data was redundant to already 496 

included topography indicators. Increasing the dimensionality of the set of predictors without 497 

additional informational content may flaw the fitted statistical relationships and ultimately 498 

decrease model accuracy as we observed for many species at both sites. 499 

 500 

4) The effect of species abundance patterns on the prediction accuracy of remote 501 

sensing–based species distribution models. 502 

 503 
 504 

 505 
ESM2 Fig 4: Relationships between four predictors of species abundance patterns and the 
accuracy of species distribution models based on the reflectance records in spectral bands 
(BS). White points for species from the French site (FR) and black points for species from 
the Swiss site (CH). 
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ESM2 Fig 5: Relationships between four predictors of species abundance patterns and the 
accuracy of species distribution models based on the vegetation indices. White points for 
species from the French site (FR) and black points for species from the Swiss site (CH). 



5) Testing the phylogenetic and functional dependency of model features between 515 
the species. 516 
 517 

We implemented a similar procedure as for the test of phylogenetic signal of species traits, 518 

except were considered the AUC values and AIS-predictor importance as traits and we sought 519 

for both phylogenetic and functional signals. Specifically, we implemented two 520 

complementary analyses following recommendations of Hardy and Pavoine 2012 [1]. In the 521 

first, we computed a global Mantel test contrasting dissimilarity of species distribution models 522 

(Euclidean distance between AUC values or AIS-variable importance) and phylogenetic or 523 

functional dissimilarity between the species. The randomisation procedure consisted of 524 

random reallocation of AUC values or variable importance between the species (999 525 

permutations). In the second, we computed distograms where species model dissimilarities 526 

(again as Euclidean distance between AUC values or AIS-variable importance) are plotted 527 

against classes of phylogenetic or functional distance between the species. This indicates how 528 

species models differ for functionally/phylogenetically closely related species and for 529 

dissimilar species. 530 

 531 

Phylogenic information for the French site was extracted from the complete phylogeny for the 532 

Alpine flora at the genus level published in Thuiller et al. 2014 [2]. Finally, we randomly 533 

resolved terminal polytomies by applying a birth-death (Yule) bifurcation process within each 534 

genus [3]. Phylogenetic information for the Swiss site was extracted from the phylogeny for 535 

the 231 most frequent species of the Western Swiss Alps of the Canton of Vaud (a 700 km² 536 

region surrounding the Swiss site Anzeindaz). This phylogeny is based on DNA sequences 537 

extracted from collected vegetal material and built by alignment of chloroplastic DNA 538 

sequences (rbcl and matK) with GTR + gamma models of evolution under a Bayesian 539 

inference framework. Details are available in Ndiribe et al. 2013 [4]. 540 

All the species of the French site (i.e. 119) were included in phylogenetic tests while 69 541 

species of the Swiss site (on 78) could be accounted for. 542 

The phylogenetic distance between the species was quantified using the Abouheif proximity 543 

measure for Mantel tests and the square-root of patristic distance for distograms [1]. 544 

 545 

Traits information included morphological and physiological traits that are acknowledged to 546 

indicate plant fitness, community dynamics and ecosystem processes. Some of them are also 547 

recognized to be related to the reflectance pattern of vegetation stands [5,6]. We considered: 548 

1) specific leaf area (SLA; m².kg-1), 2) leaf dry matter content (LDMC, mg.g-1), 3) vegetation 549 



height (mm), 4) plant growth form discriminating species as graminoid, forb, legume or 550 

shrub, 5) Leaf distribution along the stem discriminating species with leaves growing 551 

regularly along the stem, rosette or tufted species and semi rosette species, and 6) branching, a 552 

binary trait describing species ability to fill lateral space. SLA, LDMC and vegetation height 553 

were measured for most species in the field within each of the two sites (89 out 119 for FR 554 

and 71 out of 78 for CH). Leaf distribution, growth form, and branching were retrieved from 555 

the LEDA database [7]. Since trait data covered continuous and categorical variables, the 556 

functional dissimilarity between species was quantified using the Gower distance metric [8] 557 

for both Mantel tests and distogram computation. 558 

 559 

Tests for phylogenetic and functional dependency of the importance of AIS-variables 560 

considered only the species that showed distribution models with fair to good prediction 561 

accuracy (i.e. AUC > 0.7) in order to exclude spurious estimates of variable importance from 562 

inaccurate models. This led to analyses with reduced list of species as follows: 563 

 564 

Number of species included in the 

analyses 

FR CH 

Phylogenetic  

(119/119sp) 

Functional 

(89/119sp) 

Phylogenetic 

(69/78sp) 

Functional 

(71/78sp) 

Reflectance in spectral bands 64 47 25 25 

Vegetation indices 68 50 19 20 

 565 
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ESM2 Fig 6: Phylogenetic 
dependency of model accuracy 
(AUC: the area under the curve of a 
receiver-operating characteristic plot) 
between the species for the French 
site (FR).  The x-axis represents the 
phylogenetic distance between the 
species and the y-axis differences in 
AUC. Topo indicates models based on 
topographic predictors only, BS 
models based on reflectance recorded 
in the spectral bands. VI indicates 
models based on vegetation indices 
only. Topo+BS and Topo+VI indicate 
respectively models based on 
topographic predictors and reflectance 
records in spectral bands or vegetation 
indices as predictors. Confidence 
intervals were computed with random 
re-allocation of AUC values between 
the species (9999 permutations) 
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ESM2 Fig 7: Phylogenetic 
dependency of model accuracy 
(AUC: the area under the curve of a 
receiver-operating characteristic plot) 
between the species for the Swiss site 
(CH).  The x-axis represents the 
phylogenetic distance between the 
species and the y-axis differences in 
AUC. Topo indicates models based on 
topographic predictors only, BS 
models based on reflectance recorded 
in the spectral bands. VI indicates 
models based on vegetation indices 
only. Topo+BS and Topo+VI indicate 
respectively models based on 
topographic predictors and reflectance 
records in spectral bands or vegetation 
indices as predictors. Confidence 
intervals were computed with random 
re-allocation of AUC values between 
the species (9999 permutations) 
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ESM2 Fig 8: Functional dependency 
of model accuracy (AUC: the area 
under the curve of a receiver-operating 
characteristic plot) between the species 
for the French site (FR).  The x-axis 
represents the functional distance 
between the species and the y-axis 
differences in AUC. Topo indicates 
models based on topographic 
predictors only, BS models based on 
reflectance recorded in the spectral 
bands. VI indicates models based on 
vegetation indices only. Topo+BS and 
Topo+VI indicate respectively models 
based on topographic predictors and 
reflectance records in spectral bands or 
vegetation indices as predictors. 
Confidence intervals were computed 
with random re-allocation of AUC 
values between the species (9999 
permutations) 
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ESM2 Fig 9: Functional dependency 
of model accuracy (AUC: the area 
under the curve of a receiver-operating 
characteristic plot) between the species 
for the Swiss site (CH).  The x-axis 
represents the functional distance 
between the species and the y-axis 
differences in AUC. Topo indicates 
models based on topographic 
predictors only, BS models based on 
reflectance recorded in the spectral 
bands. VI indicates models based on 
vegetation indices only. Topo+BS and 
Topo+VI indicate respectively models 
based on topographic predictors and 
reflectance records in spectral bands or 
vegetation indices as predictors. 
Confidence intervals were computed 
with random re-allocation of AUC 
values between the species (9999 
permutations) 
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ESM2 Fig 10: Phylogenetic dependency of relative importance of AIS-predictors between the 
species for both the French site (FR) and the Swiss site (CH).  The x-axis represents the 
phylogenetic distance between the species and the y-axis differences in RS-predictors (either 
reflectance recorded in the spectral bands or vegetation indices). Only species with distribution 
models showing fair to good prediction accuracy (AUC>0.7) were considered. Confidence intervals 
were computed with random re-allocation of predictor importance between the species (9999 
permutations) 
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ESM2 Fig 11: Functional dependency of relative importance of RS-predictors between the 
species for both the French site (FR) and the Swiss site (CH).  The x-axis represents the functional 
distance between the species and the y-axis differences in AIS-predictors (either reflectance 
recorded in the spectral bands or vegetation indices). Only species with distribution models showing 
fair to good prediction accuracy (AUC>0.7) were considered. Confidence intervals were computed 
with random re-allocation of predictor importance between the species (9999 permutations) 
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ESM2 Fig 12: Phylogenetic dependency of model improvement among species with addition of 
AIS-predictors for the French site (FR) and the Swiss site (CH).  The x-axis represents the 
phylogenetic distance between the species and the y-axis differences in model improvement when 
adding AIS-predictors (either reflectance recorded in the spectral bands (BS) or vegetation indices 
(VI)) to topographic predictors. Confidence intervals were computed with random re-allocation of 
AUC values between the species (9999 permutations) 
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ESM2 Fig 13: Functional dependency of model improvement among species with addition of 
AIS-predictors for the French site (FR) and the Swiss site (CH).  The x-axis represents the 
functional distance between the species and the y-axis differences in model improvement when 
adding AIS-predictors (either reflectance recorded in the spectral bands (BS) or vegetation indices 
(VI)) to topographic predictors. Confidence intervals were computed with random re-allocation of 
AUC values between the species (9999 permutations) 
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  627 



Airborne imaging spectroscopy (AIS) can provide remotely sensed estimates of physical and 628 
bio-chemical quantitative properties of ecosystems. However, the value of these 629 
characteristics for predicting diversity patterns has not been tested yet. We assess the added 630 
value of such data for predicting plant distributions in French and Swiss alpine grasslands. We 631 
fitted statistical models with high spectral and spatial resolution reflectance data and with four 632 
optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We 633 
found moderate added value of AIS-data for predicting alpine plant species distribution, 634 
revealing issues of scale and AIS-data informational content. 635 
 636 
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