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Abstract

The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely
high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms
maintained by balancing selection. However, introgression from related species was recently proposed as an additional
mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very
polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that
one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the
coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2
allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing,
microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature
of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of
heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with
domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the
DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the
goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the
genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is
solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic
diversity at the MHC and other loci under balancing selection.
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Introduction

The MHC is one of the most gene-dense regions and contains

the most polymorphic functional genes in vertebrate genomes [1–

3]. The major role of MHC gene products is the recognition of

foreign peptides and their presentation to specialist immune cells

in order to initiate an immune response [4]. Specific MHC

haplotypes and MHC heterozygosity were shown to be associated

with immunity to diseases [e.g. 5–9]. A higher allelic diversity at

MHC loci is expected to be favored because individuals with a

broader range of MHC sequences (binding and presenting a

broader range of pathogenic peptides) should be able to more

successfully fight diseases. However, the mechanisms generating

and maintaining the extraordinary MHC diversity are not fully

understood [reviewed in 10–12]. Three types of balancing

selection, mediated by pathogen-driven or sexual selection, are

usually invoked to explain MHC polymorphism: heterozygote

advantage, negative frequency-dependent selection and fluctuating

selection [11,13]. Linked recessive deleterious mutations may

additionally contribute to a pattern of balancing selection and

may explain why MHC alleles are frequently more highly

diverged from each other than expected otherwise [12]. While

MHC alleles often exhibit high sequence divergence, balancing

selection tends to even out allele frequencies among populations

and hence such loci show lower population differentiation than

neutral loci [14].

Balancing selection at a locus may predate speciation events and

maintain a set of highly divergent alleles termed ancient trans-

species polymorphism [15]. Adaptive genetic variation at loci

under balancing selection is generally assumed to stem from

standing genetic variation or mutations. However, adaptive

genetic variation may also be generated through introgression,

the gene flow between species [reviewed in 16]. Introgression at

loci under balancing selection is expected to be favored because of

the selective advantage of rare alleles [14,16]. Therefore, loci

under balancing selection are good candidates for adaptive
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introgression as shown for self-incompatibility genes in plants [17]

and a coat pattern gene in animals [18].

Recently, introgression was proposed as an additional mecha-

nism contributing to high levels of genetic diversity at the MHC

[19]. Due to the significance of MHC variation for the defense

against infectious diseases, introgression at the MHC is likely

adaptive. Introgression from archaic humans was suggested to

have shaped the human MHC [20]. MHC diversity in domestic

mammals may have been augmented by introgression from wild

ancestors [21]. Several MHC alleles were found to be shared

between two newt species consistent with introgression among

species [22]. However, direct evidence for recent introgression

events at the MHC in wild species is lacking. Here we present

evidence that introgression from domestic goat was an important

source of MHC class II variation in Alpine ibex.

The Alpine ibex (Capra ibex ibex) is a species of wild goat

occupying high-alpine niches of the European Alps spanning from

Northern Italy and France to Slovenia. Several related ibex species

are found in mountain ranges of Southern Europe, Central Asia,

Northeast Africa, and the Arabian Peninsula (the Mountain goat

of North America, Oreamnos americanus, belongs to a different

genus). One of these species, the bezoar (Capra aegagrus) is the

ancestor of the domestic goat [23]. Following near extinction

during the 18th century due to overhunting, Alpine ibex were

reintroduced to most parts of the European Alps from the only

remaining population in Northern Italy (Gran Paradiso National

Park). The reintroduction was very successful, and the species has

recovered to more than 40’000 individuals living across the

European Alps. Therefore, the Alpine ibex is considered a flagship

species of the restoration of large mammals. However, the re-

introduction caused several bottlenecks of less than 100 individ-

uals, which substantially depleted genetic variability [24–26]. The

depletion of genetic variability is particularly striking at the DRB

locus of the MHC class II. Only two alleles (Caib-DRB*1 and Caib-

DRB*2) were reported at the exon 2 of DRB in at total of 125

individuals [27,28]. In comparison, both the domestic goat (C.

aegagrus hircus) and its wild ancestor the bezoar (C. aegagrus) are

highly polymorphic at this exon. We show that introgression from

domestic goat is responsible for the fact that Alpine ibex are

polymorphic at all at the exon 2 of the DRB locus, suggesting that

introgression can be an important evolutionary force shaping the

evolution of the MHC.

Results and Discussion

We extended the sequencing by Schaschl et al. [27] and

Alasaad et al. [28] from 125 to 203 Alpine ibex from different

populations and did not find additional alleles at the exon 2 of the

MHC DRB locus. We found that the second allele (Caib-DRB*2)

was identical to the Cahi-DRB*16 allele of the domestic goat first

reported from the Japanese breed Shiba ([29], Genbank accession

AB008361). We will refer to Caib-DRB exon 2 sequence variants

(236 bp) as Caib-DRB alleles throughout the manuscript (see

Figure 1). We found no recombinant between the two alleles in

Alpine ibex, although recombinants at this locus were found in

several related ungulate species [27,30,31]. This suggests that the

two alleles are not both ancient alleles of the Alpine ibex DRB

locus.

We investigated the geographic distribution of the Caib-DRB

alleles by genotyping the microsatellite marker OLADRB1

(Figure 1A). OLADRB1 is directly adjacent to the exon 2 of

DRB in even-toed ungulates [32] and is in complete linkage

disequilibrium (i.e. diagnostic) in Alpine ibex [28 and this study].

We found substantial variation in Caib-DRB allele frequencies

among 40 Alpine ibex populations (n = 754 individuals). The

frequency of the allele Caib-DRB*2 ranged from 0% (most

populations of Central and South-Western Swiss Alps) to 31%

(North-Western Swiss Alps; Figure 1A and Table S1). Caib-DRB*2

was generally at a high frequency in the Eastern Swiss Alps

(Figure 1A). In the founder population for the reintroductions, the

Gran Paradiso National Park in the Italian Alps, the frequency of

Caib-DRB*2 was 3%. The striking population structure observed at

Caib-DRB reflects the complex reintroduction history shown by

neutral markers [25]. Individuals were first brought from the Gran

Paradiso to Swiss zoos. From these zoos, initial reintroductions

established three wild populations across the Swiss Alps, which in

turn served as source populations for subsequent reintroductions

across Switzerland and elsewhere.

The origin of the Caib-DRB*2 allele in Alpine ibex
The MHC is known to harbor genetically divergent alleles

within species [4,33]. The two Caib-DRB alleles found in Alpine

ibex were even more divergent than expected from related species

(13.2% nucleotide and 22.6% amino acid difference, Figure 1B).

In comparison, the mean pairwise nucleotide difference among

MHC DRB exon 2 alleles found in domestic goats and their wild

ancestors (bezoar) was substantially lower (8.6%, 95% confidence

interval CI 1.8–15.0%; 17.8% amino acid difference, Figure 1B).

Domestic sheep (Ovis aries) and Chamois (Rupicapra rupicapra)

showed even lower mean allele divergence (Domestic sheep:

nucleotide divergence 7.4%; 95% CI: 2.2–15.9% and amino acid

divergence 15.0%; Chamois: nucleotide divergence 3.9%; 95%

CI: 0.9–6.6% and amino acid divergence 9.5%; Figure 1B, Table

S2). The high genetic divergence between the two Alpine ibex

Caib-DRB alleles and the identity of Caib-DRB*2 to an allele

identified in domestic goats may be indicative of introgression

from domestic goats into Alpine ibex. The two species share a

common ancestor 2–6 million years ago [34,35] and hybrids,

which can survive and breed have repeatedly been reported in the

wild [36]. Alternatively, related species may show similarities at

MHC alleles because of ancient trans-species polymorphisms

caused by balancing selection [11,15,37,38].

Author Summary

The major histocompatibility complex (MHC), a crucial
component of the defense against pathogens, contains
the most polymorphic functional genes in vertebrate
genomes. The extraordinary genetic variation is generally
considered to be ancient. We investigated whether a
previously neglected mechanism, introgression from relat-
ed species, provides an additional source of MHC variation.
We show that introgression from domestic goat dramat-
ically increased genetic variation at the MHC of Alpine
ibex, a species that had nearly gone extinct during the 18th

century, but has been restored to large numbers since. We
show that Alpine ibex share one of only two alleles at a
generally highly polymorphic MHC locus with domestic
goats and that the chromosomal region containing the
goat-type allele has a signature of recent introgression.
Our finding contradicts the long-standing view that
ancient trans-species polymorphism is the sole source of
the extraordinary genetic variability at the MHC. Instead,
we show that in Alpine ibex introgression generated
genetic diversity at a MHC locus. Our study supports the
view that loci favoring genetic polymorphism may be
susceptible to adaptive introgression from related species
and will encourage future research to identify unexpected
signatures of introgression.

Introgression as a Source of MHC Variation
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Figure 1. MHC DRB allele diversity in Alpine ibex and chromosomal localization of genetic markers. (A) Frequency distribution of the
two MHC DRB exon 2 alleles in Alpine ibex populations across the Swiss Alps. The marker OLADRB1 was used to assess the frequency of Caib-DRB*2.
All populations with n$12 are shown except for Weisshorn (n = 9; marked by an asterisk). See Table S1 for complete allele frequency data. (B) Genetic
diversity of MHC DRB alleles in different Caprinae species. The proportions of sites that differ between each pair of sequences are shown based on
227 bp sequence length. (C) Chromosomal locations of MHC genes and genetic markers were mapped to the goat chromosome 23 using the
homologous cattle (Bos taurus) chromosome 23 as a reference (for further details see [40]). The MHC DRB exon 2 is shown in orange. Marker distances
between the microsatellites OLADRB1 and OLADRB2 are based on cattle chromosome 23 and sheep chromosome 20. (D) Observed linkage
disequilibrium (connected lines) between sequence and microsatellite alleles. Caib-DRB*2 was completely associated to allele 184 of microsatellite
OLADRB1 (previously shown for a subset of 98 individuals in Alasaad et al. [28]) and allele 277 of OLADRB2 (except 2 individuals out of 707).
doi:10.1371/journal.pgen.1004438.g001
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We assessed the likelihood that two species share identical MHC

DRB exon 2 sequences by analyzing 112 sequences of length

identical to the two Alpine ibex MHC DRB exon 2 sequences

(236 bp) from eight species of the Caprinae subfamily comprising

domestic goats and Alpine ibex. With the exception of the

sequence shared between domestic goats and Alpine ibex, we

found no shared alleles among species. However, we found

evidence of shared sequences among species by including

sequences of shorter minimum length (227 bp; n = 332) repre-

senting 11 species. Six pairs of species shared 13 alleles (see Table

S3). For all except one of these species pairs, hybridization has

either been observed or signatures of past hybridization between

the species have been reported (see Table S3 for more details).

Hybrids between Alpine ibex and domestic goats were

occasionally reported in the past and microsatellite analyses

confirmed the existence of F1 hybrids (see Figures S1, S2 for more

details). However, in a survey of Alpine ibex individuals, we found

no evidence of recent hybrids based on genetic clustering analyses

using the software STRUCTURE [39]. For this, we analyzed 30

neutral microsatellites in 1781 individuals [this study and 25] and

546 SNPs in 95 individuals. Thus, the presence of Caib-DRB*2 in

Alpine ibex in extant populations is not solely due to recent

hybrids.

Alpine ibex share nearly identical DRB intron and exon
sequences with a domestic goat breed

Introgression is expected to generate highly similar sequence

tracts between the donor and recipient species [16]. If introgres-

sion was the source of Caib-DRB*2, we predict that in addition to

the DRB exon 2, intronic and other non-coding regions should be

highly similar between Alpine ibex carriers of Caib-DRB*2 and

domestic goats. In contrast, if ancient trans-species polymorphism

was responsible for maintaining identical DRB exon 2 sequences,

we predict that the surrounding non-coding regions should have

accumulated significant sequence divergence between Alpine ibex

and domestic goats. In order to distinguish between these

scenarios, we sequenced four regions of the DRB gene. The

MHC region is located on chromosome 23 in domestic goats

(Figure 1C) and the 11 kb DRB gene is fully contained on the

136 kb goat reference genome scaffold2167 [40]. The four

sequenced regions comprise a total of 2253 bp and covered the

complete sequences of exons 3, 5 and 6, the complete intron 5 as

well as partial sequences of introns 1–4 and a 39 UTR sequence

(Figure 2, see Supporting Text S1–S4 for full sequence

alignments). We sequenced seven Alpine ibex homozygous for

Caib-DRB*1, seven Alpine ibex homozygous for Caib-DRB*2 and

five domestic goat individuals selected from a screening of diverse

breeds. All seven Alpine ibex homozygous for Caib-DRB*1 were

homozygous for the same haplotype at all four loci and were

strongly differentiated from Alpine ibex homozygous for the Caib-

DRB*2 allele (5.1% nucleotide divergence). The haplotype of Caib-

DRB*1 Alpine ibex individuals did not show any close similarity to

sequences found in domestic goats (Figure 2).

All seven Alpine ibex homozygous for Caib-DRB*2 were

homozygous for the same highly distinct haplotype (Figure 2).

We found that the domestic goat individual VBN.4 of the breed

Valais Blackneck carried a very similar haplotype (99.8% sequence

identity across 2253 bp). The haplotypes of VBN.4 and of Alpine

ibex homozygous for Caib-DRB*2 differed only by five SNPs at

exon 3, intron 3, exon 5, and the region comprising partial introns

4, 5 and 39 UTR sequences (Figure 2). The domestic goat VBN.4

was homozygous for the DRB exon 2 Cahi-DRB*16, which is

identical to Caib-DRB*2. The high similarity in both coding and

non-coding regions of the DRB gene between the domestic goat

VBN.4 and Alpine ibex homozygous for Caib-DRB*2 strongly

suggests domestic goat breeds were the donors of DRB sequences

that introgressed into Alpine ibex.

We tested for the presence of recombinant sequences at the

MHC DRB. For this, we concatenated sequences of all four loci

and used the recombination test based on the Ww-statistic [41].

The five domestic goat sequences showed significant evidence for

recombination (64 informative sites; p,0.0001). In contrast, the

two haplotypes associated to the Caib-DRB*1 and Caib-DRB*2

allele, respectively, did not show any evidence for recombination

(116 informative sites; p = 1). This suggests that Alpine ibex

haplotypes associated with Caib-DRB*1 and Caib-DRB*2 alleles,

respectively, did not co-exist for a long period in the populations.

High expected heterozygosity extends to the
chromosomal region surrounding DRB

A recent introgression event from domestic goats into Alpine is

expected to lead to a chromosomal region of high expected

heterozygosity in individuals carrying the introgressed allele. To

characterize the genomic region surrounding the DRB gene, we

performed restriction site associated DNA sequencing (RAD-seq).

We genotyped 15 Alpine ibex homozygous for Caib-DRB*1 and 15

Alpine ibex carrying Caib-DRB*2 of which 14 were heterozygous

for Caib-DRB*2. The sampling covered individuals from four

populations. Additionally, we included nine domestic goat

individuals (representing four breeds). The RAD sequences were

mapped to the domestic goat genome [40]. We identified 258

polymorphic SNPs located between 22 Mb and 27 Mb on

chromosome 23. Eighty-six of these SNPs were polymorphic

among Alpine ibex. Individuals carrying Caib-DRB*2 showed high

rates of expected heterozygosity in a region of about 750 kb

surrounding the second exon of DRB (24.5 to 25.25 Mb) on

chromosome 23 (Figure S3). Furthermore, we found high

sequence similarities to domestic goat sequences in the same

region (for a representative sample of genotypes and SNPs see

Figure 3). At 7 out of 10 SNPs, we found an allele that was shared

between domestic goats (Figure 3D) and Alpine ibex carrying Caib-

DRB*2 (Figure 3C) but not with Alpine ibex homozygous for Caib-

DRB*1 (Figure 3A). Similarly, the Alpine ibex GR0201 homozy-

gous for Caib-DRB*2 was homozygous for a SNP allele that was

only found in domestic goats and other Alpine ibex carrying Caib-

DRB*2 at 6 out of 10 SNPs (Figure 3B). These observations are

consistent with introgression at the MHC DRB locus and indicate

that introgression has increased genetic diversity of Alpine ibex in

this genomic region.

Alpine ibex haplotypes carrying Caib-DRB*2 are highly
similar in the region surrounding the MHC region

We extended the SNP genotyping to 95 Alpine ibex individuals

(four populations) and 177 domestic goat individuals (six breeds)

using the 52 K Illumina Goat SNP Chip [42]. We identified 677

high-quality, polymorphic SNPs among Alpine ibex genome-wide.

A total of 35 SNPs were located on chromosome 23 containing the

MHC DRB locus. We found that allele SNP16397/G was

diagnostic for Caib-DRB*2 in all 91 individuals, which were both

sequenced at the exon and SNP genotyped (Table S4). We aimed

to identify whether haplotypes carrying Caib-DRB*2 were genet-

ically similar in the chromosomal region surrounding the MHC

DRB locus. As the large chromosomal region was likely to contain

recombined haplotypes, we constructed NeighborNet networks

[43] based on three different sections of chromosome 23. One

section covered 6 Mb of the MHC region containing the DRB

locus and two sections covered either end of chromosome 23

Introgression as a Source of MHC Variation

PLOS Genetics | www.plosgenetics.org 4 June 2014 | Volume 10 | Issue 6 | e1004438



Introgression as a Source of MHC Variation

PLOS Genetics | www.plosgenetics.org 5 June 2014 | Volume 10 | Issue 6 | e1004438



(Figure 4B). We found that haplotypes containing the diagnostic

allele SNP16397/G (associated with Caib-DRB*2) clustered

strongly in the section covering the MHC DRB. However, we

found no such association of haplotypes containing SNP16397/G

at either end of the chromosome (Figure 4B). The tight clustering

of haplotypes carrying Caib-DRB*2 in the DRB MHC region

indicates a high relatedness among these haplotypes. This suggests

that only few recombination events occurred between haplotypes

carrying the Caib-DRB*2 and haplotypes carrying the Caib-DRB*1.

If the alleles Caib-DRB*1 and Caib-DRB*2 were maintained as an

ancient trans-species polymorphism, no or weak clustering of

haplotypes associated with either allele would be expected. The

clustering of the haplotypes and the increased expected heterozy-

gosity in the individuals carrying the Caib-DRB*2 allele suggest

high levels of linkage disequilibria.

Population genetic signature of introgression in the MHC
DRB region

Introgression is expected to generate blocks of linkage disequi-

librium due to the recent integration of sequences from another

species. We used population and species level data for the analysis

of linkage disequilibria in order to control for potential alternative

sources of linkage disequilibrium [reviewed in 44]. We identified

nearly complete linkage disequilibrium between Caib-DRB*2 and

two proximal microsatellite markers (OLADRB1 and OLADRB2)

covering a physical distance of 107 to 161 kb in the cattle and

sheep genome, respectively (Figure 1C). Complete linkage

disequilibrium with Caib-DRB*2 was observed for one of four

alleles of the diagnostic marker OLADRB1 (allele OLADRB1/

184; n = 156, Figure 1D and Table S4). Allele OLADRB1/184

was nearly completely associated with allele OLADRB2/277

(correspondence between the two markers in 705 out of 707

individuals).

Based on data from the 52 K Goat SNP Chip, we calculated

linkage disequilibria among SNPs. We found a large block of high

linkage disequilibrium containing the MHC DRB in Alpine ibex

populations with high Caib-DRB*2 allele frequencies (e.g. popu-

lation Cape au Moine: r2 = 0.85 across 2.1 Mb, Figure 4A; Table

S5). Two smaller linkage disequilibrium blocks (0.2 and 0.4 Mb

with r2$0.85) were observed in the Alpine ibex population with

the lowest frequency of the Caib-DRB*2 allele (population

Weisshorn, Figure 5A and 6A; Table S5). The smaller blocks of

linkage disequilibria in the Weisshorn population may also be

explained by a general depletion of genetic diversity at the MHC

DRB. Compared to Alpine ibex, blocks of linkage disequilibria

were much smaller in domestic goats (e.g. breed Capra Grigia:

0.08 Mb with r2$0.85) and linkage disequilibria decreased more

steeply with pairwise distance between SNPs (Figures 5B and 6B).

Domestic goats showed invariably small linkage disequilibrium

blocks. Although introgression is expected to lead to increased

linkage disequilibria, population subdivisions, genetic drift, and

natural selection may also generate linkage disequilibria

[5,6,44,45]. Genetic drift is expected to create randomly

distributed regions of high linkage disequilibria among chromo-

somes and populations [reviewed in 44]. Blocks of strong linkage

disequilibria (r2.0.8) were generally shorter (0–0.5 Mb) on the

chromosomes other than chromosome 23 of Alpine ibex (Figures

S4A and S5) and strength of linkage disequilibria was lower for

comparable pairwise distances between SNPs (Figure S4B and

S4C). Hence, population subdivision and genetic drift are unlikely

to explain the large block of high linkage disequilibria at the MHC

region in Alpine ibex populations with a high frequency of the

Caib-DRB*2 allele.

The MHC Caib-DRB*2 allele increased rapidly in
frequency

Successful introgression of the Caib-DRB*2 allele into Alpine

ibex populations would require a significant increase in frequency

from the time point of the hybridization event to the extant

frequency of the Caib-DRB*2 allele. A significant frequency shift of

an allele is expected to leave a footprint of selection in the

surrounding chromosomal regions. We aimed to test for evidence

of positive selection acting on haplotypes containing Caib-DRB*2

using analyses of extended haplotype homozygosity (EHH). The

non-recombined segment of haplotypes containing an allele under

positive selection is expected to be much longer and less diverse

than haplotypes containing alleles not under selection, because the

latter have experienced recombination or mutation events. The

EHH measures the length of such conserved haplotypes on both

sides of a specified core SNP [46] and has been used to show

evidence for selection at the human MHC [5]. For EHH = 1

(maximum) at a certain position, all haplotypes containing the

SNP allele of interest are identical up to this position. Introgression

events followed by a rapid frequency shift due to drift or selection,

are expected to lead to long introgressed haplotypes (i.e. a high

EHH over a long distance from the core SNP). The non-

recombined part of introgressed haplotypes is expected to be much

longer than that of non-introgressed haplotypes.

We found that EHH was substantial around SNP16397

(Figures 7A and S6). The related measure iHH [47], integrated

on both sides of the core SNP, showed a similar pattern (data not

shown). Alpine ibex haplotypes carrying SNP16397/G (the SNP

allele diagnostic for Caib-DRB*2) were substantially longer and

were less diverse than haplotypes carrying SNP16397/A

(Figure 7A, left panel). Similarly, bifurcation diagrams showed

that haplotypes carrying SNP16397/G showed fewer bifurcations

that were at a greater distance from the core SNP than haplotypes

carrying SNP16397/A. For the six goat breeds, measures of EHH

and iHH were generally much lower (Figures 7B and S7).

Furthermore, the haplotype diversity associated with either of the

two alternative SNP16397 alleles was very similar. Thus, these

analyses show that the Caib-DRB*2 allele rapidly increased in

frequency and that only few recombination events occurred

among haplotypes carrying either Caib-DRB*1 or Caib-DRB*2.

The increase in frequency of Caib-DRB*2 could have been caused

either by genetic drift and/or by positive selection for individuals

Figure 2. Sequence alignments of coding and non-coding regions of the MHC DRB gene in Alpine ibex and domestic goat. The DRB
gene (11 kb in domestic sheep) is located on to the goat reference genome scaffold2167 at position 79’094 bp. A total of 2253 bp of the MHC DRB
gene was sequenced including partial sequences of introns 1–4 and the complete intron 5 as well as a 39 UTR sequence and complete sequences of
exons 3, 5 and 6. Exon 6 is not shown as no polymorphism was found. Seven Alpine ibex homozygous for Caib-DRB*1 (red), seven Alpine ibex
homozygous for Caib-DRB*2 (orange) and five domestic goat individuals selected from a screening of diverse breeds (grey) were sequenced. All seven
Alpine ibex homozygous for Caib-DRB*2 were homozygous for the same haplotype at all four loci. This haplotype was highly distinct from the
haplotype carried by all seven Alpine ibex homozygous for Caib-DRB*1. The domestic goat VBN.4 shared a nearly identical haplotype with individuals
homozygous for Caib-DRB*2 at all four sequenced loci (99.8% sequence identity across 2253 bp). The domestic goat VBN.4 was homozygous for the
DRB exon 2 Cahi-DRB*16, which is identical to Caib-DRB*2 (not shown). The phylogenetic trees are based on neighbor-joining. See Supporting Text
S1-S4 for full sequence alignments.
doi:10.1371/journal.pgen.1004438.g002
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carrying the introgressed allele. Positive selection is plausible

because the introgression increased the genetic diversity at and

around the MHC DRB, as evidenced by the fact that individuals

lacking Caib-DRB*2 are mainly monomorphic in the region

surrounding this locus (Figures 3A and S3).

Introgression as a source of MHC variation
Using a combination of Sanger and RAD sequencing, SNP

chip and microsatellite data we found evidence for introgression

at the MHC DRB gene in Alpine ibex. The DRB exon 2

comprises only two alleles with one allele being identical to an

allele found in domestic goats. We found no recombinants

between the two highly divergent alleles, while recombinants at

this locus were found in several related ungulate species

[27,30,31]. Alpine ibex homozygous for the goat-type allele

showed nearly identical sequences (99.8%) to a breed of domestic

goats over 2253 bp of coding and non-coding sequences

surrounding the MHC DRB exon 2. Evidence of long nearly

identical non-coding sequences shared between a domestic goat

breed and Alpine ibex shows that introgression rather than

ancestral trans-species polymorphism accounts for the MHC

DRB polymorphism in Alpine ibex.

The chromosomal region in proximity to the MHC DRB locus

was genetically highly related for the haplotypes carrying the goat-

type Caib-DRB*2 allele. We found nearly complete linkage

disequilibrium between the MHC locus and two proximal

microsatellites covering more than 100 kb. Linkage disequilibria

in proximity of the MHC DRB locus were strongest in Alpine ibex

populations with a high frequency of the Caib-DRB*2 allele. On

the contrary, linkage disequilibria were lower in a population with

a lower frequency of Caib-DRB*2 and in domestic goat breeds.

The extended haplotype homozygosity (EHH) was substantially

higher in haplotypes carrying the Caib-DRB*2 than in haplotypes

carrying the native Alpine ibex allele, suggesting a substantial

increase in allele frequency since the original hybridization event

that lead to this introgression. High linkage disequilibria, sequence

clustering and increased EHH are consistent with introgression

and a selective sweep. We suggest that these signals stem from both

the initial introgression event and a subsequent Caib-DRB*2

frequency increase in Alpine ibex populations.

We identified a single introgressed goat allele (Caib-DRB*2)

among all sampled populations across Switzerland and in the

Gran Paradiso National Park, the founder population of all extant

Alpine ibex populations. The most parsimonious explanation for

the introgression of Caib-DRB*2 is that the introgression originated

from a successful hybridization between domestic goats and Alpine

ibex in the Gran Paradiso National Park prior to the reintroduc-

tion of Alpine ibex across the Alps. The domestic goat breed

Valdostana bred in the vicinity of the Gran Paradiso National

Park shows striking phenotypic similarities to Alpine ibex (http://

eng.agraria.org). This is indicative of efforts to interbreed Alpine

ibex with domestic goats in this region. We suggest that the Caib-

DRB*2 allele was introduced to Swiss populations through animals

in the captive breeding program at a period of historically low

Alpine ibex population sizes. The low extant frequency of Caib-

DRB*2 in the population of Gran Paradiso may be explained by

the fact that the population passed through a bottleneck after

animals were reintroduced to Switzerland [24].

As the domestic goat MHC DRB is highly polymorphic,

multiple successful introgression events may have introduced

different MHC DRB alleles into Alpine ibex populations.

However, this is unlikely for several reasons. We found no hybrids

in the surveyed populations suggesting that hybridization events

were rare over the past decades or that hybrids had a lower fitness

compared to Alpine ibex. Furthermore, some domestic goat MHC

DRB alleles may not be of adaptive value for Alpine ibex and,

hence, genetic drift may have prevented the successful establish-

ment of such alleles.

Alpine ibex are a genetically impoverished species and were subject

to considerable species conservation efforts. Introgression is generally

considered a threat for species conservation: small populations of

endangered species may be substituted with hybrid individuals and

introgression may be maladaptive [48]. Introgression from domes-

ticated species into their wild relatives is of particular concern as

shown in the case of the American bison [49]. However, introgression

from domestic species was shown to be adaptive in wolves [50] and

Soay sheep [18]. MHC introgression from domesticated species may

contribute to the genetic rescue of wild relatives.

Conclusions
We showed that introgression from domestic goats into Alpine

ibex generated variation at the previously monomorphic MHC

DRB locus. MHC DRB introgression in Alpine ibex is likely adaptive

by broadening the MHC sequence repertoire and thereby

conferring an improved immune response. The MHC is a

susceptible genomic region for adaptive introgression because

balancing selection is expected to favor introgression [17,19] and

alleles are likely to be compatible among species. Introgression may

well be an underappreciated mechanism generating the extraordi-

nary genetic diversity at the MHC [16]. Our study supports the view

that a broad range of loci under balancing selection may be

susceptible to adaptive introgression and will encourage future

research to identify unexpected signatures of introgression.

Materials and Methods

Sampling
We analyzed 754 Alpine ibex samples from 40 populations

across Switzerland, six Swiss wildlife parks and a population from

the Gran Paradiso National Park in Italy (Figure 1A). The sample

size per population varied between 1–61 individuals (average

n = 16, Table S1). Allele frequencies reported in the main text and

on Figure 1 are based on populations with n.12. 707 individuals

were used to study linkage between the two microsatellites

OLADRB1 and OLADRB2 (see below). Samples were collected

either as tissue, blood or hair. See [25] for detailed information on

the populations and sampling procedures.

Sanger sequencing of DRB exon 2
We based our analyses on a total of 98 exon 2 sequences of the

MHC DRB class II locus sequenced by Alasaad et al. [28]. In

addition to previously published sequences, we sequenced 78

Figure 3. Alpine ibex and goat genotypes in 750 kb region surrounding the MHC DRB. RAD sequencing SNP genotypes in a 750 kb region
with increased expected heterozygosity (see Figure S3). A representative set of Alpine ibex individuals (A) homozygous for Caib-DRB*1 (n = 10) and (B
and C) carrying Caib-DRB*2 (n = 10) are shown in the top panels. (D) The corresponding RAD sequencing SNP genotypes for 9 domestic goat
individuals. SNPs with a minor allele frequency of less than 0.1 within Alpine ibex were excluded. Alpine ibex carrying Caib-DRB*2 are nearly
exclusively heterozygous at the RAD sequencing SNP loci and share alleles both with Alpine ibex homozygous for Caib-DRB*1 and with domestic
goats.
doi:10.1371/journal.pgen.1004438.g003
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Alpine ibex individuals (Table S4) at the DRB exon 2. This locus is

homologous to BoLA-DRB3 and Ovar-DRB1 of cattle and sheep,

respectively (Figure 1C). A nested PCR was performed using the

primer pair HL030 (located at the boundary of the first intron and

second exon), HL031 and HL032 (both located at the boundary of

the second exon and second intron, [27]). The 236 bp PCR

product was Sanger sequenced on a 3730 DNA Analyzer (Life

Technologies, Inc.). Samples of nine individuals were extracted

and sequenced two times independently. Sequences were edited

and manually corrected in Geneious, version 6.05 (Biomatters,

Inc.). The MHC region of cattle and sheep is homologous to goat

chromosome 23 and there is strong colinearity between goat and

cattle chromosomes [40]. We verified the sequence homology

using BlastN to search the NCBI Genbank database. The closest

Figure 4. Linkage disequilibria (LD) and haplotype clustering in the region surrounding the MHC of Alpine ibex. (A) LD heatmap (r2) of
chromosome 23 for the Alpine ibex population Cape au Moine. The color gradient scale represents the range of r2 values. Red is used for the highest
estimates of linkage disequilibrium. The chromosomal position of SNP16397 (diagnostic for Caib-DRB*2) is indicated by a blue asterisk. The red circle
shows a SNP of a low minor allele frequency (0.06) that may explain the low LD. (B) NeigborNet networks were constructed from SNP haplotypes in
three regions of chromosome 23. Caib-DRB*1 and Caib-DRB*2 haplotypes are colored in green and red, respectively. Networks are shown separately
for three chromosomal sections of similar length comprising 7, 21 and 3 SNPs, respectively.
doi:10.1371/journal.pgen.1004438.g004
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hits to our sequences were previously published DRB exon 2

sequences of Alpine ibex and domestic goats. The MHC class II

DRB in domestic goats is located on chromosome 23 at 24.9 Mb

and is fully contained on scaffold2167 [40]. Correspondence to

BoLA-DRB3 and Ovar-DRB1 was verified by BlastN searching the

DRB exon 2 sequence in the cattle and sheep genomes (Figure 1C).

Microsatellite genotyping
We genotyped all 754 Alpine ibex individuals at the microsat-

ellite OLADRB1, known to be associated to the MHC region on

chromosome 23 [28,32]. A subset of 707 Alpine ibex individuals

was genotyped at the microsatellite locus OLADRB2 located in

the same region. OLADRB1 is directly adjacent to the second

Figure 5. Linkage disequilibrium (LD) heatmaps of chromosome 23 for Alpine ibex populations and domestic goat breeds. (A) The
Alpine ibex populations Albris, Rheinwald and Cape au Moine (shown on Figure 4A) have a high frequency of allele Caib-DRB*2 (Table S5). The
Weisshorn population has a low frequency of Caib-DRB*2 (Table S5). Populations with a high frequency of Caib-DRB*2 showed larger blocks of strong
LD than the Weisshorn population. The asterisks show the position of SNP16397, which was diagnostic for Caib-DRB*2. See Figure S5 for LD heatmaps
of all chromosomes of population Albris. (B) In all six domestic goat breeds, LD blocks were generally small.
doi:10.1371/journal.pgen.1004438.g005
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exon of MHC DRB [32]. The forward primer of OLADRB1

overlaps with the primers HL031 and HL032. OLADRB2 (also

known as OLADRB, Genbank UniSTS: 251420) has been

localized to the BoLA-DRB2 gene in cattle and is located at

107 kb from exon 2 of MHC DRB and OLADRB1 (161 kb in

sheep, Figure 1C). See Table S6 for primer sequences and

references. PCR conditions for OLADRB2 were as described in

[25]. For OLADRB1, we used a reaction volume of 6 ml

containing 1.5 ml (3–30 ng) of DNA template, 0.4 mM of both

forward and reverse primers and 3 ml Qiagen Multiplex PCR Kit.

PCR cycling conditions included an initial denaturation step at

95uC for 15 minutes. Microsatellite quality controls and genotyp-

ing procedures were followed according to [25].

Sanger sequencing of DRB regions surrounding exon 2
The DRB1 gene of domestic sheep was mapped to scaffold2167

of the reference genome of domestic goat. Primers were designed

in introns 1 to 4 and 39 UTR of exon 6 to amplify four loci

including partial sequences of introns 1–4 and the complete intron

5 and the 39 UTR of exon 6. In addition, the loci comprised

complete sequences of exons 3, 5 and 6. For the PCR

amplification we used a total reaction volume of 25 ml containing

0.5 mM of both forward and reverse primers, 0.2 mM of each

dNTPs, 2.5 ml 106 Buffer and Taq Polymerase. PCR cycling

conditions included an initial denaturation step at 94uC for 3

minutes, 35 cycles of 30 sec at 94uC, 30 sec at 54uC, 1 min at 72

uC and a final extension of 7 min at 72 uC. See Table S7 for

primer sequences. A total of 2253 bp were sequenced according to

the protocol described above.

Seven Alpine ibex homozygous for Caib-DRB*1 and seven

Alpine ibex homozygous for Caib-DRB*2 were sequenced.

Sequenced individuals were chosen according to their genotype

at the microsatellite OLADRB1 as described above. Sixteen

domestic goat individuals representing five different breeds were

sequenced at the locus containing partial sequences of intron 2.

Five individuals covering the sequence diversity found at intron 2

were chosen for sequencing at all four loci. Sequences were edited

and manually corrected in Geneious, version 6.05. Heterozygous

sites were called if homozygote individuals for each allele were

identified.

RAD library preparation
RAD library preparation was performed according to [51]

except for the following modifications. A total of 1.35 mg of

genomic DNA of each sample was digested with the restriction

enzyme Sbf1 (New England Biolabs) in a total volume of 50 ml (one

hour at 37uC, heat inactivation at 65uC for 20 min, slowly ramp

down {,0.1 uC/s}). For the P1 ligation, adapters containing a

unique 6 bp barcode (3.5 ml of 100 nM stock prepared according

to [51]), 0.5 ml T4 DNA ligase (New England Biolabs; 2,000,000

Weiss Units/ml) and 4.4 ml H2O were added to each sample and

incubated at room temperature overnight. This was followed by

Figure 6. Decay of linkage disequilibria (LD) on chromosome 23. (A) The decay of pairwise linkage disequilibria (r2) among each pair of SNPs
is shown against the corresponding physical distances. The three Alpine ibex populations Albris, Cape au Moine and Rheinwald showed high Caib-
DRB*2 frequencies and a slow decay in LD over distance. Caib-DRB*2 was rare in the Weisshorn population and the LD decay is steeper. Rho (r) values
provide estimates of the LD decay with higher values indicating steeper decays and shorter LD blocks. For details on Caib-DRB*2 allele frequencies
see Table S5. (B) LD decay in six domestic goat breeds. The LD decay is much steeper in domestic goats than in Alpine ibex populations.
doi:10.1371/journal.pgen.1004438.g006

Introgression as a Source of MHC Variation

PLOS Genetics | www.plosgenetics.org 11 June 2014 | Volume 10 | Issue 6 | e1004438



heat inactivation at 65uC for 20 min and slow cool down to room

temperature. Samples were pooled before shearing in a COV-

ARIS (Duty Factor: 5%; Peak incidence: 105; Cycles per Burst:

200: Time: 75 s). Size selection (300–700 bp) of the purified DNA

fragments was performed using a CALIPER. The excised DNA

was purified and blunt-ended (New England Biolabs). 1 ml dATP

and 3 ml Klenow enzyme (New England Biolabs) were added

(30 min at 37uC) and P2 adapters (1 ml of 10 mM stock) were

ligated (0.5 ml rATP of 100 mM; 1 ml of 2,000,000 Weiss U/ml

T4 DNA Ligase, New England Biolabs). After purification ligation

products were PCR amplified using Phusion High-Fidelity DNA

polymerase in a total volume of 120 ml: 50.4 ml H2O, 60.0 ml Phusion

High Fidelity Master Mix, 2.4 ml primers (10 mM), 4.8 ml library

template. Amplification master mixes were divided into 6 separate

20 ml reactions: 98uC 30 s; 14 cycles {98uC 10 s, 65uC 30 s, 72uC

30 s}; final extension for 59 at 72uC. All purification steps

were performed using a MinElute PCR purification kit

(Qiagen) according to the manufacturer’s recommendations. The

library was sequenced on an Illumina HiSeq 2000 platform (100 bp,

paired-end).

The FASTX-toolkit was used for P1 barcode splitting (http://

hannonlab.cshl.edu/fastx_toolkit/index.html) and Trimmomatic

0.30 (www.usadellab.org/cms/index.php?page = trimmomatic)

was used for adapter and quality trimming. Reads were then

aligned to the domestic goat reference genome [40] using Bowtie2

2.1.0 [52]. Genotypes were called using UnifiedGenotyper

(GATK, version 2.6.5; [53,54]) and filtered using VariantFiltration

and SelectVariants (QD,2.0, MQ,30.0, 212.5.MQRank-

Sum.12.5, FS.40.0, HaplotypeScore.12.0, ReadPosRank-

Sum,28.000, QUAL.30.0, AN.20).

Figure 7. Extended haplotype homozygosity (EHH) plots and bifurcation diagrams. (A) The EHH plot (left panel) of the Alpine ibex
population Cape au Moine shows the length of conserved haplotypes on both sides of the SNP diagnostic for Caib-DRB*2 (SNP16397). EHH = 1
indicates that all haplotypes containing the SNP allele (either SNP16397/A or SNP16397/G) are identical up to this position. EHH for SNP16397/G
(diagnostic for Caib-DRB*2) is shown in red and the EHH for SNP16397/A (diagnostic for Caib-DRB*1) is shown in green. The bifurcation diagrams
(center and right panel) show the branching of haplotypes on both sides of SNP16397. Branches at nodes suggest historical recombination events
and the splitting of the haplotype at the node position. The bifurcation diagram for SNP16397/G (diagnostic for Caib-DRB*2) shows much longer
haplotypes and fewer branchings at nodes than the bifurcation diagram for SNP16397/A (diagnostic for Caib-DRB*1). (B) The EHH plot and bifurcation
diagram for the domestic goat breed Gemsfarbige Gebirgsziege show much shorter haplotypes and more extensive branching at nodes for both SNP
alleles. See Figures S6 and S7 for additional Alpine ibex populations and domestic goat breeds.
doi:10.1371/journal.pgen.1004438.g007
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PGDSpider version 2.0.3.0 [55] was used for data format

conversions and to remove genotypes with a genotyping phred-

scaled quality score lower than 20. PLINK v. 1.0.7 [56] was used

for additional genotype filtering. We required a genotyping rate of

SNPs.70% and a minor allele frequency.0.01. PLINK was also

used to calculate expected heterozygosity. The R package

{ggplot2} was used for data visualization.

SNP Illumina BeadChip genotyping and filtering
We used a recently developed Illumina InfiniumHD BeadChip

[42]. The BeadChip comprises 53’347 SNP markers with known

physical locations on the goat genome. We genotyped 96 Alpine

ibex individuals from four populations (Albris, Cape au Moine,

Rheinwald and Weisshorn; n per population 23–24, Table S5).

Populations were chosen in order to cover different frequencies of

the putatively introgressed MHC DRB allele (Table S1) and the

three genetically distinct regions of Alpine ibex [see 25]. In

addition, we genotyped 188 domestic goats covering six Swiss

breeds: Bündner Strahlenziege, Capra Grigia, Saanenziege, Nera

Verzasca, Kupferziege, Gemsfarbene Gebirgsziege (20–49 indi-

viduals per breed; see Table S5 for details on sampling).

We used GenomeStudio version 2011.1 for SNP calling and

quality filtering. We used PLINK v. 1.0.7 [56] for further locus

filtering. Twelve individuals (including one Alpine ibex) were

discarded because we required a genotyping rate of at least 90%

per individual. Furthermore, SNPs with a genotyping rate lower

than 90% (2,817 SNPs) and a minor allele frequency in Alpine

ibex below 0.01 (49,832 SNPS) were removed from the data set.

Twenty-one additional SNPs were removed because of an

observed heterozygosity of one, which may be due to the presence

of a duplicated region. A total of 677 SNPs were retained with a

genotyping rate of 98% in the remaining individuals. A minor

allele frequency of 0.05 (570 SNPs) was applied for the linkage

disequilibrium analysis, resulting in a genotyping rate of 99.6%.

PGDSpider version 2.0.3.0 [55] was used for data format

conversions.

Phylogenetic and population genetic analyses
We constructed haplotype networks of phased SNP data

(fastPHASE version 1.4.0, [57]) based on the Neighbor-Net

algorithm implemented in Splitstree 4.13.1 [43]. The networks

were based on the uncorrected p distance using concatenated SNP

loci. Pairwise linkage disequilibrium (LD; r2) estimates among

SNPs were obtained using the R package {genetics}. Heatmaps of

pairwise LD estimates were produced using the function

LDheatmap in R package {LDheatmap}. In order to investigate

the decay of LD over distance, a regression of r2 values against

pairwise distance was plotted (Figure 6). The expected values of r2

were computed using non linear least squares (nls in R) as shown in

the following function by [58].

E r2
� �

~
10zC

2zCð Þ 11zCð Þ

� �
1z

3zCð Þ 12z12CzC2
� �

n 2zCð Þ 11zCð Þ

� �

Where n is the number of haplotypes, C = r * distance[bp] and

r= 4Ner (population recombination rate). All LD analyses were

performed for each Alpine ibex population and domestic goat

breed separately.

The software STRUCTURE [39] was used in order to search

for recent hybrids. See figure legends S1 and S2 for details on

parameter values.

Measures of the extended haplotype homozygosity (EHH, [46],

Figures 7, S6, S7) were calculated from phased data (fastPHASE

version 1.4.0, [57]) using the R package {rehh} [59]. The same

package was used for the bifurcation diagrams. We used physical

distances for the EHH analyses and refrained from performing

statistical tests, as we did not have access to genotyped Alpine ibex

families and, hence, estimates of genetic distances.

MHC DRB sequence diversity analyses
For the comparisons of MHC DRB exon 2 sequences among

species of the subfamily Caprinae, a BlastN of Caib-DRB*1 was

performed in Geneious version 6.05 (Biomatters, Inc.). Sequences

were aligned using MAFFT v7.023b [60]. We used the R function

dist.dna {ape} (model = ‘‘raw’’, proportion of sites that differ

between each pair of sequences, no mutation model) to calculate

genetic distances between all pairs of sequences. As most published

sequences were shorter than our sequenced DRB exon 2 fragment,

we used a universal 227 bp sequence length to calculate percent

identities. We used R to identify sequences shared among species.

This comparison was done both for 236 bp (112 sequences unique

within species) and 227 bp (332 sequences unique within species).

We tested for evidence of recombination at the MHC DRB

using the Ww-statistic developed by [41] implemented in

Splitstree4 [43], We used the default window size of 100 and

k = 5 (Alpine ibex) and k = 3 (domestic goats).

Supporting Information

Figure S1 Genetic clustering of domestic goat and Alpine ibex

based on microsatellites. The software STRUCTURE was used to

identify the group assignment of 1781 Alpine ibex (yellow) and 182

domestic goats (blue) genotyped at 30 neutral microsatellites [this

study and 25]. We also included three known recent F1 hybrids

(see zoomed section). Except for the three known F1 hybrids, we

did not detect any other recent hybrids (q,0.02). The parameters

for the STRUCTURE analysis were as follows: K = 2, length of

burnin period: 20’000; number of MCMC replicates after burnin:

80’000; ancestry model: admixture; allele frequency model: allele

frequencies correlated among populations.

(EPS)

Figure S2 Genetic clustering of domestic goat and Alpine ibex

based on SNP chip data. The software STRUCTURE was used

to identify the group assignment of 95 Alpine ibex (yellow) and

177 domestic goats (blue) based on 546 genotyped SNPs.

STRUCTURE assumes that markers are either at linkage

equilibrium or weakly linked. Therefore, we pruned out loci in

strong linkage disequilibrium within species using the option ‘‘—

indep 50 5 20 in PLINK (window size in number of SNPs: 50;

number of SNPs to shift the window at each step: 5; variance

inflation factor criterion (VIF) threshold: 2). VIF is calculated as

VIF = 1/(12R2), where R2 is the multiple correlation coefficient

for a SNP being regressed on all other SNPs in a certain window

simultaneously (in our analyses a window of 50 SNPs spans the

entire chromosome). A VIF of 1 implies that the SNP is

completely independent of all other SNPs within the window. We

did not detect any recent hybrids (q,0.08). The parameters for

the STRUCTURE analysis were as follows: K = 2, length of

burn-in period: 20’000; number of MCMC replicates after

burnin: 80’000; ancestry model: admixture; allele frequency

model: allele frequencies correlated among populations. STRUC-

TURE results were consistent when running the analyses either

using all 677 SNPs or using different models (admixture model or

the linkage model).

(EPS)
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Figure S3 Increased heterozygosity in a 750 kb region sur-

rounding the MHC DRB in Alpine ibex carrying Caib-DRB*2. (A)

Sliding window of expected heterozygosity for nine domestic goat

individuals genotyped using RAD sequencing (window size:

500 kb). (B) Sliding window of expected heterozygosity for 15

Alpine ibex individuals homozygous for Caib-DRB*1 (blue) and 15

Alpine ibex individuals carrying Caib-DRB*2 (green). (C) Number

of RAD sequencing SNPs per 100 kb polymorphic (minor allele

frequency = 0.01) in domestic goats (light blue) and Alpine ibex

(dark blue).

(EPS)

Figure S4 Linkage disequilibrium (LD) block size of chromo-

some 23 compared to the other chromosomes. (A) Distribution of

different LD strength classes for all SNP pairs up to a distance

of 6 Mb. We included all three populations with a high frequency

of Caib-DRB*2 (Albris, Cape au Moine, Rheinwald) and all

chromosomes except the sex chromosome (chromosome 30). The

distribution of LD is shown for three different classes: strong (r2.

0.8), moderate (0.5,r2,0.8) and weak (0.2,r2,0.5) LD. LD

blocks on chromosome 23 (red) were generally longer than on the

other chromosomes (blue) for the same class of LD strength. (B)

Global distribution of LD strength classes on chromosome 23 (red)

compared to all other chromosomes (blue). In order to avoid

potential effects of variable marker densities among chromosomes,

we restricted the plot to SNP pairs of a distance below 1 Mb. High

measures of LD were more frequent on chromosome 23 than on

other chromosomes. (C) Boxplots of pairwise distances among

SNPs for the different chromosomes. Only SNP pairs of a distance

below 1 Mb are shown as in panel B.

(EPS)

Figure S5 Linkage disequilibrium (LD) heatmaps for all

chromosomes of the Albris population. The color gradient scale

represents the range of r2 values. Red is used for the highest

estimates of linkage disequilibria. The signature of strong linkage

disequilibria observed on chromosome 23 was exceptional when

compared with other chromosomes. However, the SNP density in

the region surrounding the MHC DRB was high compared to

other chromosomal regions. To control for potential effects of

marker density, we show a comparison of LD block size between

chromosome 23 and the other chromosomes and an overview of

marker densities in Figure S4.

(EPS)

Figure S6 Extended haplotype homozygosity (EHH) plots and

bifurcation diagrams for Alpine ibex populations. The EHH plot

(left panel) of the Alpine ibex populations Albris, Cape au Moine

and Rheinwald shows the length of conserved haplotypes on

both sides of the SNP diagnostic for Caib-DRB*2 (SNP16397).

An EHH = 1 indicates that all haplotypes containing the SNP

allele (either SNP16397/A or SNP16397/G) are identical up to

this position. EHH for SNP16397/G (diagnostic for Caib-DRB*2)

is shown in red and the EHH for SNP16397/A (diagnostic for

Caib-DRB*1) is shown in green. The bifurcation diagrams (center

and right panel) show the branching of haplotypes on both sides

of SNP16397. Branches at nodes suggest historical recombina-

tion events and the splitting of the haplotype at the node

position. The bifurcation diagram for SNP16397/G (diagnostic

for Caib-DRB*2) shows much longer haplotypes and fewer

branchings at nodes than the bifurcation diagram for

SNP16397/A (diagnostic for Caib-DRB*1). EHH and bifurcation

analyses were not possible for the Weisshorn population, because

there was only one haplotype containing SNP16397/G. See also

Table S5.

(EPS)

Figure S7 Extended haplotype homozygosity (EHH) plots and

bifurcation diagrams for domestic goat breeds. The EHH plot and

bifurcation diagram for six domestic goat breeds show much

shorter haplotypes and more extensive branching at nodes for both

SNP alleles. See Figure S6 for further details on EHH and

bifurcation diagrams.

(EPS)

Table S1 Allele frequencies of Caib-DRB*2 estimated using the

microsatellite OLADRB1 in Alpine ibex populations.

(DOCX)

Table S2 Number of MHC DRB exon 2 alleles found in Caprinae

species. We report the mean pairwise sequence distances based on

236 bp sequence length. Numbers in parenthesis show pairwise

distances for 227 bp sequence lengths. Distances are based on the

percentage of sites that differ between each pair of sequences.

(DOCX)

Table S3 NCBI accession numbers and corresponding species

names for MHC DRB exon 2 sequences that are shared among

species pairs. Comparisons are based on 227 bp sequence lengths.

References documenting the occurrence of hybrids among the

species pairs are shown if available.

(DOCX)

Table S4 Caib-DRB genotypes identified through Sanger sequenc-

ing, SNP chip (SNP16397) and microsatellite genotyping (OLADRB1)

for all individuals sequenced at the DRB exon 2. Column rep indicates

samples that were sequenced twice. Column RAD indicates samples

that were used for RAD sequencing. MHC DRB exon 2 and

microsatellite genotypes are combined from [28] and this study.

(DOCX)

Table S5 Sample sizes of Alpine ibex populations and domestic

goat breeds included in the SNP genotyping. The allele

frequencies at SNP16397 (diagnostic for Caib-DRB*2) are shown

for each population and breed, respectively.

(DOCX)

Table S6 Microsatellites linked to the MHC DRB locus. Names

in italic and brackets are synonyms for the microsatellite names

used in the text. 1) Chromosomal location and gene region; 2) Ta:

annealing temperature; 3) Number of cycles.

(DOCX)

Table S7 Primer sequences used for amplifying four loci of the

MHC DRB gene of Alpine ibex and domestic goat. Locus ‘‘Intron

4 - Exon 6’’ corresponds to the locus spanning partial intron 4,

exon 5, intron 5, exon 6, 39 UTR and was amplified using two

primer pairs.

(DOCX)

Text S1 MHC DRB sequence alignment. Partial intron 1.

(DOC)

Text S2 MHC DRB sequence alignment. Partial intron 2.

(DOC)

Text S3 MHC DRB sequence alignment. Partial intron 2, exon

3, partial intron 3.

(DOC)

Text S4 MHC DRB sequence alignment. Partial intron 4, exon

5, intron 5, exon 6, 39 UTR.

(DOC)
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7. Kloch A, Babik W, Bajer A, Siński E, Radwan J (2010) Effects of an MHC-DRB

genotype and allele number on the load of gut parasites in the bank vole Myodes

glareolus. Mol Ecol 19 Suppl 1: 255–265. doi:10.1111/j.1365-294X.

2009.04476.x.

8. Oliver MK, Telfer S, Piertney SB (2009) Major histocompatibility complex

(MHC) heterozygote superiority to natural multi-parasite infections in the water

vole (Arvicola terrestris). Proc Biol Sci 276: 1119–1128. doi:10.1046/j.1440-1711.

1998.00772.x.

9. Westerdahl H, Asghar M, Hasselquist D, Bensch S (2012) Quantitative disease

resistance: to better understand parasite-mediated selection on major histocom-

patibility complex. Proc Biol Sci 279: 577–584. doi:10.1098/rspb.2011.0917.

10. Spurgin L, Richardson DS (2010) How pathogens drive genetic diversity: MHC,

mechanisms and misunderstandings. Proc Biol Sci 277: 979–988. doi:10.1098/

rspb.2009.2084.

11. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major

histocompatibility complex. Heredity 96: 7–21. doi:10.1038/sj.hdy.6800724.

12. Van Oosterhout C (2009) A new theory of MHC evolution: beyond selection on

the immune genes. Proc Biol Sci 276: 657–665. doi:10.1098/rspb.2008.1299.

13. Takahata N, Satta Y, Klein J (1992) Polymorphism and balancing selection at

major histocompatibility complex loci. Genetics 130: 925–938.

14. Schierup MH, Vekemans X, Charlesworth D (2000) The effect of subdivision on

variation at multi-allelic loci under balancing selection. Genet Res 76: 51–62.

15. Figueroa F, Günther E, Klein J (1988) MHC polymorphism pre-dating

speciation. Nature 335: 265–267. doi:10.1038/335265a0.

16. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison

to new mutation and standing variation as sources of adaptive variation. Mol

Ecol 22: 4606–4618. doi:10.1111/mec.12415.

17. Castric V, Bechsgaard J, Schierup MH, Vekemans X (2008) Repeated adaptive

introgression at a gene under multiallelic balancing selection. PLoS Genet 4:

e1000168. doi:10.1371/journal.pgen.1000168.

18. Feulner PGD, Gratten J, Kijas JW, Visscher PM, Pemberton JM, et al. (2013)

Introgression and the fate of domesticated genes in a wild mammal population.

Mol Ecol: 22: 4210–4221. doi:10.1111/mec.12378.

19. Wegner KM, Eizaguirre C (2012) New(t)s and views from hybridizing MHC

genes: introgression rather than trans-species polymorphism may shape allelic

repertoires. Mol Ecol 21: 779–781. doi:10.1111/j.1365-294X.2011.05401.x.

20. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, et al. (2011) The

shaping of modern human immune systems by multiregional admixture with

archaic humans. Science 334: 89–94. doi:10.1126/science.1209202.

21. Vila C, Seddon J, Ellegren H (2005) Genes of domestic mammals augmented by

backcrossing with wild ancestors. Trends Genet 21: 214–218. doi:10.1016/

j.tig.2005.02.004.
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