
Figure 6 A-D: Evidences of OTUs estimated by hFDR with phylogeny (A and
C) or correlation tree (B and D) represented on phylogeny (A and B) or
correlation tree (C and D). OTUs detected as differential are colored in purple,
those tested but not detected as differential in yellow. E-F: Abundances of
OTUs detected only by the correlation tree in different environments. OTU
547579 in E is hightlighted with a red star in B and D. Environment are
abbreviated as SO: soil, SE: sediment, OC: ocean, CK: creek, FW: fresh water,
SK: skin, TO: tongue, FE: feces, MO: mock.

the global FDR computation used in hFDR which controls the FDR in the worst453

case scenario. The actual global FDR could be much lower than this pessimistic454

bound.455
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3.4.2 Analysis of Chaillou dataset456

The Chaillou dataset consists of 64 samples uniformly distributed across 8 food457

types (ground veal, ground beef, poultry sausages, sliced bacon, shrimps, cod458

fillet, salmon fillet, smoked salmon). Differential abundances of OTUs from459

the Bacteroidetes phylum (97 OTUs) across food types was tested with hFDR460

procedure (α = 0.01, both phylogeny and correlation tree). The test had a global461

a posteriori FDR of 0.04 for both the phylogeny and the correlation tree and462

detected 28 differential OTUs with the phylogeny and 34 with the correlation463

tree. Similarly, with a 0.04 FDR level, vanilla BH leads to 55 discoveries.464

Unlike the Chlamydiae dataset, only 22 OTUs were detected by both methods.465

Careful examinations of those 22 show that each of them (i) is missing, or below466

the detection level, in at least one of the 8 food type of the studies whereas and467

(ii) has high prevalence (≥0.75%) and abundance in at least one other food type.468

We can thus classify those 22 as true positives rather than false discoveries.469

The abundance profiles of the 18 OTUs found only by the correlation tree470

(hereafter cor-OTUs) or the phylogeny (phy-OTUs) (Sup. Fig. S5) show marked471

differences across the the 8 food types, validating their differential status. As was472

the case in the Chlamydiae dataset, cor-OTUs are often isolated in the phylogeny473

(Sup. Fig. S6) and thus not even tested during the hierarchical procedure as they474

are averaged with low-signal taxa.475

In contrast, phy-OTUs are often close to detected taxa in the correlation-476

tree but not detected because of the F -test implemented in StructSSI. For477

example, the three phy-OTUs 0656, 1495 and 0241 belong to a cluster of five478

shrimp-specific OTUs but the two others (0516 and 0519) have some outlier479

counts and comparatively higher counts that the three phy-OTUs (Sup. Fig. S7,480

right). Aggregation at internal nodes leads to high variance which decreases the481

significance of the F -test: p-values at the internal nodes do not pass the threshold482

and the leaves are not tested. Replacing the F -test with the Kruskal-Wallis test,483

which is more robust to outliers, led to the detection of all OTUs (Sup. Fig. S7,484

left).485

3.4.3 Analysis of genera in Zeller dataset486

The Zeller dataset consists of gut microbiomes from 199 subjects that are487

healthy (n = 66), suffer from adenomas (n = 42) or from colorectal cancer488

(n = 91). Differential abundances of genera across medical conditions was tested489

with z-score smoothing, using several tree (no tree or standard BH, taxonomy,490
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Figure 7 Number of detected genera (left) or MSPs (right) according to the
p-value threshold. Left: with α = 0.05, 14 genera are detected with taxonomy,
random correlation tree and BH while 16 species are detected with correlation
tree and random taxonomy. Right: with α = 0.05, 85 MSPs are detected by
BH and 90 by correlation tree.

correlation tree, randomized correlation tree and randomized taxonomy) and491

several FDR threshold levels.492

Fig. 7 (left panel) shows the number of genera detected by each tree at each493

threshold. While the correlation tree detects the most taxa and BH the least at494

almost all threshold values, the differences between all trees are very small (one495

or two taxa only). In particular, at α = 0.05, all methods detected either 14 or496

16 genera.497

In this example, the algorithm estimated ρ > 40 for the random trees and498

k < 10−7 for the correlation tree, effectively resulting in no smoothing of the499

z-scores. The corresponding values are ρ = 0.26 and k = 0.37 for the taxonomy.500

The z-scores were thus smoothed to a higher extent but this had almost no501

impact on the number of detected genera.502

3.4.4 Analysis of MSPs in Zeller dataset503

Repeating the same analysis at the MSP, rather than genus, level gave similar504

results. Among the 878 MSP and using α = 0.05, 234 were detected without505

correction, 90 with the correlation tree, 85 with standard BH and 77 with a506

random tree. Neither the taxonomy nor the phylogeny were available for the507

MSP and they were therefore not compared to the other methods.508

In that example k = 1.3× 10−7 and the tree has almost no impact on the509

z-scores and the corrected p-values (Sup. Fig. S8, bottom row). The 5 additional510

taxa detected with the correlation tree are indeed not clustered with other detect511

taxa and have BH-corrected p-values between 0.0505 and 0.0540 (Sup. Fig. S8,512

left row). The main differences between the two procedures does not lie in the513
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use of a hierarchical structure rather than in the way corrected p-values are514

computed: using permutations for the correlation and analytic formula for BH. It515

coincides with previous findings that permutation-based FDR control improves516

detection of differentially abundant taxa (Jiang et al., 2017).517

4 Conclusion and perspectives518

In this work, we investigated the relevance of incorporating a priori information519

in the form of a phylogenetic tree in microbiome differential abundance studies.520

Doing so was reported to increase the detection rate in recent work (Xiao et al.,521

2017; Sankaran and Holmes, 2014).522

The rationale rests upon the assumption that evolutionary similarity reflects523

phenotypic similarity. Taxa from the same clade should therefore be more likely524

to be simultaneously associated to a given outcome than distantly related taxa.525

Although this assumption sounds natural and supported by evidence for high526

level taxa such as phylum (Philippot et al., 2010), there are also many arguments527

against it for low level taxa such as species and strains. Previous work (Harris528

et al., 2014) even showed some degree of equivalence between species in the gut,529

i.e. species within the same ecological guild could replace each other during the530

assembly process.531

We considered here whether the phylogeny and taxonomy were good a532

priori trees to capture the structure of the abundance data, as captured by the533

correlation tree. In all the environments we studied, we found that the taxonomy534

and/or the phylogeny were significantly different from the correlation tree. Taxa535

with very similar abundance profiles could be widely spread in the phylogeny536

and vice-versa. The phylogeny was on average no closer to the correlation tree537

than a random tree, and thus not a good proxy of the abundance data structure.538

We further studied the impact of tree misspecification on two recently pub-539

lished tree-based testing procedures, z-score smoothing (Xiao et al., 2017) and540

hFDR top-down rejection (Yekutieli, 2008).541

Concerning z-score smoothing, we showed on synthetic data that substitut-542

ing the correlation tree to the phylogeny increased the detection rate. Quite543

surprisingly, replacing the phylogeny with a random tree also increased the544

detection rate (Fig. 5), questioning the use of the phylogeny in the first place.545

The results were even more disappointing on real datasets where all trees led to546

similar detection rates and none of them significantly outperformed standard547
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BH (Fig. 7). In the Zeller MSP dataset, the differences between procedures548

were limited (Sup. Fig. S7) and stemmed mostly from the way p-values were549

computed: i.e. using permutations for z-score smoothing and closed formula for550

BH. Overall, using phylogenetic information to smooth z-scores degrades the551

detection rate (at worst) or leaves it unchanged (at best).552

Top-down rejection (hFDR) gave more interesting results. Replacing the553

phylogeny or taxonomy with the correlation tree increased the detection rate,554

while preserving the global a posteriori FDR. In general, taxa detected with the555

correlation tree but not with the phylogeny belonged to clades of mostly non-556

differential taxa in the phylogeny (Fig. 6). Their signal was thus averaged with557

noise and they discarded early-on in the hierarchical procedure. In contrast, they558

were salvaged on the correlation tree as they belonged clades of taxa with similar559

abundance profiles. Unfortunately, hFDR suffers from two limitations. First, it560

has a lower detection rate than standard BH at the same global FDR level. This561

is likely a side effect of the definition of the global FDR in hFDR, i.e. FDR in562

the absolute worst case scenario. Second, the current implementation of hFDR563

in StructSSI is limited to F -test, which are ill-suited to highly non-gaussian564

microbiome data.565

Our conclusions are two-fold. First, the phylogeny does not capture the566

structure of the abundance data and should be replaced by a better hierarchical567

structure such as the correlation tree. Second, hierarchical methods in their568

current state do a poor job of leveraging the hierarchical information to increase569

the detection rates. Until better hierarchical methods are available (e.g. hFDR570

with support for more complex tests), we recommend sticking to the time-tested571

BH procedure for differential abundance analysis.572
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