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Abstract5

We consider the problem of incorporating evolutionary information (e.g. taxo-6

nomic or phylogenic trees) in the context of metagenomics differential analysis.7

Recent results published in the literature propose different ways to leverage8

the tree structure to increase the detection rate of differentially abundant taxa.9

Here, we propose instead to use a different hierachical structure, in the form of10

a correlation-based tree, as it may capture the structure of the data better than11

the phylogeny. We first show that the correlation tree and the phylogeny are sig-12

nificantly different before turning to the impact of tree choice on detection rates.13

Using synthetic data, we show that the tree does have an impact: smoothing14

p-values according to the phylogeny leads to equal or inferior rates as smoothing15

according to the correlation tree. However, both trees are outperformed by16

the classical, non hierachical, Benjamini-Hochberg (BH) procedure in terms of17

detection rates. Other procedures may use the hierachical structure with profit18

but do not control the False Discovery Rate (FDR) a priori and remain inferior19

to a classical Benjamini-Hochberg procedure with the same nominal FDR. On20

real datasets, no hierarchical procedure had significantly higher detection rate21

that BH. Although intuition advocates the use of a hierachical structure, be it the22

phylogeny or the correlation tree, to increase the detection rate in microbiome23

studies, current hierachical procedures are still inferior to non hierachical ones24

and effective procedures remain to be invented.25

1 Introduction26

The microbiota, loosely defined as the collection of microbes that inhabit a given27

environment, has become an increasingly important research topic in the last28

two decades as it proves to either play an active role or be associated with health29

conditions (Lynch and Pedersen, 2016; Opstelten et al., 2016). For instance,30

specific changes in microbiome composition have been associated to Inflammatory31

Bowel Diseases (IBD) (Morgan et al., 2012) and liver cirrhosis (Qin et al., 2014).32

The microbiota also influences efficiency of cancer therapy (Routy et al., 2018)33

and there is a growing interest in finding biomarker microbes that could be34

used predict the response to treatment (Behrouzi et al., 2019). The effect of the35

microbiota is not limited to human health: works in plant biology show that the36

root microbiota can improve resistance to stress (Trivedi et al., 2017). Molecules37

produced by the microbiota can also have a profound impact on stress tolerance38
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(Bernardo et al., 2017), plant health (Mendes et al., 2011) and pathogen control39

(Bartoli et al., 2018).40

There are two main approaches to profile the microbiome using sequence41

data: amplicon sequencing and whole genome shotgun (WGS) sequencing. In42

amplicon sequencing, a marker-gene that acts as a “barcode” (e.g. the 16S rRNA43

gene) and carries taxonomic information about the bacteria is first amplified and44

then sequenced whereas in WGS sequencing, the whole metagenome is sequenced45

with no prior amplification of a specific region. Although WGS sequencing is46

less affected by technical bias than amplicon sequencing and can profile both47

taxonomic and functional composition of the microbiome, it suffers from higher48

costs and requires complex bioinformatics pipelines. We focus in this work on49

taxonomic profiles.50

In the amplicon approach, sequence reads are first clustered into Operational51

Taxonomic Units (OTUs) using either a 97% sequence similarity threshold52

(Caporaso et al., 2010), threshold-free agglomerative approaches (Mahé et al.,53

2015; Escudié et al., 2017) or divisive approaches to produce taxonomic oligotypes54

(Eren et al., 2015) or Amplicon Sequence Variants (ASVs) (Callahan et al., 2016).55

Divisive and threshold-free agglomerative approaches achieve finer taxonomic56

resolutions than the threshold-based similarity approach. Using WGS in the57

ecosystems where a bacterial gene catalog is available, such as the human gut58

(Li et al., 2014) or the pig gut (Xiao et al., 2016), the standard approach consists59

in mapping the reads against the catalog and then clustering the bacterial60

genes based on their abundance profiles to produce metagenomic species (MGS)61

(Nielsen et al., 2014) or clusters of co-abundant genes to reconstruct microbial62

pan-genomes (MSP) (Plaza Oñate et al., 2018). We will refer to taxa, noting that63

the term can designate OTUs, ASVs, oligotypes, MGSs, MSPs and generally64

any feature found in abundance tables.65

The microbial taxa share a common evolutionary history that can be encoded66

by a phylogenetic tree. For amplicon sequencing, the phylogenetic tree of taxa67

can even be reconstructed based on the sequence divergence of taxa (Price68

et al., 2010). Related taxa are generally thought to perform similar biological69

functions. For example, Philippot et al. (2010) shows a strong association70

between taxonomic lineage and ecological niche in soil microbiota. Chaillou et al.71

(2015) reports similar associations in food microbial ecosystems. This observation72

prompts the development of several tree-based hierarchical methods, build under73

the assumption that taxa associated to a phenotype of interest are clustered in the74

tree (Martiny et al., 2015). Carroll et al. (2014) considers group-based procedures,75
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with groups defined as clades of the tree. Sankaran and Holmes (2014) proposes76

an implementation of the hierarchical testing procedure of Yekutieli (2008) aimed77

at leveraging the phylogenetic tree of the taxa to increase statistical power while78

controlling the False Discovery Rate (FDR). The FDR is unfortunately only79

known a posteriori, and the implemented testing-procedure is limited to one-way80

ANOVA with no correction for differences in sequencing depths. Matsen IV81

and Evans (2013) and Washburne et al. (2017) develop phylogenetic eigenvalues82

decomposition of species compositions for exploratory data analysis. Finally83

Xiao et al. (2017) uses the tree as a regularization structure to shrink the test84

statistics of close-by taxa towards the same value. They use a permutational85

procedure to control the FDR and report good empirical control of the FDR86

but the method lacks theoretical grounding.87

Unfortunately for phylogeny-based methods, the association between ecologi-88

cal niche and taxonomy reported in Philippot et al. (2010) holds for high-rank89

taxa but breaks down for lower-rank taxa. Furthermore, in a given ecological90

niche, it is unclear whether the genetic basis of a given phenotype lies in the91

core genome, shared by many taxa of a phylogenetic clade, or in mobile elements92

driving adaptation (Kazazian, 2004), and hence more spread out in the tree93

(Brito et al., 2016). We question in this work the premise that the phylogenetic94

(or taxonomic) tree is the relevant hierarchical structure to incorporate in differ-95

ential studies. We argue that the correlation tree, created from co-abundance96

data, is a better proxy of biological functions and can increase statistical power97

with no loss of FDR control in comparison to the phylogeny.98

Using several metrics (Billera et al., 2001; Robinson and Foulds, 1981) in the99

treespace and datasets from previous studies (Ravel et al., 2011; Zeller et al.,100

2014; Chaillou et al., 2015) with both narrow and broad environmental ranges,101

we study the distance between the phylogenetic tree and the correlation trees.102

We compare those distances to the average distance between (i) a focal tree103

(phylogeny or correlation) and a random tree and (ii) between two random trees104

to investigate the relationship between proximity in the tree and correlated105

abundances. We then assess the impact of tree selection on differential studies106

using both extensive simulation studies and reanalysis of previously published107

datasets. We compare the results obtained with the phylogeny, the correlation108

tree, and the standard Benjamini-Hochberg correction. Finally, we discuss the109

pros and cons of using one or the other in hierarchical procedures and some110

limitations of our work.111
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2 Material and Methods112

2.1 Trees113

We consider in this study different hierarchical structures, or trees: the phyloge-114

netic tree, the taxonomic tree and the correlation tree.115

Phylogenetic tree116

The phylogeny encodes the common evolutionary history of the taxa. In the117

amplicon context, it is usually reconstructed based on the sequence divergence118

of the marker-gene (Price et al., 2010) and branch lengths correspond to the119

expected number of substitutions per nucleotide.120

Taxonomic tree121

When the phylogeny is not avalaible but taxonomic annotations are, we fall back122

on the taxonomic tree instead. Inner nodes correspond to coarse taxonomic ranks123

(e.g. phylum, class, order, etc). The hierarchical structure is reconstructed from124

lineages extracted from regularly updated databases like the one from NCBI125

(Geer et al., 2009). Branch lengths correspond to the number of levels in the126

hierarchy: e.g. a branch between species-level and genus-level nodes has length127

1, a branch between species-level and genus-level nodes has length 2. Unlike128

phylogenetic trees, taxonomic trees are highly polytomic.129

Correlation tree130

The correlation tree is based on the abundance profiles of taxa across samples131

and built in the following way. We first compute the pairwise correlation matrix,132

using the Spearman correlation and excluding “shared zeros”, i.e. samples where133

both taxa are absent. We then change this correlation matrix into a dissimilarity134

matrix using the transformation x 7→ 1−x. Finally, we use hierarchical clustering135

with Ward linkage on this matrix to create the correlation tree. Branch lengths136

correspond to the dissimilarity cost of merging two subtrees.137

2.2 Distances between trees138

We consider two different distances between trees: the Robinson-Foulds distance,139

or RF (Robinson and Foulds, 1981), the Billera-Holmes-Vogtmann distance,140

or BHV, (Billera et al., 2001). Those distances are computed using different141
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characteristics of the tree (topology, branch lengths, etc) and emphasize different142

features.143

The RF distance is defined on topologies, i.e. trees without branch lengths,144

and based on elementary operations: branch contraction and branch expansion.145

A branch contraction step creates a polytomy in the tree by shrinking a branch146

and merging its two ending nodes whereas a branch expansion step resolves a147

polytomy by adding a branch to the tree. For any pair of trees, it is possible to148

turn one tree into the other using only elementary operations. The RF distance149

is the smallest number of operations required to do so. Note that the RF distance150

gives the same importance to all branches, no matter how short or long.151

The BHV distance is defined on trees and accounts for both topology and152

branch length. It is based on an embedding of tree into a treespace with a153

complex geometry. All trees with the same topology are mapped to the same154

orthant, and hyperplanes share a common boundary if and only if they are at RF-155

distance 2 (one contraction and one expansion step away). For any pair of trees,156

there is a path in treespace between those two trees. The BHV distance is the157

length of the shortest of these paths. It can be thought of as the generalization of158

the RF-distance that upweights long branches and downweights short branches.159

2.3 Forest of trees160

We generated a forest of boostrapped trees and a forest of random trees in161

the following way. For the boostrapped forest, we generated NB bootstrap162

datasets using resampling with replacement (Felsenstein, 1985; Wilgenbusch163

et al., 2017). Each bootstrap dataset was used to compute a correlation matrix164

and a correlation tree as detailed in Sec. 2.1.165

Random trees were generated from a seed tree by shuffling the leaves labels.166

This allowed us to generate a forest of random trees with the same number167

of branches as the seed tree. This is especially important for RF-distances as168

they scale with the number of branches and we want to study both non-binary169

taxonomic trees with a high number of polytomies and low number of branches170

and binary correlation trees, with a high number of branches. We generated NT171

random trees from the taxonomic tree and NC from the correlation tree.172

2.4 Testing tree equality173

The correlation tree is reconstructed from abundance profiles rather than molec-174

ular sequences and/or lineages and may therefore be poorly estimated. We use175
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the bootstrap forest to compute a confidence region around the correlation tree.176

The random trees were used to create a null distribution of distances between177

random trees.178

The full set of 2 + NB + NT + NC trees was used to construct BHV and179

RF distance matrices. The distance matrices were then used to visualize a180

2D-projection of all trees via Principal Coordinates Analysis (PCoA) (Gower,181

1966; Jombart et al., 2017; Wilgenbusch et al., 2017). Bootstrap trees were used182

to test whether the taxonomy was in the confidence region of the correlation tree183

whereas random trees were used to test whether the taxonomic and correlation184

trees were closer to each other than to random trees.185

We also compared the distance from the correlation tree to each group of186

trees using a one-way ANOVA.187

2.5 Differential abundances studies188

The literature abounds in differential analysis methods dedicated to abundance189

data (Soneson and Delorenzi, 2013). Most of them differ in the normalization and190

preprocessing steps (Dillies et al., 2013). Count data coming from metagenomic191

studies are very similar to those found in RNA-Seq studies. The former one may192

exhibit more zeros entries but the same types of normalizations and statistical193

models can be used for both types of data.194

In this paper, the focus is not on normalization and we used most classi-195

cal approaches in order to assess the impact of taking into account the data196

hierarchical structure in the differential abundance testing.197

We briefly present two methods for differential abundance testing (DAT)198

that leverage a tree-like structure: z-score smoothing as proposed in Xiao et al.199

(2017) and hFDR as proposed in Yekutieli (2008).200

2.5.1 z-scores Smoothing201

Given any taxa-wise DAT procedure, p-values (p1, . . . , pn) are first computed

for each taxa (leaves of the tree) and then transformed to z-scores using the

inverse cumulative distribution function of the standard Gaussian. Similarly,

the tree is first transformed into a patristic distance matrix (Di,j) and then

into a correlation matrix Cρ = (exp (−2ρDi,j)) between taxa. The z-scores

z = (z1, . . . , zn) are then smoothed using the following hierarchical model:

z | µ ∼ Nm
(
µ, σ2Im

)
7
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µ ∼ Nm
(
γ1m, τ

2Cρ

)
where µ captures the effect size of each taxa. The maximum a posteriori estimator

µ∗ of µ is given by

µ∗ =
(
Im + kC−1ρ

)−1 (
kC−1ρ γ1m + z

)
where k = σ2/τ2

and the FDR is controled using a resampling procedure. This method intuitively202

pulls effect sizes of taxa close-by in the tree towards the same value. k and ρ are203

hyperparameters controling the level of smoothing. Low (resp. high) values of ρ204

(resp. k) correspond to high smoothing. Finally, k, γ and ρ are estimated using205

generalized least-squares.206

2.5.2 Hierarchical FDR207

Hierarchical FDR (hFDR) considers a different framework where differential208

abundance can be tested not only for a single taxa but also for groups of taxa,209

corresponding to inner nodes or clades of the tree. hFDR uses a top-down210

approach: tests are performed sequentially and only for nodes whose parent node211

were previously rejected. Formally, the procedure is described in Algorithm 1.212

Let ch(N) be the children of a node N , L the leaves of the tree, D the set213

of rejected nodes (discoveries), S the stack of nodes whose children are yet to214

be tested and BHα(F ) the discoveries within family F when testing with a215

Benjamini-Hochberg procedure at level α.216

Algorithm 1 Hierarchical FDR

1: D ← ∅ Initialize discoveries

2: S ← Root Initialize stack

3: while S 6= ∅ do
4: choose N in S
5: N ← BHα(ch(N)) Discoveries in children of N

6: D ← D ∪N Update discoveries

7: S ← (S \N) ∪ (N \ L) Update stack

8: end while
9: return D for full-tree discoveries or D ∩ L for leaves discoveries

hFDR guarantees an a posteriori global FDR control for leafs at level217

α′ = 1.44× α× #discoveries + #families tested

#discoveries + 1
. (1)
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The hFDR procedure is illustrated in Fig. 1.218

Figure 1 Example wokflow of hFDR. Nodes are numbered from 1 to 12 and
the corresponding hypothesis are labeled H1 to H12. hFDR first tests and
rejects H1 and H2. It then tests the family (H3,H4), as children of H1, and
rejects H3 but not H4. H7 is tested and rejected, whereas neither H8 nor H9

are tested. It proceeds similarly in the tree rooted at node 2. In this example,
there are 3 leaf-level discoveries (H7, H10 and H12) and 5 families were tested.
Then the a posteriori global FDR for leaves is 1.44× α× 2. Figure adapted
from Yekutieli (2008).

2.5.3 Implementations219

These two algorithms are implemented in R packages (R Core Team, 2018):220

structFDR (Chen, 2018) for the z-scores smoothing and structSSI (Sankaran221

and Holmes, 2014) for hFDR.222

The z-scores smoothing algorithm as implemented in structFDR includes a223

fallback to standard, non hierarchical, independant tests when too few taxa are224

detected. It was not part of the original algorithm and we therefore used a vanilla225

implementation, with no fallback (see modified code in correlationtree pack-226

age), to specifically evaluate the impact of the tree in the procedure. structFDR227

requires the user to specify its test. We used non-parametric ones: Wilcoxon228

rank sum for settings with two groups and Kruskal-Wallis (Hollander and Wolfe,229

1973) for settings with three or more groups.230

In contrast, the hFDR procedure is only available for one-way ANOVA on231

the groups, and corresponding F -test, and does not correct for differences in232

sequencing depths. Moreover, we noticed that the global FDR control was off233

by the corrective factor of 1.44 in Equation (1). We corrected the output of234

structSSI to use the correct FDR values in our analyses.235
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2.6 Methods evaluation236

We tested the impact of tree choice on the performance of both procedures (z-score237

smoothing and hFDR) on real data and synthetic data simulated from real dataset238

in one of two following ways. The code and data used to perform the simulations239

are available on the github repository github.com/abichat/correlationtree analysis.240

2.6.1 Parametric Simulations241

The parametric simulation scheme is based on Xiao et al. (2018). First, a242

Dirichlet-multinomial model D(γ) is fitted to the gut microbiome dataset of243

healthy patients from Wu et al. (2011). Second, a homogenous dataset is created244

by sampling count vectors Si from the Dirichlet-Multinomial distribution: (i) a245

proportion vector αi is drawn from D(γ), (ii) the sequencing depth N is drawn246

from a negative binomial distribution NB(10000, 25) with mean 10000 and size247

25 and finally (iii) the counts Si of sample i are sampled from a multinomial248

distribution M(N,αi).249

Differential abundances are then produced as follows. First, each sample is250

randomly assigned to class A or B. Second, nH1
taxa (representing up to 20%251

of all taxa) were sampled uniformly among all taxa. Finally, the abundances of252

those taxa are multiplied by a fold-change (chosen in {5, 10, 15, 20}) in group B.253

The process is illustrated in Fig. 2.254

2.6.2 Non-Parametric Simulations255

Non-parametric simulations proceeded like the parametric ones detailed in 2.6.1256

with three major differences. First, we used a different dataset with homogeneous257

samples: the gut microbiome of healthy individuals from North America and258

Fdji Islands (Brito et al., 2016). Second, we did not fit a Dirichlet-Multinomial259

to the original dataset but used it as such, to preserve the potential complex260

correlation structure present in the dataset. Finally, differentially abundant taxa261

were sampled only from highly prevalent taxa (prevalence ≥ 90%) to ensure262

that DAT procedures were affected by effect size (fold-change) and hierarchical263

correction, rather than by sparsity.264

2.6.3 Accuracy Evaluation265

We used true positive rate (TPR) and FDR to evaluate the performance of266

z-scores smoothing used with five diffent trees: no tree or standard Benjamini-267
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Figure 2 Dataset generation process. A: original count data. B: samples
are randomly assigned to class A or B. C: nH1

taxa are randomly selected
among the most prevalent ones. D: Their abundances are multiplied by the
fold-change to produce the final count table.

Hochberg (BH), taxonomy, correlation tree, random taxonomy and random268

correlation tree. BH is our baseline and the random trees are here to evaluate the269

impact of uninformative trees, with different granularity levels, on the procedure.270

We evaluated hFDR by comparing the results obtained using either the271

taxonomy or the correlation tree in several datasets.272

2.7 Datasets273

We used seven different datasets for the experimental part (see Table 1 for274

a summary). One was used to study the difference between correlation and275

phylogenetic trees, one to assess the impact of three choice tree choice on276

11

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted February 7, 2020. . https://doi.org/10.1101/2020.01.31.928309doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.928309
http://creativecommons.org/licenses/by/4.0/


difference abundance testing, three for both and the last two to generate synthetic277

datasets as described previously. All datasets used in this study are available on278

the github repository github.com/abichat/correlationtree analysis.279

Three of the four datasets used for tree comparison (Ravel, Chaillou and280

Zeller) were chosen because they are well suited for bootstrapping correlation281

trees: they had enough samples and enough variability in taxa counts to ensure282

that a meaningful correlation tree could be computed on bootstrapped datasets.283

They also represent diverse microbiome with contrasted biodiversity levels:284

vaginal microbiome for Ravel, food-associated microbiome for Chaillou and gut285

microbiome for Zeller. Briefly, Ravel et al. (2011) studied a cohort of 396 North-286

American women from 4 ethnic groups using metabarcoding on the V1-V2 region287

of 16S rRNA gene. Chaillou et al. (2015) studied food-associated microbiota288

of 80 processed meat and seafood products using metabarcoding on the V3-V4289

region of the 16S rRNA gene. Zeller et al. (2014) considered the gut microbiota290

of 199 subjects (42 with adenomas, 91 with colorectal cancer and 66 healthy291

ones), using both shotgun deep sequencing and metabarcoding on the V4 region292

of 16S rRNA gene. Zeller refers to the 16S rRNA fraction of the data. Details of293

bioinformatics treatments used to produce abundance count tables are available294

in the respective publications. All datasets were aggregated at a given taxanomic295

level and taxa with a prevalence lower than 5% were filtered out.296

The fourth one (Chlamidya) was used in Sankaran and Holmes (2014) to297

assess the performance of hFDR and is an excerpt from the data collected in298

Caporaso et al. (2011). It consists of bacteria from the Chlamydia phylum and299

is distributed with StructSSI (Sankaran and Holmes, 2014). Finally, the Zeller300

MSP data originates from the same study as the Zeller data (Zeller et al., 2014).301

It was created from the shotgun data by reconstructing Metagenomics Species302

Pan-genomes (MSPs) abundance count table, as reported in Plaza Oñate et al.303

(2018). Briefly, reads were quality-filtered and unique reads were mapped against304

the 9.9 million Integrated Gene Catalog (Li et al., 2014) using BBmap (Bushnell,305

2014). The gene catalog is organized into 1696 MSPs and each MSPs has set a306

core genes. The relative abundance of each MSPs was computed by summing307

the relative abundances of all core genes in that MSP.308

The two datasets used to generate synthetic data are the Wu and Brito309

datasets. The former comes from Wu et al. (2011), a study linking the gut310

microbiome to alcohol consumption in 98 patients, and was used in Xiao et al.311

(2017). The latter originates from (Brito et al., 2016), where the gut microbiomes312

of 81 metropolitan North Americans were compared to those of 172 agrarian313
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Fiji islanders using a combination of single-cell genomics and metagenomics.314

The metagenomes of Fiji islanders is distributed as part of the R/Bioconductor315

CuratedMetagenomicsData package (R Core Team, 2018; Pasolli et al., 2017)316

and only the data from the 112 adults were kept, to make it as homogeneous as317

possible.318

Dataset Biome Rank Taxa Samples Analysis Publication
Chlamydiae Varied OTU 21 26 Tree & DA Caporaso et al. (2011)
Ravel Vaginal Genus 40 396 Tree Ravel et al. (2011)
Wu Gut OTU 400 98 Simulations Wu et al. (2011)
Zeller Gut Genus 119 199 Tree & DA Zeller et al. (2014)
Zeller MSP Gut MSP 878 199 DA Zeller et al. (2014)
Chaillou Food OTU 499/97 64 Tree & DA Chaillou et al. (2015)
Brito Gut OTU 77 112 Simulations Brito et al. (2016)

Table 1 Summary table of the different datasets used in this study with infor-
mation on biome type, taxonomic rank used for the analysis, corresponding
number of taxa, number of samples and analyses performed on the dataset:
comparison of the correlation and taxonomic trees (Tree), creation of syn-
thetic datasets (Simulations), or impact of the tree on differential abundance
procedures (DA).

3 Results and discussion319

3.1 The Taxonomy Differs from the Correlation Tree320

In all studied datasets, the correlation tree is closer to its bootstrap replicates321

than to either the taxonomy or the randomized trees (Fig. 3, top row). The322

differences are statistically significant (p < 10−16, one-way ANOVA with Tukey’s323

HSD post-hoc test).324

Similarly, the PCoA results (Fig. 3, bottom row) highlight two or three tree325

islands (Jombart et al., 2017): one for the correlation tree and its bootstrap326

replicates, one for the taxonomy and its randomized replicates and the final327

one for randomized correlation trees. All random trees can belong to the same328

island, as seen in the Ravel dataset. The first axis of PCoA represents 5 to 10%329

of the explained variance and systematically separates the taxonomy from the330

correlation tree. Moreover, the taxonomy is neither in the bootstrap confidence331

region of the correlation tree, nor closer to it than a randomized tree.332

The only exception is the Chlamydiae dataset, where the phylogeny is within333

the confidence region of the correlation (Sup. Fig. S1). Note however that this334
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Figure 3 BHV distances between various trees for three datasets: Ravel (left),
Zeller (center) and Chaillou (right). Top row: violinplots and notched boxplots
of distances to the correlation tree. The distance between taxonomy (or
phylogeny) and correlation is indicated by the red line. Bottom row: PCoA
projection of all distances on the principal plane. The correlation tree is in
purple (4), taxonomy (or phylogeny) in red (#), boostraped trees in blue,
random correlation trees and random taxonomies (or phylogenies) in green
and orange respectively.

dataset is very small (26 samples) and has many taxa with low abundances,335

resulting in an extremely large confidence region for the correlation tree. It is also336

the only one that covers environments ranging from stool to soil and freshwater337

and thus, for which ecological niche and taxonomy may overlap (Philippot et al.,338

2010).339

In light of these results, we find that the phylogeny is different from the340

correlation tree, especially when focusing on a single biome. In other words,341

taxa with similar abundance profiles are not clustered in the phylogeny and342

the phylogeny may therefore not be a good proxy to find groups of diffentially343

abundant taxa.344

Similar results are observed when using RF distance instead of BHV distance345

(Sup. Fig. S2).346
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3.2 Pros & Cons of the Different Trees347

Athough phylogeny (resp. taxonomy) are evolutionary (resp. ecologically)348

meaningful and increasingly available, they do not capture similarities between349

taxa in terms of abundance profiles. For example, if abundances are driven by a350

phenotype regulated by a mobile element (e.g. an antibiotic resistance gene),351

evolutionary and ecological histories are not informative. Furthermore, when352

performing differential abundance analyses with genes (metatranscriptomics) or353

metagenomics-based taxa such as MSPs and metagenome-assembled genomes,354

many of which are poorly annotated, neither a taxonomy nor a phylogeny is355

available.356

In contrast, the correlation tree is constructed from the abundance data and357

can thus always be used. By its very definition, it clusters taxa with similar358

abundance profiles. Unfortunately, it suffers from limitations of its own. First, it359

is estimated from the data and thus sufficient data should be available to build360

a robust correlation tree. Second, since the same data are used to build the361

correlation tree and to test differential abundance, some care should be taken not362

to overfit the data. For example, permutation-based tests are valid because the363

group labels are not used during the tree construction and are thus independent364

of the hierarchical structure (Goeman and Finos, 2012) but other tests should365

be used with caution.366

3.3 Simulation Study367

3.3.1 Non-Parametric Simulations368

Note first that z-smoothing numerically fails and does not produce any results369

in an average 4% of the simulations (ranging from 2% for the randomized370

correlation tree to 8% for the correlation trees). Second, the hyperparameters k371

and ρ controlling the level of smoothing are often very far from 1 (below and372

above, respectively) resulting in little to no smoothing. Fig. 4 shows the impact373

of smoothing on z-scores: in more than half of the simulations, the z-scores were374

shifted by less than 10−2 units in either direction. Among the different topologies375

tested, the phenomenum was the strongest for the correlation trees: the z-scores376

were shifted by more than 10−2 units in less than 5% of the simulations.377

Concerning FDR control, the standard BH procedure was the only one378

that achieved a nominal FDR rate below 5% across different fold changes and379

proportions of null hypothesis (Fig. 5, bottom row). All other procedures380
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exceeded the target rate, reaching nominal rates of up to 7%, when the number381

of null hypothesis grew beyond 90%.382

BH was similarly the most powerful method across all fold changes and383

proportions of null hypothesis (Fig. 5, top row), with correlation tree and384

randomized correlation trees coming close second and third. BH, correlation385

tree and randomized trees outperformed the taxonomy in all settings, resulting386

in TPR increase of up to 0.15.387

The quasi-equivalence between BH and correlation tree is not surprising given388

the absence of smoothing when using the correlation tree. The comparatively389

bad result of the taxonomy is also expected from our simulation settings as the390

taxonomy is independent from simulated differential abundance. Forcing the391

discoveries to be close in the tree therefore introduces a systematic bias and392

results in a loss of power, especially for differential taxa that are isolated, and393

an increase in false discoveries, especially for non-differential taxa that are close394

to differential ones.395

The better results of a priori uninformative random trees compared to the396

taxonomy were however more surprising, especially in light of the similar levels397

of smoothing for all those trees. It turned out that the random trees were, on398

average, closer to the correct correlation structure of differential taxa than the399

taxonomy and therefore had a lesser negative impact on the detection power.400

Figure 4 Average absolute difference between z-scores before and after smooth-
ing. In most simulations, smoothing only marginally changes the results.

It is clear from these results that using a tree reflecting the true data structure,401

such as the correlation tree, does not increase the number of discoveries but does402

not degrade the perforance of the method either. In contrast, using a wrong403
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Figure 5 Mean and Squared Error of the Mean (SEM) of the true positive rates
(TPR, top) and FDR (bottom) per different fold changes (facets) for non-
parametric simulations. The different FDR control procedures are color-coded.
Mean and SEM are computed over 600 replicates.

structure degrades the detection power from only slightly at best (for random404

trees) to quite a lot (taxonomy).405

3.3.2 Parametric Simulations406

Parametric simulations showed exactly the same patterns as non-parametric407

ones. Z-scores smoothing was limited in most replicates and almost always null408

when using the correlation tree (Supp. Fig. S3). BH was the only procedure409

with a nominal FDR below the target rate of 5% in all settings and all trees410

led to nominal above the threshold when the proportion of differential taxa was411

low (Supp. Fig. S4, bottom row). Finally, BH had the highest TPR among all412

methods (Supp. Fig. S4, top row).413

The results differed from the non-parametric ones in one important aspect: all414

methods had low TPR, below 0.15, whereas they achieve TPR higher than 0.85415

in the non-parametric setting. This difference is mainly due to the parametric416

simulation scheme, reused from Xiao et al. (2017): differential taxa are not417
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pre-filtered based on their prevalence and can thus have a very high proportion418

of zeros in the worst case. Multiplication by a fold-change, no matter how high,419

leaves those zeroes and their corrresponding ranks unchanged. This in turn420

strongly degrades the ability of the rank-based Wilcoxon test, to find differences421

between groups among those taxa.422

3.4 Analysis of Real Datasets423

3.4.1 Reanalysis of Chlamydiae dataset424

The Chlamydiae dataset consists of 26 samples distributed over 9 very different425

environments (feces, freshwater, human skin, sea, ...). Differential abundance426

of the OTUs across the environment was tested using the same parameters as427

in the original article (hFDR on the phylogeny, α = 0.1). The test identified428

8 differential OTUs with a global a posteriori FDR of α′ = 0.32. Substituting429

the correlation tree to the phylogeny in this analysis led to the detection of 3430

additional OTUs, at a comparable global FDR of α′ = 0.324.431

Abundance boxplots of these three additional OTUs (Fig. 6, insets E and432

F) show that these OTUs are much more abundant in soil samples and almost433

specific to that environment, validating their differentially abundant status. In434

that example, the correlation tree reflected the structure of the data better than435

the phylogeny and increases the power at no cost to the nominal FDR.436

Fig. 6 shows the location of evidences (e = − log10(p)) and differential OTUs437

on both the phylogeny and correlation trees. OTU 547579, highlighted with a438

red star, is one the three additional OTUs. It was not tested with the phylogeny439

because it is the only differential taxa in its clade (panel B) and its top-most440

ancestor was not rejected. In contrast, it belongs in the correlation tree to a441

group of soil-specific taxa and the hierarchical procedures sequentially rejected442

all its ancestors so that it was also tested and rejected.443

With this top-down approach, the correlation tree is a better candidate444

hierarchy than the phylogeny. Indeed, the signals of differential OTUs can be445

averaged out with noise and/or conflicting signal in the phylogeny, they are446

pooled together in the correlation tree. This makes it easier to reject high level447

internal nodes and descend the tree toward differential OTUs.448

It should be noted however that the a posteriori global FDR is quite high at449

0.324. Using the standard BH with a FDR of 0.324 results in 4 new discoveries,450

for a total of 15. hFDR, with either the correlation or the phylogeny, does not451

outperform the classical BH procedure. This discrepancy might be explained by452
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Figure 6 A-D: Evidences of OTUs estimated by hFDR with phylogeny (A and
C) or correlation tree (B and D) represented on phylogeny (A and B) or
correlation tree (C and D). OTUs detected as differential are colored in purple,
those tested but not detected as differential in yellow. E-F: Abundances of
OTUs detected only by the correlation tree in different environments. OTU
547579 in E is hightlighted with a red star in B and D. Environment are
abbreviated as SO: soil, SE: sediment, OC: ocean, CK: creek, FW: fresh water,
SK: skin, TO: tongue, FE: feces, MO: mock.

the global FDR computation used in hFDR which controls the FDR in the worst453

case scenario. The actual global FDR could be much lower than this pessimistic454

bound.455
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3.4.2 Analysis of Chaillou dataset456

The Chaillou dataset consists of 64 samples uniformly distributed across 8 food457

types (ground veal, ground beef, poultry sausages, sliced bacon, shrimps, cod458

fillet, salmon fillet, smoked salmon). Differential abundances of OTUs from459

the Bacteroidetes phylum (97 OTUs) across food types was tested with hFDR460

procedure (α = 0.01, both phylogeny and correlation tree). The test had a global461

a posteriori FDR of 0.04 for both the phylogeny and the correlation tree and462

detected 28 differential OTUs with the phylogeny and 34 with the correlation463

tree. Similarly, with a 0.04 FDR level, vanilla BH leads to 55 discoveries.464

Unlike the Chlamydiae dataset, only 22 OTUs were detected by both methods.465

Careful examinations of those 22 show that each of them (i) is missing, or below466

the detection level, in at least one of the 8 food type of the studies whereas and467

(ii) has high prevalence (≥0.75%) and abundance in at least one other food type.468

We can thus classify those 22 as true positives rather than false discoveries.469

The abundance profiles of the 18 OTUs found only by the correlation tree470

(hereafter cor-OTUs) or the phylogeny (phy-OTUs) (Sup. Fig. S5) show marked471

differences across the the 8 food types, validating their differential status. As was472

the case in the Chlamydiae dataset, cor-OTUs are often isolated in the phylogeny473

(Sup. Fig. S6) and thus not even tested during the hierarchical procedure as they474

are averaged with low-signal taxa.475

In contrast, phy-OTUs are often close to detected taxa in the correlation-476

tree but not detected because of the F -test implemented in StructSSI. For477

example, the three phy-OTUs 0656, 1495 and 0241 belong to a cluster of five478

shrimp-specific OTUs but the two others (0516 and 0519) have some outlier479

counts and comparatively higher counts that the three phy-OTUs (Sup. Fig. S7,480

right). Aggregation at internal nodes leads to high variance which decreases the481

significance of the F -test: p-values at the internal nodes do not pass the threshold482

and the leaves are not tested. Replacing the F -test with the Kruskal-Wallis test,483

which is more robust to outliers, led to the detection of all OTUs (Sup. Fig. S7,484

left).485

3.4.3 Analysis of genera in Zeller dataset486

The Zeller dataset consists of gut microbiomes from 199 subjects that are487

healthy (n = 66), suffer from adenomas (n = 42) or from colorectal cancer488

(n = 91). Differential abundances of genera across medical conditions was tested489

with z-score smoothing, using several tree (no tree or standard BH, taxonomy,490
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Figure 7 Number of detected genera (left) or MSPs (right) according to the
p-value threshold. Left: with α = 0.05, 14 genera are detected with taxonomy,
random correlation tree and BH while 16 species are detected with correlation
tree and random taxonomy. Right: with α = 0.05, 85 MSPs are detected by
BH and 90 by correlation tree.

correlation tree, randomized correlation tree and randomized taxonomy) and491

several FDR threshold levels.492

Fig. 7 (left panel) shows the number of genera detected by each tree at each493

threshold. While the correlation tree detects the most taxa and BH the least at494

almost all threshold values, the differences between all trees are very small (one495

or two taxa only). In particular, at α = 0.05, all methods detected either 14 or496

16 genera.497

In this example, the algorithm estimated ρ > 40 for the random trees and498

k < 10−7 for the correlation tree, effectively resulting in no smoothing of the499

z-scores. The corresponding values are ρ = 0.26 and k = 0.37 for the taxonomy.500

The z-scores were thus smoothed to a higher extent but this had almost no501

impact on the number of detected genera.502

3.4.4 Analysis of MSPs in Zeller dataset503

Repeating the same analysis at the MSP, rather than genus, level gave similar504

results. Among the 878 MSP and using α = 0.05, 234 were detected without505

correction, 90 with the correlation tree, 85 with standard BH and 77 with a506

random tree. Neither the taxonomy nor the phylogeny were available for the507

MSP and they were therefore not compared to the other methods.508

In that example k = 1.3× 10−7 and the tree has almost no impact on the509

z-scores and the corrected p-values (Sup. Fig. S8, bottom row). The 5 additional510

taxa detected with the correlation tree are indeed not clustered with other detect511

taxa and have BH-corrected p-values between 0.0505 and 0.0540 (Sup. Fig. S8,512

left row). The main differences between the two procedures does not lie in the513
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use of a hierarchical structure rather than in the way corrected p-values are514

computed: using permutations for the correlation and analytic formula for BH. It515

coincides with previous findings that permutation-based FDR control improves516

detection of differentially abundant taxa (Jiang et al., 2017).517

4 Conclusion and perspectives518

In this work, we investigated the relevance of incorporating a priori information519

in the form of a phylogenetic tree in microbiome differential abundance studies.520

Doing so was reported to increase the detection rate in recent work (Xiao et al.,521

2017; Sankaran and Holmes, 2014).522

The rationale rests upon the assumption that evolutionary similarity reflects523

phenotypic similarity. Taxa from the same clade should therefore be more likely524

to be simultaneously associated to a given outcome than distantly related taxa.525

Although this assumption sounds natural and supported by evidence for high526

level taxa such as phylum (Philippot et al., 2010), there are also many arguments527

against it for low level taxa such as species and strains. Previous work (Harris528

et al., 2014) even showed some degree of equivalence between species in the gut,529

i.e. species within the same ecological guild could replace each other during the530

assembly process.531

We considered here whether the phylogeny and taxonomy were good a532

priori trees to capture the structure of the abundance data, as captured by the533

correlation tree. In all the environments we studied, we found that the taxonomy534

and/or the phylogeny were significantly different from the correlation tree. Taxa535

with very similar abundance profiles could be widely spread in the phylogeny536

and vice-versa. The phylogeny was on average no closer to the correlation tree537

than a random tree, and thus not a good proxy of the abundance data structure.538

We further studied the impact of tree misspecification on two recently pub-539

lished tree-based testing procedures, z-score smoothing (Xiao et al., 2017) and540

hFDR top-down rejection (Yekutieli, 2008).541

Concerning z-score smoothing, we showed on synthetic data that substitut-542

ing the correlation tree to the phylogeny increased the detection rate. Quite543

surprisingly, replacing the phylogeny with a random tree also increased the544

detection rate (Fig. 5), questioning the use of the phylogeny in the first place.545

The results were even more disappointing on real datasets where all trees led to546

similar detection rates and none of them significantly outperformed standard547
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BH (Fig. 7). In the Zeller MSP dataset, the differences between procedures548

were limited (Sup. Fig. S7) and stemmed mostly from the way p-values were549

computed: i.e. using permutations for z-score smoothing and closed formula for550

BH. Overall, using phylogenetic information to smooth z-scores degrades the551

detection rate (at worst) or leaves it unchanged (at best).552

Top-down rejection (hFDR) gave more interesting results. Replacing the553

phylogeny or taxonomy with the correlation tree increased the detection rate,554

while preserving the global a posteriori FDR. In general, taxa detected with the555

correlation tree but not with the phylogeny belonged to clades of mostly non-556

differential taxa in the phylogeny (Fig. 6). Their signal was thus averaged with557

noise and they discarded early-on in the hierarchical procedure. In contrast, they558

were salvaged on the correlation tree as they belonged clades of taxa with similar559

abundance profiles. Unfortunately, hFDR suffers from two limitations. First, it560

has a lower detection rate than standard BH at the same global FDR level. This561

is likely a side effect of the definition of the global FDR in hFDR, i.e. FDR in562

the absolute worst case scenario. Second, the current implementation of hFDR563

in StructSSI is limited to F -test, which are ill-suited to highly non-gaussian564

microbiome data.565

Our conclusions are two-fold. First, the phylogeny does not capture the566

structure of the abundance data and should be replaced by a better hierarchical567

structure such as the correlation tree. Second, hierarchical methods in their568

current state do a poor job of leveraging the hierarchical information to increase569

the detection rates. Until better hierarchical methods are available (e.g. hFDR570

with support for more complex tests), we recommend sticking to the time-tested571

BH procedure for differential abundance analysis.572
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