C. Bartoli, L. Frachon, M. Barret, M. Rigal, C. Huard-chauveau et al., In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana, ISME J, vol.12, pp.2024-2038, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02373577

A. Behrouzi, A. H. Nafari, and S. D. Siadat, The significance of microbiome in personalized medicine, Clin. Transl. Med, vol.8, p.16, 2019.

L. Bernardo, C. Morcia, P. Carletti, R. Ghizzoni, F. W. Badeck et al., Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae, J. Proteomics, vol.169, pp.21-32, 2017.

L. J. Billera, S. P. Holmes, and K. Vogtmann, Geometry of the space of phylogenetic trees, Adv. Appl. Math, vol.27, pp.733-767, 2001.

I. L. Brito, S. Yilmaz, K. Huang, L. Xu, S. D. Jupiter et al., Mobile genes in the human microbiome are structured from global to individual scales, Nature, vol.535, p.435, 2016.

B. Bushnell, Bbmap: A Fast, Accurate, Splice-Aware Aligner, 2014.

B. J. Callahan, P. J. Mcmurdie, M. J. Rosen, A. W. Han, A. J. Johnson et al., Dada2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, vol.13, p.581, 2016.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, vol.7, p.335, 2010.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, C. A. Lozupone et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.4516-4522, 2011.

R. J. Carroll, R. L. Walzem, S. Muller, and T. P. Garcia, Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data, Bioinformatics, vol.30, pp.831-837, 2014.

S. Chaillou, A. Chaulot-talmon, H. Caekebeke, M. Cardinal, S. Christieans et al., Origin and ecological selection of core and foodspecific bacterial communities associated with meat and seafood spoilage, ISME J, vol.9, p.1105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204375

L. Chen, J. Reeve, L. Zhang, S. Huang, X. Wang et al., Gmpr: a robust normalization method for zero-inflated count data with application to microbiome sequencing data, PeerJ, vol.6, p.4600, 2018.

M. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Brief. Bioinform, vol.14, pp.671-683, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00782486

A. M. Eren, H. G. Morrison, P. J. Lescault, J. Reveillaud, J. H. Vineis et al., Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences, ISME J, vol.9, pp.968-979, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641245

F. Escudie, L. Auer, M. Bernard, M. Mariadassou, L. Cauquil et al., FROGS: find, rapidly, OTUs with galaxy solution, Bioinformatics, vol.34, pp.1287-1294, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626808

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, vol.39, pp.783-791, 1985.

L. Y. Geer, A. Marchler-bauer, R. C. Geer, L. Han, J. He et al., The NCBI biosystems database, Nucleic Acids Res, vol.38, pp.492-496, 2009.

J. J. Goeman and L. Finos, The inheritance procedure: multiple testing of tree-structured hypotheses, Stat. Appl. Genet. Mol. Biol, vol.11, pp.1-18, 2012.

J. C. Gower, Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, vol.53, pp.325-338, 1966.

K. Harris, T. Parsons, U. Z. Ijaz, L. Lahti, I. Holmes et al., Linking statistical and ecological theory: Hubbell's unified neutral theory of biodiversity as a hierarchical Dirichlet process, Proc. IEEE 105, pp.516-529, 2015.

M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, 1973.

L. Jiang, A. Amir, J. T. Morton, R. Heller, E. Arias-castro et al., Discrete false-discovery rate improves identification of differentially abundant microbes, vol.2, pp.92-109, 2017.

T. Jombart, M. Kendall, J. Almagro-garcia, and C. Colijn, treespace: statistical exploration of landscapes of phylogenetic trees, Mol. Ecol. Resour, vol.17, pp.1385-1392, 2017.

A. Jousset, C. Bienhold, A. Chatzinotas, L. Gallien, A. Gobet et al., Where less may be more: how the rare biosphere pulls ecosystems strings, ISME J, vol.11, pp.853-862, 2017.

H. H. Kazazian, Mobile elements: drivers of genome evolution, Science, vol.303, pp.1626-1632, 2004.

J. Li, H. Jia, X. Cai, H. Zhong, Q. Feng et al., An integrated catalog of reference genes in the human gut microbiome, Nat. Biotechnol, vol.32, pp.834-841, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195478

S. V. Lynch and O. Pedersen, The human intestinal microbiome in health and disease, N. Engl. J. Med, vol.375, pp.2369-2379, 2016.

F. Mahé, T. Rognes, C. Quince, C. De-vargas, and M. Dunthorn, Swarm v2: highly-scalable and high-resolution amplicon clustering, PeerJ, vol.3, p.1420, 2015.

J. B. Martiny, S. E. Jones, J. T. Lennon, and A. C. Martiny, , 2015.

, Microbiomes in light of traits: a phylogenetic perspective, Science, vol.350, p.9323

F. A. Matsen, . Iv, and S. N. Evans, Edge principal components and squash clustering: Using the special structure of phylogenetic placement data for sample comparison, PLoS ONE, vol.8, p.56859, 2013.

R. Mendes, M. Kruijt, I. De-bruijn, E. Dekkers, M. Van-der-voort et al., Deciphering the rhizosphere microbiome for diseasesuppressive bacteria, Science, vol.332, pp.1097-1100, 2011.

X. C. Morgan, T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol, vol.13, p.79, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736429

H. B. Nielsen, M. Almeida, A. S. Juncker, S. Rasmussen, J. Li et al., Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes, Nat. Biotechnol, vol.32, pp.822-828, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195477

J. L. Opstelten, J. Plassais, S. W. Van-mil, E. Achouri, M. Pichaud et al., Gut microbial diversity is reduced in smokers with Crohn's disease, Inflammatory Bowel Dis, vol.22, pp.2070-2077, 2016.

E. Pasolli, L. Schiffer, P. Manghi, A. Renson, V. Obenchain et al., Accessible, curated metagenomic data through ExperimentHub, Nat. Methods, vol.14, pp.1023-1024, 2017.

L. Philippot, S. G. Andersson, T. J. Battin, J. I. Prosser, J. P. Schimel et al., The ecological coherence of high bacterial taxonomic ranks, Nat. Rev. Microbiol, vol.8, p.523, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02668993

F. Plaza-oñate, E. Le-chatelier, M. Almeida, A. C. Cervino, F. Gauthier et al., MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data, Bioinformatics, vol.35, pp.1544-1552, 2018.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2-approximately maximum-likelihood trees for large alignments, PLoS ONE, vol.5, p.9490, 2010.

N. Qin, F. Yang, A. Li, E. Prifti, Y. Chen et al., Alterations of the human gut microbiome in liver cirrhosis, Nature, vol.513, pp.59-64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639870

. R-core-team, R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2018.

J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. Koenig et al., Vaginal microbiome of reproductive-age women, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.4680-4687, 2011.

D. F. Robinson and L. R. Foulds, Comparison of phylogenetic trees, Math. Biosci, vol.53, pp.131-147, 1981.

B. Routy, E. Le-chatelier, L. Derosa, C. P. Duong, M. T. Alou et al., Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors, Science, vol.359, pp.91-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126484

K. Sankaran and S. Holmes, structSSI: simultaneous and selective inference for grouped or hierarchically structured data, J. Stat. Softw, vol.59, p.1, 2014.

C. Soneson and M. Delorenzi, A comparison of methods for differential expression analysis of rna-seq data, BMC Bioinformatics, vol.14, p.91, 2013.

P. Trivedi, P. M. Schenk, M. D. Wallenstein, and B. K. Singh, Tiny microbes, big yields: enhancing food crop production with biological solutions, Microb. Biotechnol, vol.10, pp.999-1003, 2017.

A. D. Washburne, J. D. Silverman, J. W. Leff, D. J. Bennett, J. L. Darcy et al., Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets, PeerJ, vol.5, p.2969, 2017.

J. C. Wilgenbusch, W. Huang, and K. A. Gallivan, Visualizing phylogenetic tree landscapes, BMC Bioinformatics, vol.18, p.85, 2017.

G. D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y. Chen et al., Linking long-term dietary patterns with gut microbial enterotypes, Science, vol.334, pp.105-108, 2011.

J. Xiao, H. Cao, C. , and J. , False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing, Bioinformatics, vol.33, pp.2873-2881, 2017.

J. Xiao, L. Chen, S. Johnson, X. Zhang, C. et al., Predictive modeling of microbiome data using a phylogeny-regularized generalized linear mixed model, Front. Microbiol, vol.9, p.1391, 2018.

L. Xiao, J. Estelle, P. Kiilerich, Y. Ramayo-caldas, Z. Xia et al., A reference gene catalogue of the pig gut microbiome, Nat. Microbiol, vol.1, p.16161, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607746

D. Yekutieli, Hierarchical false discovery rate-controlling methodology, J. Am. Stat. Assoc, vol.103, pp.309-316, 2008.

G. Zeller, J. Tap, A. Y. Voigt, S. Sunagawa, J. R. Kultima et al., Potential of fecal microbiota for early-stage detection of colorectal cancer, Mol. Syst. Biol, vol.10, p.766, 2014.