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Abstract 

For the most part, molecular markers and detection of quantitative trait loci have been 

developed for forest tree species in view to performing marker assisted selection (MAS). 

However, MAS has not been applied to forest trees until now. In parallel, some success 

stories of MAS in crop breeding have been reported. Recently, genotyping techniques have 

undergone a tremendous increase in throughput, moving the trend from MAS to genomic 

selection. We analyzed 250 papers reporting the use of MAS in plant breeding and found that 

the most popular schemes used were gene pyramiding and marker-assisted backcross 

manipulating a single or very few genomic regions which have a major impact on crop value. 

We reviewed theoretical and simulation studies to identify the parametric space in which 

MAS is expected to bring about significant advantages over phenotypic selection. Then, we 

tried to explain why MAS has not been applied to forest trees and discuss the opportunities 

offered by recent advances in these species. 
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The breeding of plant and animal species of interest to human societies is based on the use of 

the genetic variation that underlies phenotypic variation for traits of interest. Breeding is a 

sequential process that starts with the evaluation of candidates for economically important 

and/or adaptive traits, and continues with the selection of the best candidates. The selected 

individuals are then used either for mass propagation of genetic gain, or to create new 

candidates by recombination. Traditionally for most breeding programs, the evaluation step is 

performed on the basis of phenotypes obtained from a genetically structured population, 

where inferences can be made on the genetic value underlying each phenotype. With the 

development of molecular genotyping techniques, it has become possible to obtain marker 

data on selection candidates and their relatives used to indirectly evaluate their breeding 

values. Molecular markers are defined as heritable traits which enable the characterization of 

the underlying genotype, whatever the age at evaluation and independently of the specific 

environment (Prat et al. 2006). One of their major properties is that each marker is a simply 

inherited trait affected by only one genetic locus, without epistasis. 

The use of molecular marker data to assist the breeding process is known as "marker-assisted 

breeding". Marker-assisted selection (MAS) is restricted to the use of markers as a substitute 

for or to assist genetic prediction and genetic screening. The basic idea of MAS is to exploit 

linkage disequilibrium (LD) between markers and quantitative trait loci (QTLs), i.e. non-

random association between marker and QTL alleles. Other uses of markers in breeding like 

fingerprinting and pedigree verification or reconstruction do not rely on LD. 

Several MAS breeding strategies have been proposed for plants, particularly those for which 

breeding depends on the development and use of inbred lines. For example, Hospital (2009) 

distinguished 5 groups of methods: (i) population screening, (ii) gene pyramiding, (iii) 

marker-assisted backcrossing, (iv) marker-based recurrent selection and (v) selection based on 

an index combining molecular and phenotypic scores. In the first three MAS methods, 

markers at loci of interest act directly as classification variables in the selection and screening 

processes. In population screening (i), genotypes of interest are identified on the basis of 

marker data, but the population screened is not necessarily built to maximize segregation on 

the basis of marker data, and the process is not recurrent. In gene pyramiding (ii), a population 

is recursively built from crosses to produce individuals that carry a maximum number of 

alleles of interest. The process can last several generations, depending on the number of 

alleles to accumulate, particularly if the ultimate goal is to obtain a single individual carrying 

all the alleles of interest. In marker-assisted backcrossing (iii), one (or a few) gene(s) from a 
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donor line is introgressed into the genetic background of a recipient line by repeated 

backcrossing. In this process, markers are used either to control the presence of the target 

allele or to accelerate the return to the recipient genetic background. For the last two MAS 

alternatives (iv and v), marker information is a variable in the prediction equations used to 

rank candidates. With marker-based recurrent selection (iv), also known as marker-assisted 

recurrent selection, breeding values are obtained solely on the basis of an explicit list of 

markers and when phenotypes for candidates are not yet available. With index selection (v), 

molecular and phenotypic data are combined to predict breeding values and to rank 

candidates. Marker information can be obtained long before phenotypic evaluations are 

available for all the candidates. In this case, selection can proceed in two separate steps, as in 

traditional independent culling level selection. In the first step, markers are used to determine 

the subset of candidates that will be subsequently evaluated by phenotyping in the second 

step. 

In recent years techniques revealing genetic polymorphisms have evolved rapidly. This has 

opened up new perspectives for genome-wide screening of polygenic traits in breeding 

programmes, with the emergence of "genomic selection", making current efforts in QTL-

based marker-assisted selection obsolete. Before we embark on this new revolution, a detailed 

review of what has been accomplished and what is still underway is needed. This is the 

intention of this paper, which gives particular emphasis to forest tree species. 

The objectives of this review are (1) to review the implementations of MAS reported in 

different plant species; (2) to define the parametric space in which MAS can be implemented 

advantageously; and (3) to explain why MAS has been rarely applied to forest trees and to 

discuss opportunities offered by recent progress in these species. 

 

1. When has MAS been applied in plant and trees? Lessons from the literature 

Several reviews and opinion papers on MAS in plants have pointed out that only a few 

examples have been effectively implemented, even though thousands of QTLs have been 

reported in various plant species and for various traits (Bernardo 2008). Although the 

conditions for efficient MAS have been studied quite extensively in theory, as reviewed in the 

next section, several challenges must be overcome in order to use this technique operationally 

(Grattapaglia 2007; Hospital 2009), explaining the present lag between theory and practice. 

To obtain a clearer and more objective idea of the use of MAS in plants, we undertook a 

meta-analysis of papers on MAS selected from two of the most popular bibliographic 
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databases, namely Web of Science® and CAB Abstracts®. The objective was to analyze the 

reasons and modalities of MAS implementation in a wide range of plant species. 

 

1.1 Selection of scientific publications 

The meta-analysis presented was derived from 750 peer reviewed papers potentially related to 

MAS experiments and selected on the basis of keywords and phrases describing MAS 

strategies (see Supplementary documents 1 and 2, and Supplementary Table 1). We searched 

the expression ‘Marker Assisted Selection’ (or its 25 derivatives) solely in the title of the 

articles to limit the number of hits when searching. 

 

1.2 Meta-analysis results 

A preliminary step before the meta-analysis was to classify the papers into one or several of 

the following five classes: "Application", "Development", "Simulations", "Review" and 

"others". In the "others" class, we included papers that did not deal with MAS in plants but 

with QTL detection, the development or validation of markers linked to QTLs or genes of 

interest, the evaluation of QTL effects in various environmental and genetic backgrounds, the 

development or review of methods for high throughput DNA extraction and genotyping, the 

management of genetic diversity and core-collection building, and with MAS in animals. The 

results of this classification are given in Table 1. The relatively high number of papers 

classified into "others" (about one third) reveals the misuse of the term "marker assisted 

selection" by some authors. 

In the next step, we focused on the Application class and recorded the species, the trait(s), the 

MAS scheme used and the number of genomic regions involved in the MAS process.  

The 250 papers concerned 37 species or groups of species of the same genus. It was 

sometimes difficult to identify the precise species when interspecific introgression was used 

(Figure 1). The species most represented was rice (74 papers), followed by wheat (37 papers) 

and maize (22 papers). Twenty species were represented by only one paper. The family most 

represented was Poaceae (159 papers), followed by Fabaceae (25 papers) and Solanaceae (22 

papers). Among the 37 species or species groups, we classified ten as trees, shrubs and 

perennials (Carica papaya, Manihot esculenta, Coffea arabica, Malus sp., Prunus sp., Pyrus 

pyrifolia, Rubus idaeus, Rosa sp., Simmondsia chinensis, Vitis vinifera) but none was a forest 

tree. The tree or perennial class was represented in 20 papers among which 7 concerned the 

apple tree. 
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We classified the application papers in seven broad categories on the basis of trait(s) targeted 

by MAS (Figure 2a). The category most represented was "biotic stress resistance", with more 

than half the studies, followed by product quality (around 20%). Most often, MAS concerned 

a single trait or closely related traits. 

The application papers were also sorted according to the five categories of MAS strategies 

defined above (Figure 2b). The most common scheme was marker-assisted backcross, 

whereas the use of a molecular and phenotypic score was very rarely employed. In 14 papers, 

two kinds of schemes were either compared to each other or used one after the other. 

We were able to identify the number of genomic regions targeted by MAS in 194 papers, 

either as the number of genes or QTLs or as the number of markers used in selection. 

Whenever the position in the genome of the markers used in selection was given, we counted 

as the same genomic region, markers located less than 20 cM apart from each other. The 

number of genomic regions targeted by MAS varied between 1 and 25, but most often, very 

few genomic regions were targeted, with 57% of the papers targeting one or two genomic 

regions (Figure 3). Only 6 papers comprised MAS targeting 10 or more genomic regions. The 

highest number of genomic regions targeted by MAS (25) was found in the study by Mayor 

and Bernardo (2009), which aimed at comparing 5 molecular and phenotypic scores in a 

multi-trait selection context. 

 

1.3 Motivation for implementing MAS 

Motivation for using MAS was explicitly expressed in only 66 of the 250 application papers. 

These motivations fall within one of the following four categories: 1) reduction of the 

difficulty and/or the cost of phenotypic evaluation (including problems linked to GxE 

interaction and low heritability); 2) gain in terms of time; 3) the possibility of applying greater 

selection intensity; and 4) the increased precision of genetic evaluation. These benefits were 

not quantified in most cases. 

When MAS targets a biotic stress resistance trait, motivations most often fall within 

categories 1 and 2. Markers enable piling up over several recombination cycles (gene 

pyramiding) several resistance genes controlling qualitative resistance in a single genotype, 

which is difficult to obtain by conventional phenotyping methods. Indeed, it would involve 

the evaluation of plants with several pathogen strains/isolates with known virulence by 

procedures that are usually extremely labour-intensive, while it is not always possible to find 

differential pathogen strains to distinguish the resistance genes (Vida et al. 2009). Moreover, 
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some interesting resistance genes are recessive, e.g. xa13 for bacterial blight resistance in rice, 

and co-dominant markers linked to this gene enable the identification of heterozygous plants 

without an additional generation of selfing needed for resistance testing (Basavaraj et al. 

2010). Quantitative resistance, which often hints at epistatic QTLs, can be evaluated and 

monitored more easily with molecular markers than with phenotypic tests (Ahmadi et al. 

2001). Finally, DNA-marker assays can be non-destructive, which is not always the case for 

phenotypic resistance tests (Perumalsamy et al. 2010). Thus, resistance gene pyramiding is 

one of the "success stories" of MAS. Susceptibility to plant pathogens has a significant impact 

on the economics of crop production and selection for resistance can add value to the products 

of breeding programs. 

Another example of a motivation falling into categories 1 and 3 is when MAS targets a 

product quality trait, like 'basmati' specific features in rice (Myint et al. 2009), absence of 

anti-nutritional factors in soybean seeds (Alves de Moraes et al. 2006), protein quality in 

maize (Babu et al. 2005) and malt quality in barley (Igartua et al. 2000). The advantage of 

using markers associated with the trait of interest is to avoid a phenotypic evaluation that 

often needs a large number of seeds. The relatively high costs of quality assessment tests set 

limits to sample sizes that can be phenotypically evaluated, and thus limit the genetic gain that 

can be obtained with phenotypic selection (Han et al. 1997). Crop quality traits are also often 

of great importance to create commercial value in crop products. 

Traits related to abiotic stress tolerance like nitrogen use efficiency (Dolstra et al. 2007), 

boron tolerance (Emebiri et al. 2009b) and drought tolerance that can involve several features 

such as osmotic adjustment (Levi et al. 2009) and root traits (Steele et al. 2006) also require 

laborious and time-consuming evaluation procedures, thereby making them very attractive for 

MAS. In these cases, the motivation for using MAS again belongs to category 1. 

A huge effort has been made to identify QTLs controlling yield genetic variation, a typical 

complex trait with moderate to low heritability, but few applications in MAS have been 

described. We found only 29 papers where yield or its components were targeted by MAS. A 

specific motivation for using MAS was not explicit in these papers and could be simply 

described as "it improves the efficiency of selection in crop improvement" (Mahmood et al. 

2005). 

Gain of time and precision (categories 2 and 4) are also expected from MAS in backcross 

breeding, where the objective is to expedite recovery of the recurrent parent genome: the use 

of background markers can reduce to two or three generations the time necessary to obtain 
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introgressed lines (Tanksley et al. 1989). MAS highlights the use of specific genetic variation 

present in non-domesticated populations and in related species. 

To sum up, the motivation for using MAS in plant breeding is most often related to 

foreground selection in which the breeder selects plants with marker alleles of the donor 

parent at the target loci while avoiding costly phenotypic assays (Hospital and Charcosset 

1997). The most popular MAS methods (marker-assisted backcrossing and gene pyramiding) 

are inadequate for handling economic target traits controlled by many small-effect genes, such 

as most yield traits in crops and in forest trees. Moreover, these strategies require several 

generations to obtain satisfying recombinants, which make them of limited interest for forest 

trees which generally reach sexual maturity late. Consequently, we will concentrate on the 

conditions for using MAS advantageously in the form of marker-based recurrent selection or 

selection on an index combining molecular and phenotypic scores. 

 

2. Parametric space of interest for the beneficial implementation of MAS 

The theoretical bases of MAS have been studied comprehensively since the seminal paper of 

Fernando and Grossman (1989). In this section, we review more recent theoretical studies to 

draw a general picture of the optimal conditions where MAS is expected to bring significant 

benefits over phenotypic selection. 

The theoretical genetic responses to MAS vary noticeably between studies. One of the main 

reasons is that there are no universal assumptions concerning underlying QTL effects, levels 

of genetic variation or breeding scenarios. Many of these theoretical studies were conceived 

with a livestock or annual crop species in mind. Only a few studies have evaluated the 

prospects of MAS for perennial crops (Kumar and Garrick 2001; Wong and Bernardo 2008), 

of which only the former corresponds to a forest tree species. Grattapaglia and Kirst (2008) 

reviewed in detail some of the pros and cons of MAS for Eucalyptus. 

Predictions of the benefits of MAS are generally based on simulations that assume a mixed 

inheritance for the phenotypic variation (Goddard 2001). It is denoted as “mixed” because 

true breeding values are the result of the effects of one or a few identified biallelic QTLs and 

a polygenic background of unidentified loci that are frequently modelled as a quantitative 

deviate from a normal distribution of known mean and variance. 

At the risk of oversimplification, we will consider only a few of the key factors in the 

literature relevant to the efficiency of MAS. These factors can be classified into: i) population 
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size and recruitment for selection; ii) level of variation of the targeted traits; iii) genetic 

architecture of the targeted traits; and iv) marker density. 

 

2.1. Population size and recruitment factors 

Two different populations of interest can be defined: (i) the population composed of related 

individuals which have been genotyped and phenotyped in order to identify the positions and 

effects of the QTLs and from which the effects of the selected markers will be derived, and 

(ii) the population composed of the candidate individuals on which selection will be carried 

out either on markers solely or on both markers and phenotypic evaluations. Unless otherwise 

stated, simulation studies reported in this review considered the population size (N) of the 

former population. Lande and Thompson (1990) studied MAS efficiency using a deterministic 

approach, assuming an infinite N. Under this hypothesis, the error in the estimation of QTL 

effects leading to bias in the estimation of MAS efficiency is negligible. However, sample 

finiteness is a crucial assumption. Moreau et al. (1998) evaluated MAS efficiency using 

analytical approaches with validation by simulation with finite N. The relative efficiency of 

MAS with respect to phenotypic selection increases with N, with already detectable nonzero 

relative efficiencies (>12%) in the range of N = 200~500. Increasing N increases the power of 

detection of underlying QTLs and the accuracy of the estimation of the marker effects, and 

thus favors MAS efficiency. Xu (2003) showed that decreasing N below 500~1000 leads to 

fewer detections of QTLs and an upward bias in the estimation of the effects of the detected 

QTLs. However, these previous studies assumed a classical single cross between two 

homozygous lines. When assuming outcrossing populations, minimum N requirements are 

expected to be raised, as pointed out by Grattapaglia and Kirst (2008). One example in Hayes 

et al. (2007) for abalone breeding showed detectable improvements of genetic gain over 

standard methods by 5 to 15%, with N varying between 1000 and 1500 individuals grouped 

into 20 unrelated full-sib families. Increasing family size favors accuracy in the estimation of 

QTL effects, as more observations per QTL can be used. 

The effect of varying N within attainable values in forestry (in the range 200~8000) has been 

considered among other key factors by Grattapaglia and Resende (2011). Although the study 

concerned genomic selection, some of the simplest scenarios were close to MAS. Increasing 

N leads to step improvements in accuracy whenever N is beyond 1000, with levels similar to 

classical evaluation with N equal to 2000. These values are intended for breeding populations 

with a relatively low effective population size of less than 30. Doubling the effective 
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population size (60) would require a roughly six-fold N to reach accuracies similar to those of 

the best classic BLUP evaluation. This raises another aspect related to population size and 

recruitment factors, which is that of effective population size (Ne). The population under 

evaluation most often comprises related groups, so that N >> Ne. In general, with decreasing 

Ne, the LD between markers and QTLs is expected to increase and therefore enhance the 

effectiveness of marker-based selection. Twenty-one studies implementing a molecular score 

and/or a molecular and phenotypic score in operational situations are comparable to the 

simulation studies. But we could find the size of the population used to detect QTLs and 

estimate their effects in only 4 of them (Flint-Garcia et al. 2003a; Han et al. 1997; Mahmood 

et al. 2005; Moreau et al. 2004), and it varied between 92 and more than 300 in populations 

derived from crosses between inbred lines. The studies with the lowest population sizes were 

at the lower bound of what theoretical studies recommend as optimal. 

 

2.2 Level of variation for the targeted traits 

Heritability (h2) is an expectation derived at a population level expressing how a phenotype is 

a good predictor of the underlying breeding value (see Visscher et al. 2008). Most often, in 

simulation studies on MAS, the only genetic component of variation of use is the additive 

variance, which is the numerator of the narrow-sense heritability. As h2 increases, the benefits 

of using markers to infer genotypic values decreases, limiting MAS to traits with low h2. Most 

of the simulation studies covered here assumed a single value for h2 within the range of 

0.025~0.35 and with an average of 0.24. Not surprisingly, this value is representative of many 

quantitative and complex traits. 

Over a full range of h2 (0.05~0.95), Moreau et al. (1998) found that the domains with the 

highest efficiency for MAS correspond to the lowest third of the h2 range. However, with very 

low h2, QTL effects are poorly estimated, which reduces MAS efficiency. With higher h2, 

MAS tends to perform like phenotypic selection. An optimal range of h2, between 0.15~0.2, 

and confirmed by other studies, leads to the highest efficiencies for MAS compared to 

phenotypic selection (Dekkers 2007; Grattapaglia and Resende 2011). Thanks to an increase 

in statistical power, this optimal h2 point decreases with increasing N (Moreau et al. 1998). 

Ollivier (1998) and Xie and Xu (1998) obtained a similar range of optimal h2 (0.1~0.3) in a 

within-family and a two-stage MAS scheme respectively. With a multiparental mating design 

similar to a partial factorial mating design, Blanc et al. (2008) confirmed previous findings 

with medium to low heritabilities (h2 ≤0.25) resulting in the highest efficiencies for MAS over 
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phenotypic selection at a given time horizon, leading to an additional gain from 25% up to 

150%. Among the 21 studies reporting the implementation of MAS with a molecular score or 

a phenotypic and molecular score, we found an indication of the estimated heritability of traits 

under selection in only 10 publications, and its range (0.07 to 0.9) was too wide to draw 

conclusions. 

 

2.3 Genetic architecture for the targeted traits 

QTL numbers and QTL effects on the targeted trait reflect the extent to which we know the 

underlying genetic model. In addition to and associated with the numbers and effects of 

QTLs, the percentage of trait variation accounted for by the known QTLs is relevant for 

MAS. Most MAS schemes assumed in theoretical studies comprise a single QTL or a small 

number of them, often with equal effects. This simple genetic architecture reflects the limits 

in QTL detection success for most quantitative traits at the time of the studies, in which the 

detected QTLs corresponded to those with large and purely additive effects. The traits for 

which variation is due to few genes with large effects would promptly respond to directional 

selection. When genes are few, each of them would take a larger share of selection pressure 

than what would happen under a multigenic scheme, correspondingly leading to faster 

changes in gene frequencies. 

This reasoning was demonstrated in the first simulation studies on MAS that considered, to a 

limited extent, a variation in QTL numbers between alternative scenarios. Edwards and Page 

(1994) compared MAS with 10 and 25 QTLs having equal effects, with the result that the 

responses with the 10 QTLs scenario were 5 to 20% faster. Similar trends were shown by 

Bernardo and Charcosset (2006) for scenarios with 10, 40 and 100 QTLs. Moreau et al. 

(1998) also explored different numbers of QTLs but sampled them in geometric distributions. 

For a given number of QTLs, a scenario with even QTL effects led to lower MAS efficiency 

compared to QTL effects in geometric distributions, with differences being particularly 

noticeable within an h2 range of 0.15~0.2. With a pedigree-based dairy-cattle dataset, 

Guillaume et al. (2008) found that MAS was more beneficial when there are fewer QTLs with 

large effects, with situations close to the infinitesimal model being less favorable for MAS. 

Geometrical or L-shape distributions of QTL effects are thought to reflect what is observed 

for many quantitative traits (Kearsey and Farquhar 1998; Bernardo 2008), in livestock (Silva 

et al. 2011), and in crops (Truntzler et al. 2010). 
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MAS efficiency greatly depends on the extent to which detected QTLs have a large effect and 

are able to explain the variation of the trait. In the classical paper by Lande and Thompson 

(1990), the dependencies of MAS efficiency on sample size, heritability and percentage of 

explained variation by selected QTLs were mathematically derived in the context of MAS. 

Increasing the percentage of variation accounted for by known QTLs leads to increasing MAS 

efficiency, with the dependency between these two parameters becoming greater as 

heritability decreases. To maintain a given level of MAS efficiency when the percentage of 

variation accounted for by known QTLs is low, it is necessary to increase the size of the 

sample. Numerical examples were provided by Moreau et al. (1998), where MAS efficiency 

for a trait of intermediate heritability (h2 = 0.3) increased from 10 to 30% when the percentage 

of explained variation by a QTL rose from 30 to 50%. 

To sum up, MAS efficiency is highest when selection targets one or a small number of QTLs 

of large effect and that account for a large percentage of the variation in the selected trait, 

ideally 30% or more. High numbers of QTLs make MAS inefficient particularly when 

segregating populations are of small size and favorable alleles are at low frequencies. Optimal 

selection strategies dealing with multiple QTLs have been proposed, mostly based on the 

explicit management of selection intensities (Chakraborty et al. 2002; Sánchez et al. 2006), 

which facilitate the implementation of MAS recurrently in complex scenarios. 

In 57% of the 250 application papers of our survey, the number of genomic regions targeted 

by MAS was one or two, which, according to simulations, facilitates the successful 

implementation of MAS. The most frequent MAS scheme behind such low QTL numbers was 

gene pyramiding or marker-assisted backcross while most of the simulation works assumed a 

molecular and phenotypic score scheme. 

 

2.4 Marker density 

MAS efficiency depends on the use of molecular markers to tag the QTLs during the selection 

process and particularly on the precision of QTL positions. This tagging process can be made 

more effective when genomic regions of interest are sufficiently covered by evenly spaced 

markers, with a given marker density (markers / cM, markers / base pairs [bp]). 

Increasing marker densities in MAS is expected to increase the likelihood of tagging close to 

a causal mutation and thus make the association between markers and QTLs more persistent 

at the population level. This association is defined as linkage disequilibrium (LD), which 

exists in natural populations and can be generated by hybridization between genetically 
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differentiated parents. LD is continually decreased by recombination. As a consequence of 

LD, markers are able to capture a portion of the quantitative variation that is accounted for by 

their neighboring QTLs. Therefore, MAS efficiency is based on the density of markers at the 

vicinity of relevant QTLs and the extent of LD between markers and causal QTLs. Both 

factors have been extensively considered in many simulation and theoretical studies on MAS 

but the amount of LD that is captured through a given level of marker density is population-

specific. Although it is assumed that LD declines with distance, this decline is known to be 

different within regions of the genome, between populations due to distinctive population 

histories and among species (Flint-Garcia et al. 2003b; Gupta et al. 2005; Sorkheh et al. 

2008). 

The key element when tagging already detected QTLs is their recombination distance to the 

closest flanking markers or the flanking bracket size, which is the interval in cM between 

markers containing a QTL. The shorter this bracket size the greater the potential superiority of 

using markers as proxies of QTLs in selection. Spelman and Bovenhuis (1998) considered a 

simple setup with two QTLs representing between 5 and 10% of phenotypic variation, with 

the rest coming from an infinitesimal polygenic model, and a nucleus of a thousand 

individuals structured into a close hierarchical family system. Decreasing the flanking bracket 

size of 15 cM down to 2 cM could result in a substantial gain of up to 30% for the first MAS 

generation, with better capture of the polygenic response in later generations for the narrower 

bracket size. In the best case of 2 cM, the advantage of MAS over a conventional system was 

between 5 and 15%. Bracket sizes down to 0.1 cM were considered by Villanueva et al. 

(2002) who assessed the benefits of recurrent MAS over a range of different parameters. At 

the smaller bracket size, the benefits over phenotypic selection were slightly lower than those 

obtained by Spelman and Bovenhuis (1998), because smaller population sizes, lower 

heritabilities and lower QTL effects were assumed. Three to four extra cycles were needed to 

attain the maximum accumulated benefit of 15%. Nevertheless, in the best case, benefits were 

still far from the theoretical maximum attainable by selecting directly on the QTL (20%), 

implying that there is room for improvement at higher densities. However, extra gains should 

be balanced against the cost of achieving proximity to the causal QTL by marker 

densification. 

The benefits of high densities are seen more clearly when assuming very large populations 

involving several families, as illustrated by Guillaume et al. (2008) in a dairy cattle dataset. 

They found a substantial gain in reliability, by replacing microsatellite markers by ten SNPs 
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within a 1cM bracket around the QTL, from 43% to 79% in comparison to classical selection. 

Here, reliability refers to the degree to which QTL transition and positioning is followed 

across the population, which is relevant to the selection accuracy of MAS. At the other 

extreme, sparse marker density or extensive linkage disequilibrium might lead to MAS 

inefficiency through uncertainties in the QTL effect estimates and inaccurate QTL positions. 

Mapping precision has been greatly improved by the combination of findings from linkage 

studies with QTL congruency investigations. Congruency studies result in positioning 

markers and QTLs on single consensus maps through the use of meta-analytical approaches. 

Tools have been developed based on this principle (e.g. Veyrieras et al. 2007). Although the 

impact of consensus maps on MAS efficiency has not yet been fully evaluated, it is 

reasonable to assume that selection accuracy would be improved and therefore benefit MAS. 

At the risk of oversimplification, we conclude this section by assuming three basic scenarios. 

Within the first scenario, MAS is based on QTLs detected for the first time, with large 

confidence intervals of more than 10 cM. In this situation, MAS is not expected to be of 

benefit in comparison to classical alternatives, unless the targeted QTLs have very large 

effects, selection is applied over one cycle and candidates result from a single crossing event. 

The second scenario is applied when fine-mapping over one or several lineages leads to 

confidence intervals of 1 to 5 cM. This situation is the most favorable for MAS according to 

theoretical predictions and is currently feasible in many species. In our MAS literature survey, 

we observed that the main plant species for which MAS is already in use meet these 

requirements: rice, wheat, maize, barley and soybean linkage maps are very dense (one 

marker every 2.2 cM or less, Harushima et al. 1998; Hyten et al. 2010; Somers et al. 2004; 

Szücs et al. 2009; Varshney et al. 2007) and close linkages have been observed between QTLs 

of interest and adjacent markers (Emebiri et al. 2009a; Jena and Mackill 2008; Kuchel et al. 

2005; Prasanna et al. 2010; Sebastian et al. 2010). The third scenario is applied after 

positional cloning. This will provide the upper bound in MAS efficiency, although at a very 

high cost in resources, allowing implementation over extended pedigrees and over several 

selection cycles. In our meta-analysis, we found several papers using a gene sequence-based 

marker for Xa21, a previously cloned rice gene for bacterial blight resistance (Basavaraj et al. 

2010; Bhatia et al. 2011; Chen et al. 2001; Chen et al. 2000; Huang et al. 1997) 
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2.5 Additional parametric and time considerations in MAS efficiency 

We reviewed some of the key parameters and their optimal ranges for efficient MAS: a 

population size of at least 1000 evaluations, selected traits of low to intermediate heritability, 

simple genetic architecture, and targeted QTLs flanked by marker brackets of less than a few 

cMs. This parametric exercise helps to set a baseline beyond which MAS is expected to be a 

breeding alternative as efficient as that of classical schemes. However, such a reduced set of 

parameters may lead to an oversimplified and even optimistic view of MAS. For instance, 

most MAS evaluations consider QTLs with pure additive effects (no dominance or epistasis). 

Non-additive genetic components may be of relevance for some traits and be successfully 

exploited through clonal selection. Although difficult to put into practice, unfavorable 

epistatic interactions between QTLs can eventually be dissected and broken down by the use 

of mapping and MAS (Causse et al. 2007; Knaap et al. 2002). Often, simulation studies 

consider even distributions of LD over the genome and even coverage of markers and QTLs. 

Such scenario could be too optimistic, particularly when breeding concerns specific genomic 

regions with close clusters of relevant QTLs (Mayor and Bernardo 2009). Finally, breeding 

often involves several traits of interest, which might present adverse genetic correlations that 

impair simultaneous gains. The latter situation was not considered explicitly when evaluating 

MAS by simulations in previous studies, although multivariate approaches of MAS have been 

proposed by Dekkers et al (2002) and Chakraborty et al (2002). 

Another factor of great importance is MAS efficiency per unit time. The use of markers has 

the potential to shorten the evaluation lag, for instance, in traits expressed only at mature ages, 

like grain yield, fruit quality traits in fruit trees or in traits with low juvenile-mature 

correlations such as production traits in forestry. Although selection accuracy can be affected 

by the use of molecular scores, the resulting selection could be very effective both cost-wise 

and time-wise. For species with long breeding cycles, such as those in tree breeding, this time 

factor can easily become very important. 

 

 

3. The past and future of marker assisted breeding in forest tree species 

3.1 Motivation to apply MAS in trees 

Genetic gains to increase the quantity and the quality of wood products have been achieved by 

conventional breeding in advanced breeding programs. Compared to traditional breeding, 

MAS for forest trees appears particularly attractive for four main reasons. 
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The first one is the possibility of early selection, which could highly reduce selection age. 

Two biological aspects of most forest trees are the fact that the full expression of 

economically important traits generally occurs late and that this late expression often shows 

poor correlations with the corresponding juvenile traits. Consequently, selection is currently 

performed at about one third of the rotation age (which means 2-3 years for Eucalyptus to 6-

12 years for Pinus spp.). However, the first step of selection on the basis of markers alone 

could be applied to seedlings as soon as material can be collected for DNA extraction, 

provided that reliable associations between markers and QTLs have been established 

previously. 

The second reason is the limitation of phenotyping costs. Trees are big organisms requiring 

large areas and a high number of replicates to manage stand development and periodical 

thinning operations. Moreover, some important traits in forest tree breeding are highly 

expensive to evaluate (wood quality) or / and difficult to obtain under natural conditions (pest 

resistance, drought tolerance). These phenotyping activities rely heavily on human labor, 

whose costs are not expected to drop. Genotyping, on the other hand, tends to get cheaper or, 

at least, to comprise larger numbers of assays per monetary unit. However, rigorous cost 

efficiency evaluations for MAS in forest tree breeding are still lacking. 

The third reason is the possibility of evaluating the genotypes of the breeding population more 

accurately by combining marker and phenotype information. This is of particular relevance 

for traits with low heritability, especially traits related to tree growth, like height and diameter 

(Cornelius 1994), and for new target traits for which phenotypic evaluations cannot be 

obtained with the required accuracy or population coverage within a reasonable time. 

Additionally, experimental tests in forestry tend to cover large areas, spreading most often 

over heterogeneous environments, which tend to decrease the signal to noise ratio and, 

therefore, the heritability estimates for traits affected by environmental variation. Markers 

also offer the invaluable possibility of tracking minor resistance genes, whose phenotypic 

expression can be masked by the epistatic effects of major resistance genes, so that genotypes 

with more durable resistance can be developed. 

The fourth reason is the possibility offered only by the use of molecular markers of 

monitoring inbreeding at the individual level and managing explicitly genetic diversity at the 

population level. Indeed, most commercially important forest tree species are still 

undomesticated, comprising huge outcrossing populations that harbor large levels of genetic 

diversity. Only a fraction of this genetic diversity has been captured in pedigrees, associated 
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with markers and evaluated, the rest being background diversity with unknown but potentially 

useful functions. Markers can be used to manage part of this background resource while 

proceeding with breeding, for instance, in a way similar to the optimum contribution selection 

proposed by Nielsen et al (2011). 

 

3.2 Understanding the lack of MAS implementations in forest trees 

We could not find any paper describing the implementation of MAS in forest trees. Xu and 

Crouch (2008) also reported that the annual number of articles on plants with the term 

“marker-assisted selection” has consistently lagged behind the number of articles with the 

term “quantitative trait locus”. The first hypothesis is that some MAS applications have been 

developed with no publication associated, for example in breeding programs managed by 

private companies. A second hypothesis is that until now various constraints have limited the 

application of MAS in plants. For forest trees, constraints relating to the development of MAS 

can be biological, socio-economical or technical. 

 

3.2.1 Biological issues 

Forest trees as well as most fruit trees reach sexual maturity quite late, compared to most 

domesticated crops and livestock. This long lag prevents breeders from gathering the full 

benefits from early marker selection and excludes multi-generation MAS schemes like gene 

pyramiding and marker-assisted backcross, i.e. those that are the most popular for crops. This 

is probably why one of the most advanced examples of MAS in apple trees is based on a 

transgenic early flowering line making it possible to obtain one generation in roughly one 

year under controlled conditions (Flachowsky et al. 2011). The first steps toward genomic 

selection were reported in tree species for which the generation lag can be shortened by 

artificial means: top-grafting in loblolly pine (Resende Jr et al. 2012b) and growth regulator 

application in Eucalyptus (Grattapaglia 2007). When generation lag cannot be shortened 

beyond biological constraints, markers can still be used in a multistage selection scheme, with 

the first step of selection on markers only identifying trees allowed to reach sexual maturity. 

This initial step is completed by the second step which consists in selecting on molecular and 

phenotypic scores based on phenotypic tests performed on these trees just before flowering. 

Breeding in forest trees differs from that of many crops due to the early stage of 

domestication in the former. Although this can be an advantage in terms of the genetic 

variation available for selection, it presents the drawback of low levels of LD (Neale and 
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Savolainen 2004) and large effective population sizes in base breeding populations, both 

factors being disadvantages for MAS. 

Due to these limitations, MAS is expected to be efficient after considerable narrowing of 

genetic diversity (founding effect) which would increase linkage disequilibrium. With the 

marker densities that were reachable until recently, MAS would have been valuable for 

selection within full-sib or half-sib families. This can be adequate for species for which clonal 

deployment obtained by cuttings is common (Populus spp. and Eucalyptus spp.) Indeed, this 

would involve the selection of a few promising families in which to assess markers – QTL 

associations for use in MAS. On the other hand, MAS would be of lesser interest for most 

pine species for which deployment is mainly based on varieties with a large genetic base 

(synthetic varieties produced in open-pollinated seed orchards comprising 30-40 unrelated 

genotypes), because it would entail determining marker – QTL associations in 30-40 

pedigrees. A large genetic base of deployed varieties is a necessary precaution to reduce the 

economic and ecological risks associated with long rotation age, and to maintain the stability 

and resilience of production populations under varying environmental conditions. 

 

3.2.2 Socioeconomic issues 

In most of the papers in the literature review, the cost/benefit advantage of MAS was absent. 

Morris et al. (2003) carried out one of the few cost/benefit analyses comparing conventional 

and MAS methods for a particular breeding application in a specific socioeconomic 

environment. They found that neither method showed clear superiority in terms of both cost 

and speed and that the optimal choice depends on the availability of operating capital. A few 

studies carried out an economic evaluation of MAS for forest trees (Johnson et al. 2000; 

Plomion et al. 1996; Wilcox et al. 2001). However, these studies limited the use of markers to 

a narrow within-family context, and did not provide a clear demonstration of MAS’s 

profitability compared to conventional breeding. Moreover, none of these studies considered 

the difference between the scenarios regarding the management of genetic diversity, whereas 

it can affect future genetic gains. 

This lack of sound cost/benefit analyses is one of the issues preventing the implementation of 

MAS. This can be at least partially explained by the difficulty of the task, given the number of 

parameters to be taken into consideration. These parameters are highly dependent on the 

species, and phenotyping and genotyping costs vary significantly over time and between 

programs, which makes generalizations difficult. Moreover, the increases in genetic gains 
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expected from MAS must offset the investments required to develop the genomic resources 

necessary, although these investments far precede the possible genetic gains. The 

unpredictability of the economic context over several decades in a typical rotation period in 

forestry is another difficulty in this analysis. 

On top of these difficulties, the forest tree research and breeding community is smaller than 

that of crops, and its limited financial and human resources are spread over a large number of 

species. Moreover, the community more directly concerned by the development of MAS in 

forest trees is somehow divided into breeders and geneticists on one side and genomic 

researchers on the other side, with this division often leading to competition for funding 

resources and a lack of awareness of each other’s scientific challenges. There are a few 

exceptions, for example the two European initiatives NovelTree (http://www.noveltree.eu/) 

and ProCoGen (http://bfw.ac.at/rz/bfwcms2.web?dok=9020) and the American initiative 

Conifer Translational Genomics Network (https://dendrome.ucdavis.edu/ctgn/). In these three 

initiatives, breeders, geneticists and genomic researchers are well integrated in 

interdisciplinary MAS projects. 

 

3.2.2 Technical issues 

3.2.2.1 Genomic resources 

The first technical issue with MAS implementation is the availability of markers to ensure 

good genome coverage, with adequate polymorphisms and transferability between pedigrees, 

and the availability of genetic or physical maps. Due to the large genomes in conifers, 

genomic resources are still a limitation for the development of MAS. 

Adequate marker numbers and adequate polymorphisms are those that enable placing QTLs 

in marker brackets less than a few cM, which is one of the minimum requirements for MAS 

efficiency. Until now, the densities of markers have remained relatively low on tree genetic 

maps. In a survey of 48 papers concerning 11 species, we found that the average distance 

between markers varied between 2.7 and 17.6 cM without any mode in the distribution 

(Supplementary figure 1). These densities do not reach the optima described for MAS. 

Transferability is also a concern in taxa with poor genomic resources. By transferability we 

mean that markers genotyped in various populations represent the same genomic region in 

each population. This is a condition for validating QTLs by comparative mapping between 

populations within a species or even between species. It is based on the sequence data behind 

the markers i.e. primer or probe sequences (SSR, short sequence repeat; SNP, single 
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nucleotide polymorphism; DArT, diversity array technology). Anonymous markers obtained 

by RAPD (randomly amplified polymorphic DNA) and AFLP (amplified fragment length 

polymorphism) techniques generally lack transferability and, unfortunately, most of the 

pioneering QTL detection studies in forest trees have used these latter markers (see Annex 

table 7 in Prat et al. 2006). 

Although the availability of genomic resources seems essential for implementing a MAS 

program, we nonetheless identified a few examples where MAS could be used without the 

costly and time-consuming development of linkage maps: bulk segregant analysis has been 

used successfully to detect sex-specific RAPD and SSR markers in dioecious plants (Gill et 

al. 1998; Parasnis et al. 1999; Sharma et al. 2008; Silva et al. 2007). RAPD and their derived 

SCAR (sequence-characterized amplified regions) markers have been used to predict 

quantitative traits such as polyphenol content in the aerial parts of the medicinal plant 

Echinacea purpurea (Chen et al. 2009), sprouting resistance in rye (Twardowska et al. 2005), 

neutral detergent fiber fraction in smooth bromegrass (Stendal et al. 2006) and oleic acid 

content in spring turnip rape (Tanhuanpää and Vilkki 1999). Applications of MAS in species 

for which genomic resources are still scarce are however limited (only 8 examples out of 250 

papers reporting the application of MAS in our survey). 

 

3.2.2.2 Genetic variation explained by DNA markers 

The second technical issue involved in implementing MAS is the availability of DNA markers 

explaining a high proportion of genetic variation for traits under selection. The pedigree-based 

QTL approach allows the detection of chromosome regions related to genetic variation within 

the family studied. More recently, population-level association mapping revealed alleles of 

genes (SNPs) linked to the phenotype. 

We report below several QTLs (Table 2) and SNPs (Table 3) related to major selection traits 

detected in the main forest tree taxa for which breeding programs are implemented: 

Eucalyptus, major conifers (Pinus, Picea, Pseudotsuga, Cryptomeria) and Populus. 

In QTL studies, the genetic diversity explored is very narrow as few pedigrees were studied, 

due to the cost of managing and evaluating such populations. Moreover, the pedigrees used 

for QTL mapping studies were sometimes chosen to maximize genetic variation in the 

targeted trait, for example by selecting a pedigree whose grandparental pairs displayed 

divergent values for the trait in focus (Jermstad et al. 2001; Sewell et al. 2000). This kind of 

pedigree is rarely interesting in a breeding context. Cost is also a constraint for the size of 
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families used for QTL mapping, reducing the accuracy of QTL detection and overestimating 

the variation explained. The proportion of variance explained by each QTL is generally quite 

low: in a sample of 17 papers given in Table 2, it varied between 0.03 to 36.4%, with most 

values being between 4 and 12%. The number of QTLs reported in each study can sometimes 

be considered as low (2 to 6 for growth in P. taeda, 5 for growth in P. menziesii). If these are 

summed over studies for a given species or genus, the number can become quite large (603 

for growth in Populus), but we did not attempt to analyze the congruency of these QTLs. We 

suspect that traits of interest in forest trees are not in the favorable situation of a simple 

genetic architecture. Due to the limited pedigree sizes and low proportion of variance 

explained, the confidence interval of the positions of QTLs were generally quite large: we 

calculated the length of this confidence interval using the formula of Darvasi and Soller 

(1997) in the same set of 17 papers and found that it varied between 9.3 and more than 200 

cM, most values being between 20 and 60 cM. 

A way to explore more genetic diversity was to perform association studies, but only few and 

small effect QTLs have been reported until now (Table 3). The low number of associations 

reported is probably a consequence of the low genome coverage obtained in these studies 

focusing on candidate genes, whereas the small size of QTL effects reflects the genetic 

architecture of the traits studied in populations with large genetic variation. Additionally, few 

studies reported validations of detected QTLs (e.g. Devey et al. 2004). Thus most species 

were in the first scenario of QTLs detected for the first time and in which MAS was not 

expected to be of benefit compared with classical schemes (see above). 

 

3.2.2.3 Phenotyping constraints 

Now that genotyping costs are decreasing, phenotyping costs are becoming the main limiting 

factor for population size, particularly when addressing new traits like ecophysiological and 

functional traits or new wood-related traits. These new traits have come to the forefront to 

take into account climate change and the foreseen increased use of tree biomass as a biofuel 

source. Moreover, to take into account climate change, genotype by environment interaction 

is attracting growing interest whereas previously it was considered as a nuisance. In order to 

predict the behavior of genotypes in a future climate, evaluation trials should be established in 

a large number and range of environments. This limitation points out the need to develop high 

throughput phenotyping methods to analyse large populations in several environments to 

detect QTLs. 



21 

 

 

3.3 Prospects in the short-term 

3.3.1 Uses of molecular markers for purposes other than MAS 

Some marker-based tools can already be used in the management of breeding populations. 

These tools essentially use molecular marker polymorphisms and not their positions (Step1 

and 2 in Fig. 4). One of these uses is fingerprinting: markers are used to assess or control the 

genetic identity of individuals. This is of great interest to check controlled crosses in an 

experimental design, to avoid mislabelling when handling large numbers of genotypes or to 

monitor the deployment of improved material. 

Another use of marker polymorphism is paternity and maternity analyses. Full pedigree 

information enables reliable estimates of genetic parameters and breeding values from 

phenotypic tests (El-Kassaby et al. 2011). The traditional way of obtaining this information is 

by making controlled paired-crosses, which is often costly, requiring highly experienced staff. 

There are cheaper and simpler alternatives, either without the use of controlled crosses like 

open (unrecorded) pollination, or with man-made crosses but with a mixture of known pollen 

donors (polymix breeding). For these two simpler alternatives, pedigree information can be 

retrieved a posteriori with the help of DNA markers, sometimes at lower costs than by 

making controlled crosses. This is one of the basic ideas of the "breeding-without-breeding" 

strategy proposed by El-Kassaby and Lstiburek (2009). 

Full pedigree information is also extremely valuable to maintain genetic diversity and manage 

inbreeding. The objective of genetic diversity management is to capture genetic gain and 

simultaneously maintain genetic variability along the selection process in the breeding 

population, which should safeguard future genetic gains (Burdon and Wilcox 2007). Even 

when pedigree information is known, DNA markers can give a much more precise picture of 

genetic relatedness, for example within a full-sib family, where sib-pairs depart from expected 

sib similarity due to Mendelian sampling and linkage (Hill and Weir 2011). This can be used 

to improve a pedigree-based BLUP evaluation, by using a marker-based realized relationship 

matrix instead of the pedigree-based relationship matrix (VanRaden 2008). This process is 

known as GBLUP evaluation, which is a possible form of genomic selection. A marker-based 

relationship matrix can also be the basis for estimating genetic parameters such as heritability 

in wild populations without recorded pedigrees (Sillanpää 2011). 

Even if most of these previous marker-based tools do not fall exactly within previous 

definitions of marker-assisted selection, they could be considered as a first step to introduce 
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markers in forest breeder's everyday life with a real prospect of higher genetic gains and 

better diversity management. We suggest that these marker-based tools might help breeders 

and genomic researchers to get closer and pave the way for easier MAS integration in the near 

future. Indeed, the tools included in step 1 of molecular marker use (fingerprinting, genealogy 

control, Fig. 4) are already available for several species (Massah et al. 2010; Plomion et al. 

2001; Ribeiro et al. 2011; Van de Wen and McNicol 1995), while those needed for step 2 

(genetic drift control, GBLUP evaluation) are only prospects for most forest tree species. 

 

3.3.2 Redefinition of breeding populations 

Many of the most advanced forest tree breeding programs involve a few hundred elite 

genotypes being used in evaluation and deployment stages. For instance, for the Swedish 

Scots pine breeding program, the target is to keep effective population size to not less than 50 

for about 20 unrelated populations across the country (Rosvall 2011). Another example in the 

Pinus pinaster breeding program in France shows effective population sizes above 130 (A. 

Raffin, personal communication). These relatively high numbers are mostly intended to cover 

the high levels of genetic variation present in conifer populations and, to a certain degree, the 

genetic structure of original populations in the natural distribution. These high numbers also 

respond to the need for deployed varieties with limited relatedness. In any case, these sizes 

represent a challenge for MAS implementation. Gains are to be expected from scaling up 

from these preliminary experiments, but current breeding sizes are still too big for cost 

effective marker approaches. Therefore an effort must be made to redefine elite populations 

with a narrower census while maintaining genetic representativeness. Moreover, such 

compact elite populations could allow the concentration of phenotyping efforts over 

reasonable numbers of candidates, to explore variation of new traits and provide training 

populations for QTL detection. 

 

3.3.3 Development of genomic tools 

DNA sequencing is one of the better ways to obtain genomic resources useful for marker 

development. In the past ten years, sequencing costs have been reduced by a factor of over 

10000 and further reduction in time and cost for DNA sequence generation is expected in the 

next few years. Today, an improved high-quality draft genome sequence (in the sense of 

Chain et al. 2009) is available for Populus trichocarpa, one of the species of interest in 

Populus spp.. A draft sequence has been obtained for Eucalyptus grandis 
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(http:://www.phytozome.net/eucalyptus) and for E. camaldulensis (Hirakawa et al. 2011). 

These three angiosperm species have quite modest genome sizes (485, 691 and 650 Mb, 

respectively). Acquisition of draft genome sequences for conifer species seemed a "daunting 

task" until recently (Hamberger et al. 2009), because of their large genome sizes (18-40 Gb), 

their very high content in repetitive DNA and the absence of an inbred genotype. 

Consequently, reduced-representation approaches have been in use to alleviate the complexity 

of these genomes. Targeted re-sequencing of candidate genes, pointed out by functional 

genomics studies, was an initial step in developing new markers, quickly followed by the re-

sequencing of unigene sets developed on the basis of previous EST libraries (Chancerel et al. 

2011; Eckert et al. 2010). However, Feuillet et al. (2011) qualified the acquisition of draft 

genome sequences for conifer species as achievable at reasonable costs due to advances in 

next-generation DNA sequencing technologies. Indeed, draft assemblies of the 20 Gb genome 

of Norway spruce (Picea abies), of the 20.8 Gb genome of white spruce (Picea glauca) and of 

the 22 Gb genome of loblolly pine (Pinus taeda) were recently presented (Birol et al. 2013; 

Neale et al. 2014; Nystedt et al. 2013; Zimin et al. 2014), whereas several projects to 

sequence the genome of other economically important conifer species are underway: Pinus 

pinaster and Pinus sylvestris (in Europe ProCoGen, 

http://bfw.ac.at/rz/bfwcms2.web?dok=9020). 

On the basis of these sequence data, high-throughput genotyping tools like Illumina 

GoldenGate or Infinium assays, Affymetrix Axiom assays, Sequenom MassArray assays and 

TaqMan OpenArray assays can be constructed, with the result that the number of markers 

available will soon no longer be a limiting factor for MAS. Genotyping costs are being 

progressively reduced with the standardization of the use of these assays, notably when 

observing the number of data points attainable per monetary unit. In parallel, genotyping-by-

sequencing techniques are under rapid development thanks to the possibility they offer of 

obtaining high marker densities without prior knowledge of a species genome (Elshire et al. 

2011). Such a technique was used in an association study concerning an adaptive trait in 

lodgepole pine (Parchman et al. 2012) and GBS performance was evaluated in a pilot study 

on lodgepole pine and white spruce (Chen et al. 2013). 

The acceleration in the development of genomic markers currently observed provides an 

optimistic perspective of reaching enough LD between markers and QTLs for the application 

of MAS in most forest tree species in the near future. The cost of initial investment to 

integrate MAS in breeding strategies will greatly decrease. In the mid- or maybe long-term, 
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high throughput methodologies for developing genetic markers could change the perspectives 

of marker use in forest tree breeding schemes as has been observed for cattle breeding with 

the possibility of genome wide evaluation. 

 

3.4 Prospects in the mid-term 

With chip-based and genotyping-by-sequencing technologies, data are obtained “en masse” 

compared to the almost step-wise discovery of previous technologies. Genomic selection, or 

more appropriately genome wide evaluation (GWE), was thus designed to use very dense 

genetic data chosen to cover the entire genome. With coverage being dense enough, all the 

QTLs underlying the trait of interest are expected to be in LD with some of the genotyped 

markers. In such situations, most of the genetic variation for the evaluated trait could 

eventually be captured. GWE enables predicting genetic values in a given candidate set 

without the need for its phenotypic information. To do this, a training population closely 

related to the candidate set provides beforehand the phenotypes and genotypes required to fit 

the prediction equations (Meuwissen et al. 2001). 

GWE has already been widely embraced by dairy cattle breeding programs, with a few more 

examples of on-going implementations in livestock: small ruminants and pigs to cite two of 

the most advanced (Stock and Reents 2013). The picture appears somehow less brilliant in 

crop plants, as the success of GWE in dairy cattle cannot be simply translated into crop 

breeding (Jonas and de Koning 2013). However, many implementations are underway, 

notably in crops like maize and wheat. The very first steps of GWE in forest trees were 

reported in loblolly pine (Resende Jr et al. 2012b; Resende Jr et al. 2012a) and in two 

independent breeding populations of Eucalyptus (Resende et al. 2012). These were devised as 

proof-of-concept studies and provide first-hand assessments of prediction accuracies for 

various traits of economic interest and assuming several alternative statistical models. 

Accuracies can be at levels comparable to those already obtained by pedigree-based genetic 

predictions. 

Given the preliminary and somehow down-scaled nature of these first studies, certain 

questions still remain unanswered concerning the implementation of GWE in forest trees, and 

the same questions also concern crop plants. First, as stated in previously, most forest tree and 

crop breeding programmes involve populations of large effective sizes, comprising several 

landraces or subpopulations that would require correspondingly large genomic resources for 

efficient coverage. Previous proof-of-concept studies in trees showed that accuracies 
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comparable to BLUP-selection are attainable with down-scaled genomic resources (i.e. 

involving a few thousands SNP), but at the cost of reducing the representativeness of the 

training populations. This situation is parallel to that of mapping pedigrees for MAS, where 

representativeness and connections to breeding populations were also an issue. Solutions will 

certainly come from further developments in genomic resources for these species as well as 

from an optimum choice of training populations. 

Another potential issue with GS is that of the faster increase of inbreeding on the time scale, 

as compared to phenotypic selection, because of the accelerated turnover in generations. This 

rapid increase can be exacerbated in populations with narrow genetic bases, supposed to 

facilitate GWE implementation. However, unlike pedigree-based BLUP, GWE is able to 

capture the Mendelian sampling term, which in turn allows greater accuracy and genetic gains 

without increasing the rate of inbreeding (Pryce et al. 2012). Thus the issue is still 

contentious, as what can be gained from tracking the Mendelian sampling term could be lost 

by a rapid generation turnover. Solutions were available for BLUP-selection (known to be 

prone to high inbreeding rates) and recent derivations have been proposed for GWE (Nielsen 

et al. 2011). 

A third issue, that is also relevant for crops, concerns the expected decrease in GWE 

accuracies for candidates after several generations of recombination without prediction 

updating with a new training population. This loss in accuracy has not been sufficiently 

addressed throughout case studies, as these often concern candidates that are closely related to 

the members of the training population. Solutions would certainly come from a continuous 

renewal of the training population, in a rolling front fashion, so that the genetic distance 

between training and evaluation sets never increases beyond a point that downgrades 

accuracy. The phenotypic data obtained in deployment could be used to update the genome-

wide prediction models (Iwata et al. 2011). 

Another last issue that particularly affects crops and forest trees is the pervasiveness of G×E 

interactions for many key physiological and production traits. In order to track these effects 

conveniently, phenotypic evaluations need to be multiplied across biologically relevant 

environments. This need brings new demands to the design of training populations for GWE, 

up to the extreme point of needing population-specific alternatives. One of the few studies 

considering GWE in forest trees (Resende Jr et al. 2012a) shows examples of G×E severely 

affecting the transferability of models across environments. Apart from population-specific 

alternatives, other solutions could be model-based and focus on the explicit incorporation of 
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G×E terms (Resende et al. 2012). There is therefore a great need to develop GWE models 

beyond the additive paradigm. 

Because phenotyping costs are becoming the limiting factor, available phenotypic data are 

valuable resources and archiving DNA of all or part of the candidates that provided these 

data, particularly the founders, could be a wise way of preparing a future implementation of 

GWE and/or MAS. This means preparing biobanks of DNA samples and phenotypic 

databases relating these samples to phenotypic data. However, new phenotypic data will be 

needed to cope with new traits and to update genome-wide prediction models. Consequently, 

research devoted to increasing the throughput of phenotyping activities, using for example 

robotics or automatic image capture and analysis, are needed. 

Although GWE can be considered as a variant of MAS, there is a key difference in that in the 

former all available marker data are used anonymously. GWE remains a black box predicting 

process similar to that of phenotypic evaluation, but using all sources of available information 

to improve predictability. On the contrary, MAS picks relevant sources by their explanatory 

value: identified QTLs or markers pointing to them as QTL proxies. Lorenz et al. (2011) go 

further in opposing MAS to GWE. MAS would rely on a breeding by design engineering 

approach, requiring fine (prior) knowledge of biological functions (of the functional 

polymorphisms underlying QTLs). This qualifies well for genotype building (Step 3 of 

marker use, Fig. 4), by gene pyramiding or marker-assisted backcrossing, which were the 

most successful applications of MAS in annual crops, but it does not seem adequate for 

marker-based recurrent selection. GWE overlooks explanations with its black box approach. 

However, these two approaches do not necessarily need to be opposed and could well become 

complementary (Resende Jr et al. 2012a). Thus, once discovered and their effects accurately 

estimated, functional polymorphisms underlying QTLs could be incorporated in GWE models 

to further improve prediction accuracy. Such a strategy is already applied in the French dairy 

cattle GWE program (Boichard et al. 2012), in which a panel of a few hundred trait-dependent 

genomic regions and SNP-based haplotypes are routinely used in a classic QTL-BLUP model, 

which presents accuracies as high as those of blind GWE. This panel of relevant markers is 

selected by using classical linkage disequilibrium – linkage analysis (LD-LA) or by the use of 

variable selection models. Although a promising route, as it involves prediction and 

explanation into a single model, it is far from being directly applicable to crops and forest 

trees. 
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Given the extent to which explanation and prediction advance in parallel in our model species, 

we foresee a convergence between GWE and MAS in the future, when knowledge on the 

underlying genetics of key traits is well advanced, with identified functional and regulatory 

QTLs adding to the masses of anonymous markers of GWE. To conclude, a definitive 

solution to the G×E issue will certainly involve careful dissection of QTL effects and 

QTL×QTL interactions over multiple environments with the help of genome-wide 

evaluations. 
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Table 1 Classification of 750 papers retrieved from Web of Science and CAB abstract 

databases selected for meta-analysis. 

Class Number 

of papers 

Applications 240 

Theoretical developments 32 

Simulations 71 

Developments and Simulations 27 

Developments, Simulations and Applications 1 

Simulations and Applications 6 

Reviews 99 

Review and Application 3 

Review and Simulations 1 

Others  270 

QTL detection, development or validation of markers, evaluation of QTL 

effects in various environment or genetic backgrounds 

227 

Management of genetic diversity, core-collection building 13 

Development or review of methods for high throughput DNA extraction or 

genotyping 

16 

MAS in animals 14 
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Table 2 Overview of QTLs associated with traits of interest grouped in 5 main categories 

(Growth/biomass (incl. rooting, water use efficiency), phenology, wood properties, abiotic/biotic 

stress resistance, and specific traits such as leaf secondary metabolism) within main forest tree 

taxa with breeding programs. 

Species Trait 
Nb of 

QTL 

Variation 

explained by QTL 

Sample 

size 

CI length (cM) 

(as reported or 

estimated 

roughly from 

figures) 

Reference c 

Cryptomeria 

japonica 

Growth 6 18.6% - 48.8% 73 4-30 Yoshimaru et al. 1998 

Wood properties 23 15.7% - 34.3%  72 10-100 Kuramoto et al. 2000 

Eucalyptus spp. 

Abiotic/biotic 

stress resistance 
1-6 3% to a major gene 75 - 994 5-50 

Byrne et al. 1997; Dale et al. 2000; Freeman et al. 2008; 

Fullard and Moran 2003; Junghans et al. 2003; Mamani et 

al. 2010 

Wood properties 3-18 3.2% - 49% 91 - 277 20-50 Thamarus et al. 2004 

Growth 2-10 3%-60% 91-221 25-40 Grattapaglia et al. 1996 

Leaf secondary 

metabolism 

1 major - 

30 
1% - 60% 52-296 4-50 

Shepherd et al. 1999 

Henery et al. 2007 

Picea glauca 
Growth 52 2.5%-10.3% 260 + 500 13-104 Pelgas et al. 2011 

Phenology 85 2.5 – 16.4% 260 + 500 3-123 Pelgas et al. 2011 

Pinus pallustris x 

P. elliottii 
Growth 11 3.6 – 11% 258 18.7-57.1a Weng et al. 2002 

Pinus pinaster 

Abiotic/biotic 

stress resistance 
7 Up to 11.1% 53 45.4-186.9 a Hurme et al. 2000 

Growth 1-40 5-20.4% 80-202 1.2-100 Brendel et al. 2002 

Phenology 4 Up to 12.7% 81-92 90.1-250 ab Hurme et al. 2000 

Wood properties 10-54 3.7 – 18.4% 80-186 1-185 Pot et al. 2006 

Pinus radiata 

Growth 2 - 21 2.2 – 36.4% 50 -400 15.7-152.3 a 
Emebiri et al. 1997; Emebiri et al. 1998a; Emebiri et al. 

1998b  

Wood properties 1-8 0.78-3.58% 80 – 400 37-165.6 a Kumar et al. 2000 

Abiotic/biotic 

stress resistance 
4 0 – 4.8% 202 54.7-149.1 a Devey et al. 2004 

Pinus sylvestris 

Growth 4-12 9.3-16.7% 94-108 33.8-60.6 a Lerceteau et al. 2000, Yazdani et al. 2003 

Abiotic/biotic 

stress resistance 
4-9 11.3 – 22.7% 94-108 24.8-54.5 a Lerceteau et al. 2000; Yazdani et al. 2003 

Phenology 5 42-79% 108 40.6 Yazdani et al. 2003 

Pinus taeda 

Growth 2 - 6 4.7 – 30% 84 - 171 23.6-121.3 a Kaya et al. 1999 

Wood properties 2 - 12 1.7 – 15.9% 172-434 19.6-64.4 a Groover et al. 1994; Sewell et al. 2000 

Pseudotsuga 

menziesii 

Phenology 1-11 0.7 – 11.5% 78-460 42.3-165.7 Jermstad et al. 2001a  

Growth 5 8.6-17.7% 320 9.4-19.3 Ukrainetz et al. 2008 
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Abiotic/biotic 

stress resistance 
11 - 15 2.0 – 9.8% 170-383 20-50 Jermstad et al. 2001b 

Wood properties 1 - 26 0.1 – 15.7% 320 10.5-46 Ukrainetz et al. 2008 

Populus spp. 

Abiotic/biotic 

stress resistance 
50 1,8 – 87% 68-336 0,9 - 46 

Jorge et al. 2005; Labbé et al. 2011; Newcombe et al. 

1996; Newcombe and Bradshaw 1996; Tagu et al. 2004 

Phenology 160 1-51.5 55-356 7.5 – 314.2 
Bradshaw and Stettler 1995; Chen et al. 2002; Frewen et 

al. 2000; Marron et al. 2010; Rohde et al. 2011 

Wood properties 62 3.6 – 48.9 87-387 3.3 – 40.6 
Huang et al. 2004; Novaes et al. 2009; Yin et al. 2010; 

Zhang et al. 2006)  

Growth 603 0 – 73.6 55-387 2.1 – 261.2 

Bradshaw and Stettler 1995; Dillen et al. 2009; Marron et 

al. 2010; Novaes et al. 2009; Rae et al. 2009; Rae et al. 

2008; Rae et al. 2007; Street et al. 2011; Street et al. 

2006; Wu 1998; Wu et al. 1998; Wullschleger et al. 2005; 

Zhang et al. 2006 

Salix spp. 

Growth 73 8 - 29 87-92 19.9-72 Rönnberg-Wästljung et al. 2005; Tsarouhas et al. 2002 

Abiotic/biotic 

stress resistance 
134 3.2 – 56.4 73-467 1 – 91.7 

Hanley et al. 2011; Rönnberg-Wästljung et al. 2006; 

Rönnberg-Wästljung et al. 2008; Samils et al. 2011 

Phenology 21 1.0 – 24.0 87 43.1-138 Tsarouhas et al. 2004; Tsarouhas et al. 2003 

Wood properties 5 10.2 – 21.8 125 21.8 – 35.6 Brereton et al. 2010 

a estimated through R2 and mapping population size with Darvasi's and Soller's (1997) formula. b 4 values > 300 cM excluded. c References to 

be found in Supplementary document 3. 
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Table 3 Detection of QTLs associated with traits of interest in population-level association 

mapping studies in forest tree species. 

Species Trait Nb of associated 

markers 

Variation explained Sample 

size 

Reference c 

Eucalyptus nitens 

Microfibril angle 2 4.6% - 4.6% 290 Thumma et al. 2005  

Cellulose content, kraft pulp 

yield 

1 Not estimated 420 Thumma et al. 2009 

Picea sitchensis 

bud set timing 26 1% - 4.3% (34.4% 

altogether) 
410 Holliday et al. 2010 

cold hardiness 19 0.7% - 5.4% (28.1% 

altogether) 

Picea glauca 
10 Wood quality traits 13 3% - 5% 

492 Beaulieu et al. 2011 
Radial growth   

Pinus pinaster 

Cellulose content 1 ~10% (probably 

overestimated) 

162 

Lepoittevin et al. 2012 
Growth (height, diameter) 1 ~10% (probably 

overestimated) 

160 

Pinus radiata Solid wood properties 10 2% - 6.5% 447 Dillon et al. 2010 

Pinus taeda 

Carbon isotope discrimination 4 0.45% - 3.38% 961 Gonzalez-Martinez et al. 

2008 

Early wood specific gravity 2 3.27% - 3.51% 

422-435 
Gonzalez-Martinez et al. 

2007 
Percentage of late wood 1 3.57% 

Early wood microfibril angle 1 0.78% 

Geoclimatic variables 48 - 682 Eckert et al. 2010 

Resistance to pitch canker 

(Fusarium circinatum) 

10 < 0.98% (3.74% 

altogether) 

498 
Quesada et al. 2010 

Carbon isotope discrimination 7 0.01% - 3.8% 

380 Cumbie et al. 2011 Height 1 0.01% 

Foliar nitrogen concentration 6 0.01% - 7% 

Populus tremula 
Timing of bud set 2 1.5% - 5% 120 Ingvarsson et al. 2008 

Growth cessation 6 10%-15% altogether 120 Ma et al. 2010 

Populus trichocarpa Lignin and cellulose content 27 Not estimated 448 Wegrzyn et al. 2010 

Pseudotsuga 

menziesii 

cold hardiness 30 1% - 3.6% 700 Eckert et al. 2009 

c References to be found in Supplementary document 3. 
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Figure legends 

Figure 1. Distribution of MAS papers per species, involving only application studies. Boxed 

group corresponds to the family with the highest number of hits, Poaceae. 

 

Figure 2. Percentage distribution of MAS application papers according to: a) the type of 

targeted trait, and to b) the type of scheme applied, according to the classification by Hospital 

(2009) 

 

Figure 3. Distribution of MAS application papers according to the number of targeted 

genomic regions. Markers located less than 20 cM apart from each other were considered to 

represent the same genomic region. 

 

Figure 4. Steps foreseen for the introduction of molecular markers in forest tree breeding 
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Legend for supplementary documents 

 

Supplementary document 1: A text explaining how we selected articles for the meta-analysis 

and a table showing the queries used and the number of articles obtained. 

 

Supplementary document 2: list of references of the articles used in the meta-analysis, in RIS 

format. 

 

Supplementary figure 1: Distribution of marker density in 48 papers, concerning 11 species, 

reporting genetic maps in forest trees. 

 

Supplementary document 3: list of references of the articles cited in Tables 2 and 3, in RIS 

format. 


