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Tsetse flies are vectors of human and animal trypanosomoses in
sub-Saharan Africa and are the target of the Pan African Tsetse
and Trypanosomiasis Eradication Campaign (PATTEC). Glossina
palpalis gambiensis (Diptera: Glossinidae) is a riverine species that
is still present as an isolated metapopulation in the Niayes area of
Senegal. It is targeted by a national eradication campaign combin-
ing a population reduction phase based on insecticide-treated tar-
gets (ITTs) and cattle and an eradication phase based on the sterile
insect technique. In this study, we used species distribution models
to optimize control operations. We compared the probability of
the presence of G. p. gambiensis and habitat suitability using a reg-
ularized logistic regression and Maxent, respectively. Both models
performed well, with an area under the curve of 0.89 and 0.92,
respectively. Only the Maxent model predicted an expert-based
classification of landscapes correctly. Maxent predictions were
therefore used throughout the eradication campaign in the Niayes
to make control operations more efficient in terms of deployment
of ITTs, release density of sterile males, and location of monitoring
traps used to assess program progress. We discuss how the mod-
els’ results informed about the particular ecology of tsetse in the
target area. Maxent predictions allowed optimizing efficiency and
cost within our project, and might be useful for other tsetse con-
trol campaigns in the framework of the PATTEC and, more gener-
ally, other vector or insect pest control programs.

area-wide integrated pest management | genetic control | aerial release |
chilled adult technique

Tsetse are vectors of human African trypanosomosis, a major
neglected tropical disease (1), and African animal trypano-

somosis (AAT), one of the most important pathological con-
straints to livestock development in 38 infested African countries
(2). The Pan African Tsetse and Trypanosomiasis Eradication
Campaign is a political initiative started in 2001 that calls for
intensified efforts to reduce the tsetse and trypanosomosis
problem (3). As part of this global effort, the government of
Senegal embarked in 2007 on a tsetse eradication campaign in
a 1,000-km2 target area of the Niayes region, neighboring the
capital Dakar. In this area, the limits of the distribution of the
tsetse target populations were assessed using a stratified ento-
mological sampling frame based on remote sensing indicators
(4). The only tsetse species present was Glossina palpalis gam-
biensis Vanderplank, and it was responsible for the cyclical
transmission of three trypanosome species, namely Trypanosoma
vivax, T. congolense, and T. brucei brucei, listed in order of im-
portance (5). The high prevalence of animal trypanosomosis in the
Niayes (serological prevalence of 28.7% for T. vivax) hampered

peri-urban intensification of cattle production (particularly
dairy cattle). A population genetics study demonstrated that
the G. p. gambiensis population of the Niayes was completely
isolated from the main tsetse belt in the southeastern part of
Senegal (6). This comprehensive set of entomological, veteri-
nary, genetic, and other baseline data confirmed the isolated
nature of the G. p. gambiensis population in the Niayes, which
prompted the government of Senegal to select an eradication
strategy using area-wide integrated pest management (AW-IPM)
principles (7).
The successful implementation of an AW-IPM strategy re-

quires a thorough understanding of the ecology of the target
population, particularly its spatial distribution, a study which was
undertaken in the Niayes from 2007 to 2011 before the start of
the operational eradication efforts. The selected strategy inte-
grates insecticide-treated targets (ITTs) and cattle with the re-
lease of sterile insects. As the habitat of G. p. gambiensis is very
fragmented (4), the targeting of suitable habitats for deployment
of the ITTs is crucial to optimize cost efficiency (8) but also to
enable the selection of appropriate sites for deployment of the
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monitoring traps to assess the impact of the control campaign.
Although the initial entomological sampling was well-developed
and efficiently implemented in the target area (4), we deem the
development and use of population distribution models to be
very beneficial in this regard.
The use of species distribution models to optimize vector or

pest control is quite novel. The existing tsetse distribution models
(SI Text) were critical for a better understanding of tsetse distri-
bution and AAT epidemiology, but their spatial resolution was not
sufficient to guide an eradication process. In this paper, we used
high-resolution images and recent advances in species distribution
modeling methods to improve prediction accuracy. Predictive
models, and more specifically machine-learning methods, were
used to model the distribution ofG. p. gambiensis (9). Model choice
has an impact on the final output and also depends on the available
data. In this study, both presence and absence data were available,
which is uncommon with respect to tsetse data. Therefore, following
Brotons et al., we used both datasets (10). Understanding how
predictions from presence–absence models relate to predictions
from presence-only models is important, because presence data
are more reliable than absence data.
Presence–absence data were modeled using a regularized

logistic regression to avoid overfitting with respect to model
parameters. There are various approaches to regularization for
least square methods in statistical learning. The most widely used
are the ridge regression and the lasso. Ridge regression bounds
the regression coefficient space by adding the L2 norm (root
square of the sum of squared values) of the coefficients to the
residual sum of squares, whereas the lasso is a penalized least
square method that shrinks the coefficient space by imposing an
L1 penalty (sum of absolute values) on the regression coefficients.
The elastic net framework used here is a compromise that com-
bines ridge regression (L2 penalization) and the lasso (L1 penal-
ization) for more flexibility in model selection (11). This model
was chosen because of its flexibility and capacity to penalize
complex models (12).
A Maxent model was in addition used to model presence-only

data (13). This model, which is one of the most widely used to
model species distributions, is a machine-learning method based
on maximum entropy. Absence data are replaced with so-called
background data, which are a random sample of the available en-
vironment. Maxent fits a penalized maximum-likelihood model to
avoid overfitting (L1 penalization). The logistic output fromMaxent
is a habitat suitability index rescaled to range from 0 to 1. Recently,
the equivalence between Maxent and an infinitely weighted logistic
regression was pointed out (14).
The relationship between occurrence and environmental data

was explored with multidimensional exploratory analysis. For
this purpose, we used the ecological factor niche analysis (ENFA)
(15), which is a presence-only multidimensional method based on
the concept of ecological niche (16).
The goal of this paper is to show how we selected among two

competing approaches of species distribution modeling based on
a large and accurate set of presence–absence data and how we
used the results to optimize the eradication campaign in the
Niayes of Senegal.

Results
Ecological Niche. All of the variables associated with forest habi-
tats and mean normalized difference vegetation index (NDVI)
were highly correlated with the presence ofG. p. gambiensis (Fig. 1).
Conversely, night and day land surface temperature (LST)
ranges and maximum middle infrared (MIR) were negatively
correlated with the presence of G. p. gambiensis. High values of
these variables corresponded to lower vegetation cover, reducing
the buffering of macroclimatic conditions by the vegetation.
Standard deviations of MIR, NDVI, and day and night LST

had high values on the specialization axis (SI Methods), whereas
the environmental envelope for G. p. gambiensis was very narrow
on this axis. This suggested that these satellite-derived parameters

captured important environmental features for the species for
which variations were poorly tolerated.

Model Outputs. Regularized logistic regression and Maxent pre-
sented similar receiver operating characteristic (ROC) curves
using the presence–absence validation dataset, with areas under
the curve (AUCs) of 0.89 and 0.92, respectively (Fig. 2). Their
predictions were highly correlated (Fig. S1; r = 0.68, P < 0.01;
Fig. 3). Maxent presented a slightly better sensitivity using 0.5
as a threshold for presence, or the threshold allowing the best
percentage of correctly classified (PCC) index, and a better
specificity when the threshold was set to enable a sensitivity of
0.96 (Table 1). Using the expert-based landscape classification
derived from aerial photography, Maxent predicted suitable
habitats better than the regularized logistic regression (AUC
0.79 and 0.58; Fig. 2).
The regularized training gain (likelihood-based measure of

model quality) of the Maxent habitat suitability model is pre-
sented in Fig. S2. The Maxent models are presented using a
single predictor or all of the predictors with the exception of the
one of interest. The mean area of forest was the predictor giving
the best gain when used alone, followed by the mean NDVI and
the maximum forest area. These three predictors were highly
correlated with each other along the ENFA marginality axis (Fig.
1 and SI Methods). Moreover, night LST SD had the highest
negative effect on the gain (even if it was still very limited) when
it was removed; thus, it contained specific information not
accounted for by other predictors. The negative effect on the
gain was the most prominent (6%) when all Landsat-related
predictors (average, minimum, maximum, and SD of forest areas)
were removed.

Fig. 1. First plan of the ecological niche factor analysis. The light gray
polygon shows the overall environmental conditions available in the study
area, the dark gray one shows environmental conditions where G. p. gam-
biensis was observed (representation of the realized niche), and the small
white circle corresponds to the barycenter of its distribution. The first axis
(marginality axis) is a measure capturing the dimension in the ecological
space in which the average conditions where the species lives differ from
the global conditions; a large marginality value implies that the conditions
where the species is found are “far” from the global environmental con-
ditions. In contrast, the second axis (specialization) measures the narrowness
of the niche (ratio of the multidimensional variances of the available to
occupied spaces). The eigenvalues of the axes present the percentages of the
global inertia explained by theses axes (69% for the first plan). avg, average;
mar, marginality; max, maximum; min, minimum; forest, surface of forest
landscapes (Landsat data); spe, specialization; stddev, SD.
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Marginal response curves for the different predictors (Fig. S3)
showed that the percentage of the area covered by forest was
positively correlated with habitat suitability, with a sharp increase
after 5% of forests and a plateau after 20%. With respect to
average day LST, habitat suitability was stable between 20 and
35 °C and then sharply decreased; whereas average day LST
was not low enough in the study area to limit the presence of
G. p. gambiensis, high temperatures were unsuitable. The cor-
relation between minimum day LST and habitat suitability was
bell-shaped, with a maximum between 20 and 25 °C. This could
be related to the buffering effect of dense tree cover on tem-
perature drops at night. Indeed, night temperature drops faster
in open environments than in the forest. Habitat suitability
dropped sharply, with minimum temperatures exceeding 25 °C.
The correlation between mean NDVI and habitat suitability
was a sigmoid curve that increased sharply after 0.2. Regarding
NDVI range, a plateau of habitat suitability was observed until
0.5 and sharply decreased after this threshold, thus illustrating
the importance of perennial tree vegetation for this tsetse spe-
cies. The relationship with habitat suitability was similar for MIR
SD, related to the strong negative correlation between NDVI
and MIR.

Use of Maxent Predictions in the Tsetse Eradication Project. Before
the availability of the Maxent model in the Senegal project,
operational choices such as selection of trap sites were made
using a vegetation classification obtained from a Landsat 7 En-
hanced Thematic Mapper Plus (ETM+) image of April 2001.
Suitable habitat for G. p. gambiensis was mapped from this
classification with high sensitivity but low specificity (4). The
availability of the Maxent predictions was used in four ways to
optimize the implementation of the eradication effort.
First, boundaries of the target eradication area, shown as black

grid cells in Fig. 3, were validated by the model. All of the new
suitable habitat areas identified by the Maxent model within
a range of 5 km around sites where wild G. p. gambiensis had
been trapped (at any occasion) were already included in the
control strategy (Discussion). The target area was subdivided into
four operational blocks, which are being sequentially addressed
during the operational program (Fig. 4). Each block was sub-
jected to a 1-y tsetse-density reduction phase, followed by an
18-mo eradication period using the sterile insect technique.
Second, the spatial distribution of the monitoring traps

deployed since January 2012 in block 1 and since October 2012
in block 2 was modified through relocating 22 of the 97 moni-
toring traps (23%) to more suitable sites according to habitat
suitability as predicted by the Maxent model (Fig. S4). In block 3,
where monitoring had not started yet at the time of writing, the
monitoring traps will also be deployed in sites that have a high
(predicted) suitability value as indicated by the model.
Third, 1,347 insecticide-impregnated traps used for tsetse-density

reduction were deployed in block 2 according to predictions of

Maxent during the period December 2012 to February 2013, from
which 661 were renewed during the period January to February
2014. The total surface area covered by block 2 is close to 500
km2 but contains only 80.6 km2 of predicted suitable habitat,
thus giving a final trap density of 16.7 traps per km2 of suitable
habitat (Fig. 4).
Fourth, predicted suitable habitats were also used to optimize

aerial releases of sterile male G. p. gambiensis. Polygons with
similar surface areas of suitable patches were identified (RL1
and RL2 in block 1, for example; Fig. 4) and the density of re-
leased sterile males was adjusted proportionally to the area of
suitable habitat in these polygons (0.24 and 0.11 flies per ha in
RL1 and RL2, respectively).

Optimization of Tsetse Suppression and Eradication by the Model. In
the first block, the apparent density of G. p. gambiensis dropped
from an average of 0.42 (SD 0.39) flies per trap per d before
control to an average of 0.04 (SD 0.11) flies per trap per d and
0.003 (SD 0.01) flies per trap per d during the suppression and
eradication phases, respectively (Fig. 5). In the second block, the
apparent density dropped from an average of 1.24 (SD 1.23) flies
per trap per d before control to an average of 0.005 (SD 0.017)
flies per trap per d during the suppression phase.
Apparent fly density in block 2 was higher than in block 1

(generalized linear mixed model, P = 0.009; SI Methods) before
the start of the suppression, which initially sharply reduced tsetse
densities (P = 0.001). This effect was limited in time (6 mo), and
tsetse density remained stable and even increased with time
thereafter (P < 10−3), although remaining at a very low level
(<0.04 fly per trap per d) until the eradication phase started. The
cumulated reduction of densities with time was higher in block 2
(reduction of 99.6%) than in block 1 (reduction of 90.4%)
(P < 10−3).
In block 1, the last wild fly was captured on August 9, 2012,

∼6 mo after the start of sterile male releases. It was an old fe-
male (more than 40 d old) in its fourth larviposition cycle with an
empty uterus, and the next follicle was immature and small, in-
dicating an abortion. This female showed a copulation scar and
its spermatheca was 85% filled, indicating that its sterility was
probably induced by a mate with one sterile male. From the
beginning of the eradication phase in block 1 (March 16, 2012) to
the date corresponding to the last capture, only three other wild

Fig. 2. ROC curves and AUCs of the regularized logistic regression and
Maxent models. These results were obtained using the presence–absence
validation dataset (Left) and the expert-based landscape classification from
aerial images (Right).

Fig. 3. Predictions of the regularized logistic regression and Maxent models.
In the case of the logistic model, the predictions correspond to probabilities
of presence, whereas in the case of the Maxent model, they correspond to
a rescaled suitability index (logistic output). The black cells correspond to
the target area. Black and red crosses represent absence and presence
data, respectively.
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females could be dissected and all had indications of having
mated with a sterile male. The average percentage of sterile
males as a proportion of all catches was then 99.2% (SD 1.6%),
corresponding to a sterile-to-wild male ratio of 130. The percentage
of sterile males remained 100% thereafter (no wild fly was
captured for 78 weekly collections with 25 monitoring traps),
corresponding to a very likely eradication (probability of not
detecting potential remaining flies of 0.002 only).

Discussion
Ecological Niche of G. p. gambiensis in the Niayes. Our analysis
showed that the ecological niche ofG. p. gambiensis in the Niayes
area corresponded to permanent ligneous vegetation with a tree
density sufficient to provide adequate shade and buffer tem-
perature and relative hygrometry variations in comparison with
macroclimatic conditions occurring in the surrounding open
environments. Air temperature in dense tree vegetation in gal-
lery forests can be 4 °C lower compared with the surroundings,
and relative humidity 15% higher. This habitat provides resting
sites for G. p. gambiensis in contrast to the more open habitat
into which they may disperse for short periods (some hours)
in search of a blood meal, namely their hunting sites. Suitable
G. p. gambiensis habitat may be seasonal because of the variations
of macroclimatic conditions and of nonpermanent vegetation.
The Maxent model confirmed that permanent dense tree

vegetation was important for G. p. gambiensis, but also that the
larger the area occupied by the flies during the rainy season
(corresponding to their dispersal capacity) the more suitable this
habitat appears to be for G. p. gambiensis. Evidence is provided
by the positive correlation of the forest range with the ENFA
marginality axis (Fig. 1).
The data layers derived from Landsat images, which have

a higher spatial resolution (30 m) than Moderate Resolution

Imaging Spectroradiometer from the National Aeronautics and
Space Administration (MODIS) data (250 m), were important
predictors of the presence ofG. p. gambiensis. This was expected,
given their ability to survive in very small vegetation patches in
the Niayes (4). It would be difficult to obtain such fine-scale data
for larger regions of West Africa. Fortunately, a good correlation
was found between forest predictors and minimum night LST
(Fig. 1). Moreover, the regularized gain is only reduced by 6%
when all forest predictors are removed.

Comparison of the Regularized Logistic Regression and Maxent Models.
The nature of predictions differs between regularized logistic re-
gression (probability) and Maxent (index). However, the two pre-
dictions were highly correlated, as observed elsewhere (17). Model
quality-assessment metrics were similar using the presence–absence
validation dataset. Maxent predicted suitable areas better than
regularized logistic regression based on the expert-based land-
scape classification. Tsetse presence data are generally more
meaningful than absence data, because all known traps have a
very low efficiency with respect to trapping rates (as a percentage
of available individuals), namely ≤1% per d per km2 (4). In the
Niayes, observed trapping efficiencies were as low as 0.3% per
d per km2 following the release of more than 200,000 sterile male
flies. In our case, particular conditions (feasibility study of an
eradication project) allowed a rigorous selection of false absen-
ces (SI Methods), including homogeneous trapping protocol and
known trap efficiency (4). Under other circumstances (trap ef-
ficiency unknown, different trap models, or trapping protocols),
trapping may generate false absence data. Using only presence
data to assess habitat suitability has the advantage that data de-
rived from different sources (e.g., compilation of published data)
can be combined to inform control projects.
Moreover, Maxent predictions were important for the eradi-

cation program as all suitable habitat needed to be included in
the monitoring and the target area, even if they were not infested
at the time of sampling due to possible movement among the
patches. In the Niayes area, G. p. gambiensis are never present
in all suitable patches at the same time. Instead, they form a
metapopulation with patches connected through dispersal (18).

Use of Model Predictions for Optimization of the Eradication Project.
To generate a binary presence–absence map to delimitate the
infested area, we chose a threshold providing a high sensitivity
(96%). Indeed, in the case of an eradication project, it is para-
mount to reduce false negatives as much as possible, to avoid
leaving tsetse-infested pockets not subjected to the control ef-
fort. Such areas can act as a source of reinvasion into previously
cleared areas. During the entomological baseline data survey,
the target area was divided into operational 5 × 5 km grid cells
where at least one tsetse had been captured, plus a buffer zone

Table 1. Prediction qualities of the regularized logistic
regression and Maxent models using the validation dataset

Model Threshold Sensitivity Specificity PCC AUC

Glmnet 0.5 0.63 (0.07) 0.93 (0.03) 0.78 (0.04) 0.89 (0.03)
Maxent 0.5 0.64 (0.06) 0.96 (0.03) 0.80 (0.04) 0.92 (0.02)
Glmnet 0.11* 0.96 (0.03) 0.50 (0.07) 0.73 (0.04) —

Maxent 0.13* 0.96 (0.03) 0.57 (0.07) 0.77 (0.04) —

Glmnet 0.35† 0.82 (0.05) 0.89 (0.04) 0.86 (0.03) —

Maxent 0.32† 0.86 (0.05) 0.79 (0.06) 0.82 (0.04) —

These results were obtained with the presence–absence validation dataset.
SDs are presented in parentheses. Glmnet, regularized logistic regression.
*Selected to optimize sensitivity.
†Selected to optimize PCC.

Fig. 4. Optimization of the integrated control strat-
egy using model predictions. The Maxent model was
used with a threshold of 0.13 to predict the suitable
habitats for G. p. gambiensis (sensitivity of 0.96 and
specificity of 0.57). In block 1, the suitable habitats
allowed delimitating two polygons for aerial releases
(RL1 and RL2) where the minimum numbers of sterile
males released per km2 were 24 and 11, respectively,
based on Maxent predictions. Adult chilled tsetse flies
are released with a Mubarqui smart release machine
on board a gyrocopter of the Kalahari aerodrome
(Upper Left) (20). In block 1, the green and gray lines
represent the track flying records of the gyrocopter
on April 14, 2014 in RL1 and April 11, 2014 in RL2,
respectively. In block 2, 1,347 insecticide-impregnated
traps were set from December 2012 to February 2013
in the predicted suitable sites (blue lozenges) to sup-
press tsetse populations.
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consisting of the grid cells contiguous to these infested cells. This
strategy was validated by the Maxent predictions using this sensi-
tivity threshold and confirmed that the target area was spatially
isolated from any other suitable area forG. p. gambiensis. The area
selected for model predictions did not include the populations of
northern Sine Saloum (4) because they represent a different eco-
type, genetically isolated from the Niayes metapopulation. We
however included the “small coast” area of Senegal, again to avoid
leaving tsetse-infested pockets south of the target area (6).
Interestingly, the Maxent model predicted some suitable

habitat north of the target area (Fig. 3), which was infested by
G. p. gambiensis in the 1970s and was subjected to a control pro-
gram using residual spraying of dieldrin and trapping (4). This
former control program probably eliminated some pockets of
G. p. gambiensis that were completely isolated from the main
infested area by sand dunes. Actually, noG. p. gambiensis flies were
captured in these sites despite intensive sampling for several months
and using numerous traps (4), despite these sites appearing fully
suitable for this species based on phytosociological criteria.
The improvement provided by the Maxent model, in com-

parison with the maps of suitable habitats (forests) based on the
supervised classification of Landsat ETM+ images, is mainly
related to specificity: 0.43 with this classification vs. 0.57 with
Maxent. Sensitivity was already 0.96 with the supervised classi-
fication. Maxent selected those permanent tree habitats where
climatic conditions (particularly temperature) allowed tsetse sur-
vival. Even if MODIS data mainly provide information on the
macroclimate, they also allow making inferences on tree cover
(particularly using night LST) and therefore on the buffering ef-
fect of permanent vegetation on macroclimatic conditions. Maxent
models thus allowed increasing the sensitivity of the monitoring
system, because traps previously set in unsuitable habitats have
been moved based on suitability predictions (Fig. S4).

Regarding the suppression strategy, the use of the vegetation
classification in block 1 (Maxent predictions were not available
then) already represented a great improvement in comparison
with previous tsetse control programs; 269 targets were set in
block 1 from December 2010 to February 2011 using this clas-
sification (corresponding to 19.4 targets per km2 of suitable
habitat). They allowed a good suppression of the flies, whereas in
the absence of a model of suitable habitat, densities of 60 targets
per km2 were required in Guinea against the same subspecies:
Recently, on Fotoba Island, 30 targets per km2 could only reduce
the apparent fly density by 62% (8). In block 2, Maxent further
improved the results, and a significantly higher reduction rate
(99.6%) than in block 1 was obtained with a lower target density
of 16.7 targets per km2 of suitable habitat (and 2.7 targets per km2

of the target area only). Considering a target cost of V3 in our
project and a deployment cost of V6 per trap (19), the total re-
duction of the costs can be estimated at ∼V43,700 for 1,000 km2.
Moreover, Maxent predictions allowed concentrating the re-

lease of sterile flies onto suitable habitats in block 1: With only
16.5 (SD 7.0) sterile flies released weekly per km2, a sterile-
to-wild male ratio of 130 was obtained, inducing 100% sterility
in females and thus driving the population to extinction. The
minimal weekly release rate was set at 10 and 100 flies per km2 of
unsuitable and suitable habitat, respectively. Initially, sterile
males were released from the air using carton boxes dropped
from a gyrocopter, but since February 2014 a more advanced
automatic chilled adult release machine was used (Mubarqui
smart release machine; Fig. 4) that can be parameterized daily
considering these parameters and the amount of flies available
at the emergence center (Senegalese Institute for Agricultural
Research) (20, 21). Within this machine, the vibratory feeders
can be adjusted to release rates between 10 and 100 flies per
km2, with a gyrocopter flying at a speed of 110 km/h. In the ab-
sence of the Maxent models, it would have been necessary to
release at least 100 flies per km2 everywhere in the target area [in
Zanzibar, up to 300 flies per km2 were even released in the forest
section to eradicate G. austeni (22)]. With a mean cost of V0.2
per pupa [including production costs at Centre International de
Recherche-Développement sur l’Elevage en zone Subhumide
(CIRDES), Burkina Faso and the Slovak Academy of Sciences
(SAS) and V0.04 transport cost per pupa], this represents major
savings of ∼V590,000 for our project, taking into account that
70% of received pupae provide for operational sterile flies, when
taking into account the emergence rate and mortality rate at the
insectarium before release. Moreover, the total number of sterile
male G. p. gambiensis pupae produced by the CIRDES and the
SAS is currently limited to 25,000 pupae per wk, and treating the
full area would not have been possible without adjusting release
densities to the availability of suitable habitat.
The same methodology will be applied in the two remaining

blocks following the rolling carpet approach: When eradication
is started in a given block, suppression is started in the contig-
uous block to avoid any risk of reinvasion. Based on this strategy,
the full target area is planned to be cleared from tsetse by the
end of 2016.
The same approach might be used to optimize any vector or

insect pest control program, especially when eradication is the
selected strategy (23).

Methods
Site Description. The study area had a total surface of 7,150 km2, located in
the Niayes region of Senegal (14.1° to 15.3° N and 16.6° to 17.5° W). At the
time of the study, it was the target of an eradication campaign against an
isolated G. p. gambiensis population (4) (Fig. 4). The climate is hot and dry
from April to June, whereas the rainy season occurs from July to October
and the cold dry season from November to March.

Response Data. Learning dataset. A cross-sectional survey was implemented
from December 2007 to March 2008 (dry season) to collect baseline data for
the eradication campaign using 683 unbaited Vavoua traps (4). Traps were

Fig. 5. Impact of the control operations on tsetse apparent densities per
trap per d. The red vertical lines represent the start of the suppression phase
(insecticide targets) in each block, whereas the blue vertical lines represent
the start of the eradication phase (release of sterile males). Densities are
presented in natural log scale [log (catch + 1)]. The regression curves cor-
respond to a nonparametric loess curve with associated 95% confidence
interval. The map presents the location of the blocks that are targeted se-
quentially following a rolling carpet approach. The vertical red arrow shows
the capture of the last indigenous fly in block 1.
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removed as soon as a tsetse fly was caught (minimum 1 d). In the absence of
capture, the traps were retrieved after a maximum of 42 d.

To homogenize data quality and avoid pseudoreplication (data points in
the same pixel), the dataset was simplified in two ways. First, the study area
was rasterized into square pixels with a 250-m resolution to match the model
predictors (SI Methods).

For the presence data, all trap positions locatedwithin the same pixel were
aggregated and concentrated in the pixel center. Presence data were ob-
served in 68 pixels from 91 presence points (Fig. S5).

For the absence data, all trap positions located within a buffer of 500 m
around a presence point were removed (to account for tsetse dispersal
capacity). Furthermore, we removed absence pixels with P > 0.01 that the
flies were present despite the absence of trapping using the model described
(24) (SI Methods). From the initial 592 absence data, 333 were finally retained
(Fig. S5), 56 of which were used in the validation dataset. Therefore, the
training dataset was composed of 68 presence and 269 absence data.
Validation datasets. Trap data were collected independent of the training
dataset from April 2009 to February 2013 during different surveys (tsetse
dispersal and competitiveness studies, longitudinal monitoring of the de-
mographic structure of tsetse populations, etc.). This dataset included 92
presence and 64 absence data. It was processed as described above, resulting
in a dataset of 64 presence and 1 absence data (trapping times were not long
enough to ascertain tsetse absence). A subset of 56 absence data was ex-
tracted from the 333 absence data described above.

A second validation dataset was created using 182 aerial photos taken
from a gyrocopter at an altitude ranging from 100 to 300m. The environment
identified from these pictures was subsequently categorized as suitable or
unsuitable for tsetse habitat (4). Picture coordinates were corrected using
Google Earth to take the angle and deviation from the ground into account.
Overall, 23 suitable and 159 unsuitable habitats were identified, thereafter
called “expert-based habitats” (Fig. S6).

Predictors Used for Tsetse Suitable Habitat. Climatic and environmental data
were derived from a time series of MODIS (version V005). Composite day and
night land surface temperature (MOD11A2; 8-d averages), middle infrared
(MOD13Q1; 16-d averages), and normalized difference vegetation index
(MOD13Q1; 16-d averages) were selected for the analysis (25). Spatial
resolution of pixels was 250 × 250 m (SI Methods).

A supervised classification of the vegetation was achieved using Landsat 5
Thematic Mapper satellite images with a spatial resolution of 30 × 30 m (SI
Methods). Four cloud-free and haze-free satellite images were used, from

October 2009, April 2010, June 2010, and December 2010, to take into ac-
count the seasonal dynamics of these habitats, named “forests” in the
manuscript.

Models. Ecological niche factor analysis was used to characterize the habitat
of G. p. gambiensis in the target area (SI Methods).
Regularized logistic model was used to predict tsetse presence probability. Maxent
analysis was used to predict habitat suitability. Approximately 10,000 pixels
were sampled from the environmental variables (background) to calibrate
themodel. Because of the small sample size for presence data (56 points), only
linear and quadratic transformations of environmental variables were used.

Model performance and comparison were assessed using the two vali-
dation sets (26). Model performance metrics were computed for each pre-
dictive model (27). The metrics used were the area under the receiver
operating curve, called the area under the curve (28), the percentage of
consonants correct (PCC), the specificity, and the sensibility (SI Methods).
Regularized gain is an additional metric for Maxent models. Marginal response
curves were also computed to assess the relationship between the predicted
suitability index and a given environmental datum. These curves were obtained
by varying this variable while keeping all others at their average value.

Predicted values from regularized logistic regression and Maxent models
were compared using Spearman’s rank correlation coefficient.

Impact of Control Operations. We used a generalized linear mixed model (29)
to measure the impact of the suppression on tsetse apparent densities. The
response data were tsetse counts in the traps. Time (measured in weeks),
treatment (suppression or not), and the block (1 or 2) and their interactions
were used as fixed effects, whereas the trap locations were used as random
effects (SI Methods). Raw data are presented in Dataset S1.

The probability that eradication was effective in block 1 was estimated
using the same model used to clean the absence dataset (24) (SI Methods),
considering that at least a couple of flies were necessary to maintain the
population.

ACKNOWLEDGMENTS. This work was funded by the US State Department
through the Peaceful Uses Initiative, the Joint Food and Agriculture Orga-
nization of the United Nations/International Atomic Energy Agency Division
of Nuclear Techniques in Food and Agriculture, the Department of Technical
Cooperation, the Directorate of Veterinary Services of Sénégal, Institut Sénégal-
ais de Recherches Agricoles, and Centre de Coopération Internationale en
Recherche Agronomique pour le Développement.

1. Simarro PP, Jannin J, Cattand P (2008) Eliminating human African trypanosomiasis:
Where do we stand and what comes next? PLoS Med 5(2):e55.

2. Itard J, Cuisance D, Tacher G (2003) Trypanosomoses: Historique - répartition géo-
graphique. Principales Maladies Infectieuses et Parasitaires du Bétail. Europe et Ré-
gions Chaudes, eds Lefèvre P-C, Blancou J, Chermette R (Lavoisier, Paris), Vol 2, pp
1607–1615.

3. Kabayo JP (2002) Aiming to eliminate tsetse from Africa. Trends Parasitol 18(11):
473–475.

4. Bouyer J, et al. (2010) Stratified entomological sampling in preparation for an area-
wide integrated pest management program: The example of Glossina palpalis gam-
biensis (Diptera: Glossinidae) in the Niayes of Senegal. J Med Entomol 47(4):543–552.

5. Seck MT, Bouyer J, Sall B, Bengaly Z, Vreysen MJB (2010) The prevalence of African
animal trypanosomoses and tsetse presence in western Senegal. Parasite 17(3):
257–265.

6. Solano P, et al. (2010) Population genetics as a tool to select tsetse control strategies:
Suppression or eradication of Glossina palpalis gambiensis in the Niayes of Senegal.
PLoS Negl Trop Dis 4(5):e692.

7. Vreysen MJB (2001) Principles of area-wide integrated tsetse fly control using the
sterile insect technique. Med Trop (Mars) 61(4-5):397–411.

8. Kagbadouno MS, et al. (2011) Progress towards the eradication of tsetse from the
Loos islands, Guinea. Parasit Vectors 4:18.

9. Guisan A, Thuiller W (2005) Predicting species distribution: Offering more than simple
habitat models. Ecol Lett 8(9):993–1009.

10. Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-
only modelling methods for predicting bird habitat suitability. Ecography 27(4):
437–448.

11. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat
Soc Series B Stat Methodol 67(2):301–320.

12. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear
models via coordinate descent. J Stat Softw 33(1):1–22.

13. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species
geographic distributions. Ecol Modell 190(3-4):231–259.

14. Fithian W, Hastie T (2012) Statistical models for presence-only data: Finite-sample
equivalence and addressing observer bias. arXiv 1207:6950.

15. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How
to compute habitat-suitability maps without absence data? Ecology 83(7):2027–2036.

16. Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:

415–427.
17. Gormley AM, et al. (2011) Using presence-only and presence-absence data to estimate

the current and potential distributions of established invasive species. J Appl Ecol

48(1):25–34.
18. Peck SL (2012) Networks of habitat patches in tsetse fly control: Implications of

metapopulation structure on assessing local extinction. Ecol Modell 246:99–102.
19. Bouyer J, Seck MT, Sall B (2013) Misleading guidance for decision making on tsetse

eradication: Response to Shaw et al. (2013). Prev Vet Med 112(3-4):443–446.
20. Bouyer J, Lefrançois T (2014) Boosting the sterile insect technique to control mosquitoes.

Trends Parasitol 30(6):271–273.
21. Mubarqui RL, et al. (2014) The smart aerial release machine, a universal system for

applying the sterile insect technique. PLoS ONE, in press.
22. Vreysen MJB, et al. (2000) Glossina austeni (Diptera: Glossinidae) eradicated on the

island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93(1):

123–135.
23. Vreysen MJB, Seck MT, Sall B, Bouyer J (2013) Tsetse flies: Their biology and control

using area-wide integrated pest management approaches. J Invertebr Pathol 112

(Suppl):S15–S25.
24. Barclay HJ, Hargrove JW (2005) Probability models to facilitate a declaration of pest-

free status, with special reference to tsetse (Diptera: Glossinidae). Bull Entomol Res

95(1):1–11.
25. Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in West

Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med

Parasitol 90(3):225–241.
26. Elith J, et al. (2006) Novel methods improve prediction of species’ distributions from

occurrence data. Ecography 29(2):129–151.
27. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in

the prediction of species distributions. Ecography 28(3):385–393.
28. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or

more correlated receiver operating characteristic curves: A nonparametric approach.

Biometrics 44(3):837–845.
29. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics

38(4):963–974.

10154 | www.pnas.org/cgi/doi/10.1073/pnas.1407773111 Dicko et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.1407773111.sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1407773111/-/DCSupplemental/pnas.201407773SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1407773111


Supporting Information
Dicko et al. 10.1073/pnas.1407773111
SI Text
Existing Tsetse Distribution Models. Several scientists have tried to
model the distribution of tsetse populations to inform stake-
holders on the risk of African animal trypanosomosis. Rogers and
Randolph showed that the abundance and mortality of tsetse
were negatively correlated with temperature-related indicators
derived from meteorological satellites (1). Images from advanced
very high resolution radiometers (AVHRRs) that are on-board
satellites of the National Oceanic and Atmospheric Administra-
tion, and in particular the normalized difference vegetation index
(NDVI), a measure of the photosynthetic activity of vegetation,
were used to predict the distribution of Glossina morsitans and
G. pallidipes in Kenya and Tanzania with a predictive power of
around 80% (percentage of correctly classified sites) (2). The
same methodology using satellite-derived data (NDVI, ground
temperature, and rainfall) subjected to temporal Fourier analysis
was applied to eight species of tsetse flies in West Africa with an
average predictive power of 82% (3). Discriminant analysis and
logistic regression were used to produce probability maps of
presence at a spatial resolution of 8 km and indicated that thermal
data played a more important role in predicting tsetse presence
than vegetation indices. This methodology is the basis of the maps
still used by the Food and Agriculture Organization of the United
Nations (4).

Discriminant Analysis and Vegetation Classification. Robinson et al.
proposed a methodology based on a sequence of discriminant
analysis, maximum-likelihood image classification, and principal
components analysis of AVHRR data (1.1-km resolution) to
determine the distribution of four species of tsetse in southern
Africa (5). The remotely sensed variables were the NDVI, soil
temperature, and elevation, and predictive powers up to 92%
were obtained for some species. Hendrickx et al. used un-
supervised classifications of AVHRR (8-km resolution) and
METEOSAT (5-km resolution) satellites to develop distribution
and abundance maps of tsetse (6). More recently, vegetation
units at different spatial resolutions of a land cover classification
system (resolution of 1 km) were used to map suitable habitats
of several tsetse species in Africa. However, the correlation be-
tween tsetse presence and vegetation classes/units was low for
the Palpalis group (47%) (7). Fragmentation analyses were also
used to map tsetse densities in Burkina Faso and Zambia (8, 9).

SI Methods
Response Data. Learning dataset. A 250-m resolution was adopted
according to ecological features of Glossina palpalis gambensis;
that is, the visual attraction of riverine tsetse flies to Vavoua
traps is estimated at 50–100 m (10). During a release–recapture
experiment implemented in this area (n = 150,000 tsetse sterile
males), the estimated mean daily dispersal distance was 510 m in
the control area (data not presented).
For the cleaning of the absence dataset, trap efficiency of

Vavoua traps for G. p. gambiensis in the study area was estimated
at 0.003 per d per km2. To detect tsetse-free pixels (absence
data), we used a probability model based on trap efficiency (σ),
number of traps set within a given pixel (S), and trapping du-
ration (t) to calculate the probability of presence (p) of tsetse
within a pixel (11). With this model, the probability of observing
a sequence of zero catches, given the actual presence of flies
in the sampled area, is given by P = exp(−Stσλ), where λ is the
population density (number of insects per area sampled). This
probability was calculated for each pixel using the specific

number of traps, the duration of trapping, and the pixel surface
(0.0625 km2). In the absence of any control effort, the minimal
number of flies to be detected in a pixel was set to 10, consid-
ering this number was lower than any observed tsetse density for
a resident population in the absence of control effort (12). We
removed absence pixels with P > 0.01.
Predictors used for tsetse suitable habitat. The spatial resolution of
pixels was 250 × 250 m for all data except for the land surface
temperature (LST) products (1 × 1 km). Data were projected
into universal transverse mercator-projected coordinate system
28N/WGS84. LST data were resampled to match the finest
spatial resolution of 250 × 250 m, using the nearest-neighbor
method (13). Summary statistics (average, minimal and maximal
values, range, and SDs) were calculated for the period 2007–
2009. These steps were performed using the R package raster
(14), the GRASS geographical information system (15), and the
MODIS reprojection tool (https://lpdaac.usgs.gov/tools/modis_
reprojection_tool).
For the supervised classification of vegetation based on Landsat 5

Thematic Mapper (TM) satellite images, radiometric corrections
were done converting the numeric values into reflectance values.
Maximum-likelihood classifications were used with the three-
channel composition TM4, TM3, and TM2 (9, 16). Classification
was supervised with 298 georeferenced field observations (17),
which were used to define regions of interest (ENVI software
version 5; www.exelisvis.com). Validation was achieved using 317
field records with a detailed description of the vegetation. Areas
with high chlorophyll activity, corresponding to suitable habitats
for G. p. gambiensis (riverine thickets, tree plantations, swampy
forests, and Euphorbia hedges), were thus identified at each date.
Confusion matrixes and Kappa coefficients were calculated to
check the accuracy of classifications (K = 0.74 for October 2009;
0.84 for April 2010; 0.82 for June 2010; 0.76 for December 2010).

Models. Ecological niche factor analysis (ENFA) is a variant of
factor analysis used to explore and model species ecological
niches. The environmental space actually used by the species is
compared with the available environmental space using two
indicators: marginality and specialization (18). Marginality is
a measure of central position. It captures the dimension in the
ecological space in which the average conditions where the
species lives differ from the global conditions. A large margin-
ality value implies that the conditions where the species is found
are far from the global environmental conditions. In contrast,
specialization measures the spread and use of the ecological
space along dimensions of niche use. The higher this value, the
narrower the space used by the species. Consequently, the spe-
cies niche can be summarized by an index for marginality and
another for specialization, represented on a factor map within
the biplot framework (19). Computation was done using the R
package adehabitatHS (20).
For the predictive models (regularized logistic regression and

Maxent), we fitted each model in a linear and quadratic com-
bination of environmental variables. In a similar way as mar-
ginality and specificity account for tendency and spread in an
ENFA, linear combination accounts for centrality and habitat
preference, and quadratic transformations of the features reflect
species tolerance to that dimension. For each model, variable
selection was done automatically through the use of optimal re-
gularization parameters. These optimal parameters were obtained
using a 10-fold cross-validation on the training set. We finally se-
lected submodels (associated with specific regularization parame-
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ters) with the highest predictive performance as assessed by the
capped binomial deviance indicator.
For the regularized logistic regression model, specific tuning

parameters (regularization coefficients) were obtained using a
double cross-validation (one for each of the two regularization
coefficients). We used the glmnet R package (21) to conduct
analysis.
For Maxent, the beta multipliers that account for the magni-

tude of the regularization coefficient of each variable were
obtained through a 10-fold cross-validation. The final models
were replicated 50 times to estimate nonparametric confidence
intervals for performance metrics, marginal curves, and so forth.
We used Maxent software version 3.3.3k (www.cs.princeton.edu/
schapire/maxent) through the R package dismo version 0.8.17 (14).
Regarding the model evaluation metrics, the area under the

receiver operating curve (ROC) ranges from 0.5 to 1. A score of 1
indicates a perfect discrimination, whereas a score of 0.5 char-
acterizes a random model. This statistic does not depend on
the threshold. Moreover, optimal thresholds were computed to
maximize the following metrics (22): the percentage of con-
sonants correct (PCC); the specificity (Sp), that is, the proba-
bility of a negative result given that the individual is negative
(probability of true negative); and the sensitivity (Se), that is, the

probability of having a positive result given that the individual is
positive (probability of true positive). The ROC curve is a graphical
representation of Se against false positives (1 − Sp).
The regularized gain indicates how good the Maxent model fits

the data, compared with a uniform distribution. The exponential
of regularized gain measures how many times the likelihood of
the Maxent model is higher compared with this random uniform
distribution. This metric was used to compare variables and their
contribution to the goodness of the model.
To assess the impact of the Maxent models on tsetse sup-

pression and eradication, we used a generalized linear mixed
model. The generalized linear mixed model was fit by maximum
likelihood using a Poisson distribution. A log link was used for the
response variable (tsetse catches), and the observations were
weighted with the inverse of trapping duration. Simpler models,
as well as models without weighted observations, were compared
with the complete model using the corrected Akaike information
criterion (AICc) (23, 24). The best model (the most complete in
this case, presented with the raw data in Dataset S1), was
considered as the one with the lowest AICc. R software (25)
was used for this analysis, together with the lme4 and MuMin
packages (23, 26).
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Fig. S1. Correlation between the probability of occurrence predicted by the logistic model and the suitability index predicted by Maxent. The graph presents
the log of the ranks for each model.

Fig. S2. Regularized training gain of the Maxent habitat suitability model of G. p. gambiensis in the Niayes area. Variables are ranked depending on the gain
from a model with only that variable.
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Fig. S3. Marginal impact of each variable on the predicted suitability (Maxent model). The red line in each panel represents the average of 50 Maxent models
(blue lines) based on the training set. avg, average; forest, surface of forest landscapes (Landsat data); max, maximum; min, minimum; MIR, middle infrared
(MODIS); stddev, SD.

Fig. S4. Optimization of the monitoring system using model predictions. The Maxent model was used with a threshold of 0.32 to predict the suitable habitats
for G. p. gambiensis (sensitivity of 0.96 and specificity of 0.57). In blocks 1 and 2, 23% of the monitoring traps (black squares) have been moved to the closest
suitable patch. In blocks 3 and 4 (monitoring not started yet), the theoretical positions of the monitoring traps (black lozenges) were suited to model pre-
dictions. Biconical traps (Upper Left) were used for tsetse capture.
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Fig. S5. Cleaning of the presence–absence dataset. Full learning dataset (Left), cleaned learning dataset (Center), and independent validation dataset (Right).
Black and red crosses represent absence and presence data, respectively.

Fig. S6. Expert-based classification of tsetse habitats. 1–4: Unsuitable habitats for G. p. gambiensis (cattle herd in a Baobab forest near Ngekhor, industrial
mango tree plantation near Cindia, food crops on sandy ground near Kayar, and water reservoir near Thiès). 5–6: Suitable habitats for G. p. gambiensis (palm
tree forest near Kayar and riparian thicket near Bandia).
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