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Abstract

Background: The genetic determinism of the calving and suckling performance of beef cows is little known
whereas these maternal traits are of major economic importance in beef cattle production systems. This paper aims
to identify QTL regions and candidate genes that affect maternal performance traits in the Blonde d’Aquitaine
breed. Three calving performance traits were studied: the maternal effect on calving score from field data, the
calving score and pelvic opening recorded in station for primiparous cows. Three other traits related to suckling
performance were also analysed: the maternal effect on weaning weight from field data, milk yield and the udder
swelling score recorded in station for primiparous cows. A total of 2,505 animals were genotyped from various chip
densities and imputed in high density chips for 706,791 SNP. The number of genotyped animals with phenotypes
ranged from 1,151 to 2,284, depending on the trait considered.

Results: QTL detections were performed using a Bayes C approach. Evidence for a QTL was based on Bayes Factor
values. Putative candidate genes were proposed for the QTL with major evidence for one of the six traits and for
the QTL shared by at least two of the three traits underlying either calving or suckling performance. Nine candidate
genes were proposed for calving performance among the nine highlighted QTL regions. The neuroregulin gene on
chromosome 27 was notably identified as a very likely candidate gene for maternal calving performance. As for
suckling abilities, seven candidate genes were identified among the 15 highlighted QTL. In particular, the
Group-Specific Component gene on chromosome 6, which encodes vitamin D binding protein, is likely to have a
major effect on maternal weaning weight in the Blonde d’Aquitaine breed. This gene had already been linked to
milk production and clinical mastitis in dairy cattle.

Conclusion: In the near future, these QTL findings and the preliminary proposals of candidate genes which act on
the maternal performance of beef cows should help to identify putative causal mutations based on sequence data
from different cattle breeds.
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Background
Maternal performance traits are of major economic and
ethical importance to the sustainable breeding of beef
cattle worldwide. Of these traits, suckling performance
and calving ease are the essential maternal abilities that
must be considered among the breeding objectives of
any beef cattle breed [1–4]. Calving difficulty should be
limited because it markedly affects the welfare of both
the cow and calf and the profitability of herds, because
of increased labour and veterinary costs, calf mortality
rates and the time before a cow can breed again. The
suckling performance of beef cows is also important in
order to achieve good calf growth with little or no input
of concentrate in the diet.
The only way to assess suckling and calving perform-

ance based on field data is by estimating genetic mater-
nal effects on weaning weight and the calving difficulty
score, respectively. Finer phenotypes can only be recorded
in test stations, and particularly milk yield records using
the calf weigh-suckle-weigh technique and pelvic opening
measurements after calving. Current developments in mo-
lecular biology and statistical methodologies have pro-
vided new tools to unravel the genetic determinism of
these traits. However, because of the cost and difficulty in
recording such phenotypes at a large scale, the literature
contains very few studies dedicated to quantitative trait
locus (QTL) detection for maternal traits in beef cattle,
and these studies are based on field data [5–7]. The first
aim of our paper was therefore to analyse the genetic
architecture of the maternal traits of beef cows by com-
paring QTL analyses of field traits and station traits. The
second aim was to identify as accurately as possible the
principal genomic regions affecting the calving and suck-
ling performance of Blonde d’Aquitaine cows.

Methods
Genotypes
A total of 2,505 Blonde d’Aquitaine animals (the pheno-
types of 909 bulls and 1,596 females were considered
during the study) were genotyped using three different
DNA chips: the Bovine EuroG10K BeadChip® (custom-
ized low density chip), the Bovine SNP50 BeadChip®
(MD chip), or the Bovine HD BeadChip® (777 K markers
corresponding to a high density (HD) chip). The females
were the progeny of 78 sires (20 daughters per sire) eval-
uated for their maternal traits in a progeny testing sta-
tion. Most of the females (1,351) were genotyped using
the low density chip, the remainder using the MD chip.
Most of the bulls were genotyped with the MD chip,
but the 282 main genetic ancestors were genotyped
with the HD chip. In particular, most of the sires (69
out of 78) of the genotyped females were genotyped
using the HD chip. After quality controls that included
call rate higher than 90 % and a Hardy-Weinberg

equilibrium test (P-value > 10-4), 706,791 single nucleo-
tide polymorphisms (SNP) of the HD chip were
retained, 37,634 SNP for the 54 K chip and 7,660 for
the low density chip. Imputations were performed
within the Blonde d’Aquitaine breed in two steps (from
low density to MD, then from MD to HD). A total of
2690 MD genotypes (Additional file 1) were used to im-
pute the female genotypes from low density to MD.
The HD genotypes of 325 Blonde d’Aquitaine main an-
cestors were used for the imputation from MD to HD.
BEAGLE 3.3.0 software was used in both cases for the
imputation [8]. Hozé et al. [9] provided a detailed de-
scription of these genotype editing and imputation pro-
cedures. The SNP were mapped to the UMD 3.1 bovine
genome sequence assembled by the Center of Bioinfor-
matics and Computational Biology at the University of
Maryland (US).

Phenotypes recorded in the field
The French national genetic evaluation process provided
a large dataset of on-farm records for calving and suck-
ling performance in the Blonde d’Aquitaine breed [10]
for both males and females. Estimated breeding values
(EBV) were derived from a best linear unbiased predictor
(BLUP) animal model with maternal effects. Deregressed
Estimated Breeding Values (DEBV) were computed to ob-
tain “pseudo-phenotypes” for each animal, according to
the methodology proposed by Garrick et al. [11].
The evaluation of calving difficulty was based on the

maternal genetic effect for the birth condition score re-
corded at the calving of females or at the calving of the
female progeny of bulls. This score was allocated by the
farmer and ranged from 1 (no assistance) to 4 (caesarian
section). In the Blonde d’Aquitaine breed, most calvings
(77 %) were unassisted (score 1), 17 % experienced
minor difficulties requiring some assistance (score 2),
4 % were mechanically assisted (score 3) and 2 % in-
volved caesarian sections (score 4). For primiparous
cows, calving difficulties were more common, with 4 %
of caesarian sections, 8 % involving considerable assist-
ance and only 62 % of unassisted calvings [12]. The
evaluation of suckling performance was based on the
maternal genetic effect for the weaning weight (WWm)
of the calf. The weaning weight was adjusted at 210-
days: the average performance was 298 kg and 273 kg,
respectively, for male and female calves born during the
2013 birth campaign [12].
The category, origin, heritability and number of ani-

mals genotyped with their performance are shown in
Table 1. The heritability of these maternal traits was low.
The on-farm population comprised two types of animals,
females and bulls. The females had only a few progeny
records (between one and five) and poor DEBV reliabil-
ity (0.05 and 0.08 for CSm and WWm, respectively),
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with 1,377 animals for CSm and 706 for WWm. The
bull population comprised a large population of young
or service sires with low to high DEBV reliabilities (0.29
and 0.33 for CSm and WWm, respectively). Of these,
field information was available on 907 animals relative
to CSm and 725 for WWm.

Phenotypes recorded in station
The station data consisted in the different phenotypes of
1,250 females born between 2002 and 2012 correspond-
ing to the progeny of 78 genotyped sires that had been
progeny tested for maternal traits in the context of the
French Blonde d’Aquitaine breeding programme. Direct
and maternal genetic effects could not be dissociated in
the progeny test evaluation because only the first calf
was recorded for the daughters and they were bred from
different dams with unknown pedigree.
In the test station, two traits were recorded with re-

spect to calving performance. Firstly, the calving diffi-
culty score (CS) was recorded in the same way as for the
field data. However, the station females were only prim-
iparous cows that calved younger (around 26 months
old) than on commercial farms (around 35 months old)
and they were mated with a non-easy calving bull in
order to better discriminate sires with respect to the
calving ease of their daughters. Thus the CS distribu-
tion differed critically from that of the field data: 29 %
of unassisted calvings, 42 % with slight assistance, 16 %
mechanically assisted and 13 % of caesarian sections.
Secondly, cow pelvic opening (PO) was measured one
week after calving. This corresponds to the area esti-
mated by the product of the median bi-iliac width by
the sacro-pubian height, the average area being
0.0307 m2 with a standard deviation of 0.0043 m2. The
genetic correlation between CS and PO was estimated
at 0.50. Concerning suckling performance, two traits
were considered in the test station. Firstly, suckling
performance was assessed by the calf weigh-suckle-
weigh technique to obtain an estimate of milk yield
(MY). Measurements were performed in the morning
and evening at the 60th and 120th days after calving.
MY was estimated from the weighted average of the
60th-day measurement and 120th-day measurement,

with respective weightings of one-third and two-thirds.
The average MY was 5.54 kg, with a standard deviation
of 1.39 kg. Another trait that appeared to be a potential
indirect predictor of suckling performance was the
udder swelling score (US). A five-point scale was used
to assess the degree of udder swelling before calving,
with 1 and 5 points corresponding to the least swollen
and most swollen udder, respectively. The US distribu-
tion of the score was mainly split around the three cen-
tral scores (2: 29 %, 3: 42 %, 4: 23 %), with only 1 % of
udders being scored 1 and 5 % scored 5. The estimated
genetic correlation between MY and US is 0.60.
For the analysis, calving performance was studied con-

sidering by pooling the field phenotype CSm with the
station traits CS and PO; suckling performance was ana-
lysed based on the field trait WWm and the station
traits MY and US. A large proportion of the females
whose first calving had been recorded in station had
their other calvings recorded on farm: 1,031 females had
phenotypes for CS, PO and CSm, and 561 females had
phenotypes for MY, US and WWm.

Statistical model
QTL detections were performed using observed and im-
puted HD genotypes. The QTL detections for station
traits were based on individual performance corrected
for the fixed environmental effects used in the genetic
evaluation described by Phocas and Sapa [13]. For all
station traits, these environmental effects consisted in
the birth region and birth year-period of the heifers, the
calving parity of their dam and the age at calving of the
heifers (fitted as a covariable). With respect to calving
performance traits, the calving period within year and
the calf sex were also added to the previous model. For
MY, the suckling batch within year was included in the
model rather than the calving period within year.
Regarding QTL detections for field traits, DEBV data

from the national on-farm evaluation were used in a
weighted analysis with the corresponding weightings de-
pending on DEBV reliabilities, according to the method-
ology proposed by Garrick et al. [11]. This method aims
to remove parental contributions from EBV so as to

Table 1 Definition of traits (category and origin of performance, heritability) and number of phenotypes

Trait Category Origin Heritability Number of animal with phenotypes
and genotype

Calving difficulty score (CS) Calving Station 0.44 1,250

Pelvic opening (PO) Calving Station 0.37 1,239

Maternal effect on calving difficulty score (CSm) Calving Farm 0.04 2,284

Milk yield (MY) Suckling Station 0.35 1,151

Udder swelling score (US) Suckling Station 0.48 1,250

Maternal effect on weaning weight (WWm) Suckling Farm 0.10 1,431
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account only for individual and progeny performance in
the DEBV and the associated weightings.
Because the number of SNP effects to be estimated

was far higher than the number of records, QTL detec-
tions were based on a Bayesian variable selection ap-
proach in order to resolve this statistical challenge [14].
We considered a BayesC strategy [15] where a fraction
of SNP, π, was assumed to have a non-zero effect at
each iteration. SNP estimates were made using a mix-
ture of π marker proportion with a normal effect distri-
bution N(0, σ2a) and 1- π marker proportion with a
mass point at 0. The general linear mixed model was
defined as in equation:

yi ¼ μþ
Xn

j¼1

zijajδj þ ei

where yi is the phenotype of the animal i, μ the mean for
the considered trait, n the number of SNP, zij the geno-
type at locus j for animal i (with zij = 1 for the homozy-
gote with allele 1 at locus j, zij = -1, with the opposite
and zij = 0 for the heterozygote), aj the effect of the
marker j, δj the indicator variable (δj =1 if marker j is se-
lected at a given iteration, δj =0 otherwise), and ei the
random residual effect. We used GS3 software [16] to
perform these analyses.
A total of 100,000 iterations were performed, with a

burn-in of 20,000 iterations. We used a polygenic BLUP
model to obtain a preliminary estimate of genetic vari-
ance (σ2u) and residual variance (σ2e).
The total additive genetic variance captured by the

markers was computed as follows [17]:

σ̂2u ¼ 2
Xn

i¼1

pi 1−pið Þ σ̂2a

where pi is the frequency of allele i and σ2a is the marker
variance. The π value retained was 0.025 %, correspond-
ing to 177 SNP selected at each iteration from markers
on the HD chip. According to the traits analysed, 63 to
97 % of the total genetic variance was captured by the
markers. The inclusion of a polygenic component in a
model accounting for 40 % of σ2u was tested in order to
capture a larger share of the genetic variance and to dir-
ectly account for pedigree relationships across animals.
The results showed that the same QTL were detected
and located at the same positions using the two models
(with or without a polygenic component), meaning that
the polygenic component was not useful to prevent any
misleading results due to stratification of the popula-
tion. Only minor changes were detected in the degree
of evidence of the QTL, because of the sensitivity of the
Bayesian factor to the prior distribution of model pa-
rameters [18]. Therefore, the parsimonious model

(without the inclusion of a polygenic component) was
retained when presenting the results.

Definition of QTL regions
The degree of association between each SNP and the dif-
ferent phenotypes was assessed using the Bayes Factor
(BF) [19]. The BF involves π and Pi, the probability of
the SNP having a non-zero effect, as in equation [20]:

BF ¼
Pi= 1−Pið Þ
π

1−πð Þ
�

The Bayes factor offers a clear and rigorous framework
to compare competing models. It is the recommended
statistical criterion to be considered when using the
Bayesian method to detect QTL [21, 22]. Classical hy-
pothesis tests try to discard the null hypothesis in favour
of an alternative hypothesis, while BF provides a ratio of
probabilities between models, without it being necessary
to define the null or alternative model. Because its re-
sults can be expressed in terms of an increase from prior
to posterior probabilities of the SNP being “in” the
model [20, 23] it is no longer necessary to calculate sig-
nificance levels, with either simulations or theoretical
approximations. The Bayes factor is not dependent on
asymptotic properties and can be used safely, even with
small samples [23].
A transformation of the BF (logBF) was considered in

order to obtain a clearer visual appraisal of all QTL re-
gions at the chromosome scale (see Fig. 1). LogBF was
computed as twice the natural logarithm of the BF. This
logarithmic scale produced values within the same usual
range as deviance and likelihood ratio test values, thus
facilitating the determination of thresholds to define
QTL as proposed by Kass and Raftery [20]. These au-
thors suggested the following categories to classify the
strength of the evidence provided by logBF: evidence in
favour of the hypothesis is considered to be very strong
for values >10, strong for values between 6 and 10 and
positive for values between 2 and 6. Because an SNP
with a higher logBF may not necessarily correspond to
that closest to the causal mutation, SNP with logBF >3
located close to the peak SNP were also included in the
QTL region when these SNP lay within a sliding window
of 0.5 Mb on either side of the peak SNP. Sliding the
window was performed when at least one SNP with
logBF >3 was found in the current window. The start
and end bounds of the QTL regions were defined by the
locations of the last SNP with logBF >3 that were inte-
grated in the QTL region. The corresponding final inter-
vals of all QTL regions are shown in Additional file 2 for
the six traits under analysis.
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Comparison of QTL regions
The detection of QTL for the three traits grouped under
the same performance characteristic, either ‘calving per-
formance’ or ‘suckling performance’, were compared at a
threshold of logBF above 8, in order to better assess the
relevance of each QTL detected to the corresponding
maternal performance. Aware of the high risk of detect-
ing false positive QTL with limited data [24], we believe
that searching for causal mutations would be more effi-
cient by focusing either on QTL detected with major

evidence (logBF >12) for a single trait or on QTL de-
tected (logBF >8) for two or three of the traits within
the same performance characteristic. The comparative
analysis of QTL detections regarding different traits re-
lated to the same performance characteristic offered
good insurance against false positive results.
During our study, the field data and station data were

recorded completely independently, but concerned ani-
mal populations that were closely related. Venn dia-
grams were built to illustrate the numbers of QTL

Fig. 1 Genome-wide plots of chromosomes 6, 8, 19 and 27 for the six traits. Traits affecting calving performance in the first column: calving difficulty
score (CS), pelvic opening (PO) and maternal effect on calving difficulty score (CSm). Traits affecting suckling performance in the second column: milk
yield (MY), udder swelling score (US) and maternal effect on weaning weight (WWm)
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detected for each trait and the numbers that were com-
mon to two or three traits (Fig. 2). QTL with major evi-
dence for each trait and QTL common to different traits
were studied in more detail and compared with findings
in the literature, mainly drawn from the Animal QTL
database (www.animalgenome.org/cgi-bin/QTLdb/index)
[25]. Some candidate genes were proposed using Ensembl
(ensembl.org).

Results
For all traits, QTL characteristics (peak location, peak
logBF and region size) are reported in Additional file
2.The average sizes of QTL regions were in average be-
tween 0.7 and 1.1 Mb for station traits, whereas they
were between 2.1 and 2.4 Mb wide for field traits. Table 2
shows the QTL with major evidence.

Description of QTL underlying the calving performance of
beef cows
For calving performance, between 23 and 33 QTL were
detected with strong evidence for each trait (Fig. 2). A
total of five QTL were detected with major evidence for
calving performance, two for CS, one for PO and two
for CSm. Considering the CSm field trait as a reference,
two-by-two comparisons of the three QTL detections
were plotted on Fig. 2. No QTL were evidenced as being
common to the three traits. Among the 32 QTL de-
tected for CSm, four shared a common region with the
QTL for CS, but no QTL for CSm shared a common re-
gion with any of the QTL for PO. Only one QTL was
detected for both CS and PO. Comparing QTL region
intervals for common QTL made it possible to limit
the likely region for the QTL by only considering re-
gions overlapping across the detections. For the five
common QTL, the average common region size was
0.387 Mb while the average size of the original regions
was 1.612 Mb.

A single QTL with major evidence was detected for PO
on chromosome 6 between 38.287 Mb and 39.552 Mb
(Table 2) and is plotted in Fig. 1. This region was
highlighted as containing eight genes, which in particular
included LAP3, NCAPG and LCORL (see Table 4).
Concerning CS, the main QTL was detected on

chromosome 27 with a peak position at 27.814 Mb
(Table 2). The same region was also detected for CSm,
as can be seen in Fig. 1. The common region between
CS and CSm QTL contained a single gene: NRG1
(Table 4). The second QTL with major evidence for CS
corresponded to a peak position at 39.669 Mb on
chromosome 21 (Table 2) and was located 0.01 Mb from
a pseudogene that has not yet been identified in bovine
species. However, the sequence of the FOXG1 gene
(Table 4), which was the only gene in the QTL, was
aligned in human, mouse and rat in this region (and in
this region only).
The common QTL for CS and PO was evidenced on

chromosome 19 with a very small common region
(<0.1 Mb; Table 3). In addition, this region was also de-
tected as a putative QTL for CSm, as shown in Fig. 1.
However, no mapped gene or structural CNV was found
in this region.
Two QTL were detected with major evidence for

CSm. A large region was detected on chromosome 11
between 70.279 Mb and 73.525 Mb, containing tens of
genes. However, no information was able to confirm this
region as a likely QTL for calving performance. A
smaller region (<0.5 Mb) was detected on chromosome
28 (Table 2) with the peak SNP included in the SLC16A9
gene (Table 4).
At the beginning of chromosome 1, a large QTL re-

gion (>6 Mb) was detected for CSm and also for CS; the
common QTL region (Table 3) was shorter (<0.5 Mb)
but still contained six genes. The common QTL region
on chromosome 6 for CS and CSm (Table 3) included

Fig. 2 Venn diagram showing common QTL between calving and suckling performance traits. Calving performance: difficulty score (CS), pelvic
opening (PO), maternal effect on calving difficulty score (CSm). Suckling performance: milk yield (MY), udder swelling score (US) and maternal
effect on weaning weight (WWm)
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the CS peak and contained a single gene: Arylsulfatase
Family, Member J (ARSJ).
A common QTL was detected for CS and CSm on

chromosome 25, with the CS peak included in the com-
mon region (Table 3) where ten genes were mapped.
Two genes with opposite strands overlapped at this peak
location: NDE1 gene (Table 4) in the forward strand and
Myosin 11 (MYH11) in the reverse strand.

Description of QTL underlying the suckling performance
of beef cows
As for suckling performance, the number of QTL de-
tected with strong evidence was a slightly higher than
for calving performance: ranging from 47 QTL for
WWm to 56 for US. Considering the field trait WWm
as a reference, two two-by-two comparisons of the three
QTL detections were plotted on Fig. 2. Among the 47
QTL detected for WWm, only two QTL were common
to the three traits, while two other QTL shared a com-
mon region with QTL for MY and two QTL a common
part with the QTL for US. Two final QTL were common
to MY and US. For the eight common regions, the average
common region size was 0.915 Mb, while the average size
of the original regions was 2.447 Mb. A total of ten QTL
were detected with major evidence for suckling perform-
ance: six for MY, three for WWm and one for US.
Regarding the three QTL detected with major evi-

dence for WWm, two QTL were detected on chromo-
some 28; the second region detected on chromosome 28
contained a total of eight genes. The peak SNP
(29.570 Mb) was included in the Annexin A7 (ANXA7)
gene (Table 4).
The main QTL for US (logBF = 16.3) was located on

chromosome 6. This region was also detected as a
QTL with major evidence for MY (logBF = 14.4) and
with strong evidence for WWm (Fig. 1). Fig. 3 offers a
zoom on the plots for the three detections relative to
suckling performance in the window spanning 88 Mb
to 90 Mb on chromosome 6, with the known genes

Table 2 Major QTL (logBF >12) locations detected for calving
and suckling performance

Trait Chromosome Start - end position Peak position peak logBF

PO 6 38.287 - 39.552 Mb 38.955154 Mb 12.5

CSm 11 70.279 - 73.525 Mb 72.949696 Mb 12.2

CS 21 39.493 - 40.269 Mb 39.668783 Mb 12.9

CS 27 27.504 - 27.877 Mb 27.813590 Mb 16.3

CSm 28 15.064 - 15.531 Mb 15.458787 Mb 13.6

US 6 88.485 - 88.959 Mb 88.922396 Mb 16.3

MY 5 28.577 - 29.137 Mb 29.072132 Mb 13.4

MY 6 88.485 - 89.223 Mb 88.919352 Mb 14.4

MY 10 69.747 - 72.705 Mb 70.306697 Mb 12.8

MY 13 82.728 - 84.013 Mb 83.805618 Mb 12.1

MY 20 3.861 - 7.327 Mb 5.504819 Mb 13.2

MY 27 42.375 - 43.266 Mb 42.896895 Mb 13.4

WWm 7 24.793 - 25.722 Mb 25.004920 Mb 13.9

WWm 28 19.766 - 20.801 Mb 19.922560 Mb 14.6

WWm 28 29.412 - 29.772 Mb 29.570491 Mb 12.1

Table 3 Common QTL locations and peak positions identified for calving and suckling performance

Traits Chromosome Common region Peak position trait 1 Peak position trait 2

CSm - CS 1 0.413 - 0.884 Mb 3.40862 0.575063

CSm - CS 6 12.391 - 12.937 Mb 15.164578 12.391211

PO - CS 19 60.053 - 60.141 Mb 60.369264 60.140763

CSm - CS 25 13.798 - 14.530 Mb 16.085565 14.223691

CSm - CS 27 27.775 - 27.877 Mb 27.790463 27.81359

US - MY 4 44.177 - 44.917 Mb 44.260073 44.198598

WWm - US 6 88.485 - 88.959 Mb 88.958116 88.922396

US - MY 6 88.485 - 88.959 Mb 88.922396 88.919352

WWm - MY 6 88.485 - 89.223 Mb 88.958116 88.919352

WWm - US 8 60.296 - 61.521 Mb 60.762241 61.044151

US - MY 8 60.348 - 60.353 Mb 61.044151 60.352572

WWm - MY 8 60.348 - 60.353 Mb 60.762241 60.352572

WWm - US 18 33.562 - 34.342 Mb 33.031008 34.538807

WWm - US 19 61.166 - 61.845 Mb 60.504374 61.534509

WWm - MY 20 5.554 - 7.327 Mb 6.392965 5.504819

WWm - MY 20 57.350 - 59.102 Mb 58.801089 58.162729

US - MY 28 43.511 - 44.630 Mb 43.242413 44.036312
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Table 4 Candidate gene symbols, names and positions for calving and suckling performance

Gene symbol Gene name Chra Position Traits involved

ARSJ Arylsulfatase Family, Member J 6 12.720022 - 12.803721 CS, CSm

LAP3 Leucine Aminopeptidase 3 6 38.574590 - 38.600027 PO

NCAPG Non-SMC Condensin I Complex, Subunit G 6 38.765969 - 38.812051 PO

LCORL Ligand Dependent Nuclear Receptor Corepressor-Like 6 38.840894 - 38.992112 PO

FOXG1 Forkhead Box G1 21 39.655563 - 39.657038 CS

NDE1 nudE Neurodevelopment Protein 1 25 14.189695 - 14.237237 CS, CSm

MYH11 Myosin 11 25 14.218281 - 14.343745 CS, CSm

NRG1 Neuroregulin 1 27 27.624065 - 27.702831 CS, CSm

SLC16A9 Solute carrier family 16, member 9 28 15.428478 - 15.474740 CSm

GC Group-Specific Component 6 88.695940 - 88.739180 WWm, MY, US

SLC11A2 Solute carrier family 11, member 2 5 29.012107 - 29.034478 MY

RGP1 Retrograde Golgi Transport Homolog 8 60.328033 - 60.333812 WWm, US, MY

KCNJ2 Potassium channel, inwardly rectifying subfamily J, member 2 19 61.185603 - 61.195897 WWm, US

KCNJ16 Potassium channel, inwardly rectifying subfamily J, member 16 19 61.226690 - 61.229571 WWm, US

TRIO Trio Rho Guanine Nucleotide Exchange Factor 20 58.714145 - 58.945942 WWm, MY

ANXA7 Annexin A7 28 29.552050 - 29.573976 WWm
aChromosome

Fig. 3 Plot of logBF for suckling traits on chromosome 6 between 88 and 90 Mb. The three suckling traits are maternal effect on weaning weight
(WWm), udder swelling score (US) and milk yield (MY). The known genes from Ensembl (ensembl.org) are plotted at the top of the Figure. LogBF:
twice the natural logarithm of Bayes Factor; Mb: mega base pairs
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added at the top of the Figure. As can be seen from
Fig. 3, peak SNP for US and MY detections were
nearby (distance <0.003 Mb). The linkage disequilib-
rium between these two peak markers was almost
complete (r2 > 0.99) among the genotyped females.
This region was around 1 Mb after the casein cluster
of genes (CSN1S1, CSN1S2, CSN2 and CSN3) that affect
casein milk composition and hence milk protein content
[26]. No QTL was detected in our study for suckling traits
in this casein cluster region which spans from 87.141 Mb
to 87.393 Mb. As seen in Fig. 3, our peak markers were
found in an intergenic region between the GC and
NPFFR2 genes (Table 4). However, an in-depth study of
the region showed that QTL regions of the three traits all
integrated two different peak SNP (88.745 Mb and
88.922 Mb). These SNP were 0.177 Mb distant and in very
high linkage disequilibrium (r2 > 0.95). The second peak
was located very close to the start of the reverse strand
GC gene (Table 4).
In addition to this QTL region close to the GC gene,

five other QTL were detected with major evidence for
MY, on chromosomes 5, 10, 13, 20 and 27 (Table 2).
The QTL on chromosome 5 was also detected as a puta-
tive QTL for WWm. This region was very rich in genes
(13 in total, over 0.560 Mb). Combination with the cor-
responding QTL for WWm enabled a reduction in the
likely region to an area between 28.834 and 29.136 Mb,
restricting the number of potential genes to six. This
short region included the MY peak and several sequence
alignments of the SLC11A2 gene.
On chromosome 8, a very small common region

(Table 3) was shared by QTL detected for the three
suckling traits (Fig. 1). The MY peak SNP was included
in this region, but no gene was mapped to this small
common region. The RGP1 gene (Table 4) was one of
the 13 genes included in the common US-WWm region.
Moreover, RGP1 was the gene closest to the small com-
mon region (0.02 Mb) shared by the QTL detected for
the three suckling traits.
On chromosome 4, a common QTL region was identi-

fied for MY and US (Table 3) and contained 12 genes.
On chromosome 28, another QTL was detected for both
MY and US (Table 3). A total of 19 genes were mapped
to this region.
Regarding the common QTL for US and WWm, the

region detected on chromosome 18 (Table 3) did not
correspond to any obvious candidate genes linked to
suckling performance. On chromosome 19, a common
region was detected for US and WWm (Table 3) and in-
cluded two genes: KCNJ2 and KCNJ16 (Table 4).
On chromosome 20, two large common QTL regions

were detected for WWm and MY: the former at the be-
ginning of the chromosome (5.554 - 7.327 Mb), and the
second from 57.350 Mb to 59.102 Mb. For the second

region on chromosome 20, the WWm peak SNP
(Table 3) was included in the TRIO gene (Table 4).

Discussion
Definition of QTL regions
Defining QTL regions is critical when trying to compare
detection findings relative to different traits. On a simu-
lation dataset, Shurink et al. [19] established a corres-
pondence between high Bayes Factor values and the
existence of QTL: the higher the peak logBF, the lower
the risk of detecting a false positive QTL. They consid-
ered logBF > 10 as being indicative of strong evidence
for a QTL, while values between 3.2 and 10 could be
considered as putative QTL. Purfield et al. [7] consid-
ered varying the threshold for BF in order to define a
strong association with a minimum value of 40 (logBF =
7.3) for a very low heritability trait such as perinatal
mortality, and of 200 (logBF = 10.6) for a calving ease
trait. Legarra et al. [21] considered a threshold on the BF
scale of 150, corresponding to a logBF of 10.0 in the nat-
ural logarithmic scale.
Based on these previous proposals, we decided to

qualify as a QTL a chromosomal region where an SNP
with a peak logBF was above a threshold of 8 (BF ≈ 55),
and to determine as major evidence when the peak logBF
was above a threshold of 12 (BF ≈ 400). In addition, we
considered as “putative QTL” a chromosomal region
where at least one SNP had a logBF value between 6 and
8. Although Kass and Raftery [20] considered that a logBF
value within this interval corresponded to strong evidence
for an association, we considered that such evidence was
somewhat speculative because we observed that the pro-
portion of post-burn-in iterations that included the corre-
sponding putative QTL regions (as defined below) was
always lower than 50 %.
It should be noted that there was a strong correlation

(r >0.98) between the estimates of Pi (underlying the BF)
and the absolute value of the estimated effects of each
SNP. Therefore, a QTL with major evidence based on
the BF value was likely to be a QTL with a major effect
on performance.

QTL comparisons between field and station traits
The proportion of QTL common to the three traits re-
lated to the same maternal performance was low, even
when only the two station traits recorded on genotyped
females either for calving or for suckling performance
were considered. This could be partly explained by the
moderate genetic correlations between traits related to
the same maternal performance; for instance, 0.50 be-
tween OP and CS with respect to calving performance
and 0.60 between US and MY for suckling performance.
Another explanation was a likely lack of power (due to

an insufficient number of genotyped animals with
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phenotypes) to enable the detection of QTL with minor
effects that might explain a significant part of the covari-
ation between traits. In addition, when comparing the
results from the two station traits and associated field
trait, three other reasons could explain the lack of com-
mon QTL between these traits. Firstly, although some of
the station population (all 78 sires, 49 % of females for
MY and 82 % for CS) also displayed some performance
in the field, a large part of the field population differed
from the station population. Secondly, for females dis-
playing performance in both cases, a parity effect on ma-
ternal traits could result in weak correlations between
the first parity performance recorded in station and the
field performance for second and subsequent parities.
Thirdly, the pseudo-phenotypes used to analyse the field
data were DEBV with accuracy that varied considerably
from one genotyped animal to another, depending on
the number of phenotyped daughters for the sires or the
number of phenotyped calves for the females. This re-
sulted in QTL detections that could be strongly influ-
enced by the largest sire families because of their high
DEBV weighting. Nevertheless, these large sire families
with field performance mainly comprised the sires that
were progeny tested in station. It should be noted that
the large half-sib population structure did not facilitate
the fine mapping of QTL signals.
A comparison of QTL detections between field and

station traits enabled the identification of QTL. The risk
of false positive results was very limited when a QTL
was detected for at least two of the three traits related to
the same maternal performance.
In addition, the common region shared by such a

QTL across traits was markedly reduced when com-
pared to the initial QTL regions defined for each trait,
thus limiting the genomic region requiring a search for
candidate genes.

Identification of genes associated with calving
performance
In terms of the QTL region affecting CSm on chromo-
some 28 (Table 2), Maltecca et al. [27] identified this re-
gion as influencing gestation length in Holstein cows.
According to these authors, the QTL was not associated
with direct calving ease or calf survival. A shorter gesta-
tion length is well known to be linked to smaller calf
birth weight due to a maternal effect, which means that
genes affecting gestation length may have an impact on
CSm. In addition, a QTL was detected in the same re-
gion for a maternal effect on the birth weight of Blonde
d’Aquitaine calves (M. Barbat, personal communication).
Our peak marker for this QTL was located within the
SLC16A9 gene (Table 4) which is involved in the trans-
port of monocarboxylates.

The two peaks locations of the QTL detected on
chromosome 27 for CS and CSm (Table 3) were very
close together (distance <0.025 Mb), thus testifying to
the influence of this region on the maternal calving per-
formance of Blonde d’Aquitaine cows. No correspond-
ence regarding QTL was found with the recent study by
Purfield et al. [7] which was based on high-density geno-
types in dairy and beef cattle. However, Ashwell et al.
[28]) reported a corresponding QTL region (between
26.994 Mb and 32.725 Mb) for a direct effect on calving
difficulty in Holstein-Friesian cows. It is possible that
the QTL have a pleiotropic effect on calving ease via
both maternal and direct effects.
The NRG1 gene identified in this QTL region encodes

the neuregulin protein that is produced in numerous
isoforms by alternative splicing, thus allowing it to per-
form a wide variety of functions [29] that are essential to
normal development of the nervous system and heart
[30]. In particular, an over-expression of NRG1 in trans-
genic mice [31] led to changes in dopamine metabolism.
Stefos et al. [32] showed that dopamine inhibited prolac-
tin secretion both during labour and post-partum. An-
other dopamine function was related to the production
of stress hormones such as adrenaline. Hydbring et al.
[33] showed that adrenaline levels in the blood rose after
calving, and this increase was more marked in heifers
that required assistance with calving.
The second major QTL for CS on chromosome 21

(Table 2) contained the FOXG1 gene that affects brain
development in humans. FOXG1 syndrome is rare and
has been described as involving impaired development
and structural brain abnormalities in infants. Affected
children are small at birth and suffer from microcephaly
in early childhood [34]. The QTL was not detected for
CSm or PO but a QTL for the birth weight of calves
born in station was detected in the same region with the
same peak SNP (A. Michenet, unpublished results). The
QTL thus identified was therefore more likely to be
linked to direct effects than maternal CS effects..
The QTL detected on chromosome 6 (Table 2 and

Table 3) for PO contained three genes (LAP3, NCAPG
and LCORL) which affect direct calving ease through an
impact on animal development and birth weight [6, 35].
The same region was also highlighted as the main QTL
across the entire genome for Blonde d’Aquitaine female
growth traits (A. Michenet, unpublished results). In
addition, the estimated genetic correlation between PO
and cow weight at calving was 0.71 based on the station
data (A. Michenet, unpublished results). Therefore, this
QTL for PO on chromosome 6 could be expected to
play a role on cow size rather than on maternal calving
performance itself.
The common CS and CSm region on chromosome 6

(Table 3) contained the ARSJ gene, which encodes an
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enzyme related to embryonic development (Ratzka
et al. [36]). Another common region for these traits
was identified on chromosome 25 (Table 3) with two
genes: NDE1 encoding a protein linked to neuron de-
velopment and MYH11 encoding a protein expressed in
smooth muscles.

Identification of genes associated with suckling
performance
As for suckling performance, the QTL for WWm de-
tected on chromosome 7 (Table 2) had previously been
detected by Sodeland et al. [37] for clinical mastitis in
Norwegian Red cattle. The two other QTL for WWm
were both detected on chromosome 28 (Table 2) and
have not previously been reported in the literature. The
second region on chromosome 28 (Table 2) was associ-
ated with the ANXA7 gene which is involved in calcium
transport. Martinez-Royo et al. [38] founded a significant
association between the ANXA9 gene (an important
paralog of ANXA7 on chromosome 3) with milk-fat yield
in the Holstein breed. Considering the fact that WWm
reflects a dam’s ability to induce calf growth through
both the quantity and quality of milk, ANXA7 is a good
candidate gene that may affect milk quality.
Among the six QTL detected with major evidence for

MY, no correspondence was found with the recent study
by Saatchi et al. [6] which was based on 50 K SNP and
considered ten different beef cattle breeds. However,
McClure et al. [5] used microsatellite markers to detect
two of these QTL as affecting maternal weaning weight
in Angus cattle. In our analysis, the first QTL region
spanned from 82.728 to 84.013 Mb on chromosome 13
(Table 2) and the second spanned from 42.375 to
43.266 Mb on chromosome 27 (Table 2). Two large
QTL regions with major evidence for MY were detected
on chromosomes 10 and 20 (Table 2) without any re-
gions being common with data in the literature or with
QTL for WWm or US in our study.
On chromosome 5, the QTL detected for MY was

considered to be major (Table 2) and for WWm to be
putative, and contained the SLC11A2 gene. This divalent
metal transporter protein is involved in regulating essen-
tial nutrients in milk such as iron [39]. Because of this
role, SLC11A2 is a good candidate gene for a QTL af-
fecting milk production.
Several papers in the literature have mentioned the re-

gion detected for the three suckling traits on chromo-
some 6. When studying milk yield relative to 8,000
Holstein and Jersey bulls, Goddard et al. [40] detected a
non-coding SNP located at 88.741 Mb using imputed se-
quence data. These findings confirmed the importance
of the region upstream from the CG gene. This gene en-
codes vitamin D-binding protein, which transports and
delivers vitamin D, which is important to blood calcium

homeostasis. It is synthesized in the liver and secreted
into milk via the circulatory system, with low levels in
mature milk but higher concentrations in colostrum
[41]. Milk production requires large quantities of cal-
cium, and a deregulation of calcium homeostasis will re-
duce milk production and lead to milk fever [42]. This
mechanism may explain the relationship between vita-
min D-binding protein (GC gene) and milk production.
In addition, Sahana et al. [43] detected a QTL in the
same region for clinical mastitis in dairy cows, and also
proposed GC as a candidate gene. Clinical mastitis af-
fects beef cows at a high prevalence that ranges from 26
to 54 % depending on the period of lactation and breed
[44]. These authors highlighted the negative impact of
cow mastitis on calf weaning weight. Moreover, Persson
Waller et al. [45] noted that beef cows with funnel-
shaped teats or pendulous udders had a greater risk of
mastitis, although they did not find any association be-
tween udder health and calf weaning weight. However,
this might explain why our QTL detection for US
highlighted this region as a major QTL.
The common region between US and WWm on

chromosome 8 contained the RGP1 gene which was very
close (0.02 Mb) to the small QTL region shared by the
three traits including the MY peak (Table 3). The RGP1
gene (Table 4) is involved in converting guanosine di-
phosphate (GDP) into guanosine triphosphate (GTP) in
relation to milk production [46]. On chromosome 28,
the common QTL region for US and MY (Table 3) con-
tained numerous genes (19), and we could not suggest
any obvious candidates in this region, which had previ-
ously been detected as affecting MY in Brown Swiss
cows [47]. On chromosome 20, the TRIO gene was in-
cluded in the common QTL region for MY and WWm
(Table 3); it promotes the exchange of GDP by GTP, in
relation with milk production [46].
Regarding the common QTL for US and WWm, the

common region detected on chromosome 18 (Table 3)
did not correspond to any obvious candidate gene linked
to suckling performance. The common QTL region de-
tected for US and WWm on chromosome 19 contained
the good candidate genes KCNJ2 and KCNJ16, which are
linked to the potassium channels, and are thus involved
in a broad range of physiological responses in mammals.
Kamikawa et al. [48] proposed that potassium channels
might impact the secretion or preservation of ionic milk
components in mice.

Conclusion
The detection of QTL for calving and suckling traits
highlighted nine and 15 chromosomal regions respect-
ively, with major evidence for maternal performance in
the Blonde d’Aquitaine beef breed. Regarding calving
performance, three of the nine QTL regions detected
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had previously been reported in the literature. We were
able to suggest nine candidate genes as affecting calving
performance. Three of them (LAP3, NCAPG, LCORL),
corresponding to the same QTL region on chromosome
6, have already been discussed in the literature as affect-
ing calving performance due to either direct or maternal
effects in beef breeds. In addition, six new candidate
genes (FOXG1, NRG1, SLC16A9, ARSJ, and MYH11/
NED1) in five different regions were associated with
calving performance. In terms of suckling performance,
six of the 15 QTL regions had previously been con-
firmed in the literature. We were able to propose seven
candidate genes corresponding to six QTL regions. Two
of these genes (GC and ANXA7) had also been reported
in the literature as being linked to dairy cattle milk
traits. Moreover, we can propose five genes (RGP1,
TRIO, ANXA7, KCNJ2, KCNJ16) as being new candidate
genes for suckling performance in beef cows.
All these candidate genes remain hypothetical because

the causal mutation may be located in a regulatory re-
gion or an unmapped gene. Further studies based on se-
quence data will enable identification of the causal
mutations underlying the 24 QTL highlighted as being
linked to the maternal performance of beef cattle.
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