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Abstract

Objectives

Feed efficiency and its digestive component, digestive efficiency, are key factors in the envi-

ronmental impact and economic output of poultry production. The interaction between the

host and intestinal microbiota has a crucial role in the determination of the ability of the bird

to digest its food and to the birds’ feed efficiency. We therefore investigated the phenotypic

and genetic relationships between birds’ efficiency and the composition of the cecal micro-

biota in a F2 cross between broiler lines divergently selected for their high or low digestive

efficiency.

Methods

Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with

feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups,

respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C.
leptum and E. coli per gram of cecal content were measured.

Results

The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in
less efficient birds. The equilibrium between bacterial groups was also affected, efficient

birds showing higherC. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritabil-

ity of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C.
coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The

coefficient of fecal digestive use of dry matter was genetically and positively correlated with

L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid
digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated

with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also

detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C.
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leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide sig-

nificance. This region mainly includes genes involved in anti-inflammatory responses and in

the motility of the gastrointestinal tract.

Introduction
Feed efficiency is the major component of both economic profitability and environmental
impact of poultry production. It has been shown that when birds are fed a challenging diet (for
their hardness and viscosity characteristics) their digestive efficiency has a significant role in
feed efficiency, and that is highly heritable [1]. After 8 generations of divergent selection on
digestive efficiency, we obtained two genotypes of chickens with 30 to 40% difference between
good digesters (D+) and poor digesters (D-). In a preliminary study, Gabriel et al. [2] showed
that the composition and homogeneity of microbiota varied widely between these two lines,
which suggests that the genetics of the host influence the composition of its microbiota. This
difference in microbiota composition is not surprising as biotopes of the digestive tract have
probably been modified between these two lines due to differences in anatomy of the gastroin-
testinal tract and digestive physiology [3]. Moreover, the microbiota is in constant interaction
with the host and has been shown to influence several major functions such as the immunolog-
ical, physiological and nutritional status of birds [4,5]. Several factors originating from the host
can impact its microbiota, such as those due to digestive physiology (turnover of the intestinal
epithelium, quantity of mucus, motility of gut, gut secretions), the nutrient composition of the
bowel which depends on the composition of the diet and on the bird’s capacity to digest feed,
and the presence of antibacterial compounds of the immune system [6].

Several studies have suggested the existence of the influence of the host’s genetics on the
composition of the chicken microbiota as it differs between individuals [7,8], between lines
selected on growth or digestive efficiency [2,4,9–12] and between birds within a genotype with
high or low feed or digestive efficiency [9,11,13]. A few studies have gone further than group
comparisons, to propose estimates of genetic parameters, genetic or phenotypic correlations
between growth performance and microbiota composition or QTL detection for microbiota.
Heritability of the quantity of 16S rRNA copies has been estimated in only two studies on high
and low body weight chicken lines [4,10]. Despite the relatively low numbers of birds (60 to
132 chickens per study), they indicated that some species or genera such as Lactobacillus spp.
or Streptococcae seem to be heritable and correlated with body weight. However, no correla-
tion with feed or digestive efficiency was available, and these studies relied on fecal samples, the
composition of which varies widely within a day due to emptying of the ceca [14]. However,
studies performed in mammals have indicated that the host’s genetics influence its digestive
microbiota [15].

The aim of our study was therefore to provide a complete set of information on the genetic
basis of the host’s influence on microbiota composition through i) comparison of microbiota
composition between high and low efficiency groups to establish how far selection on diges-
tive efficiency affected microbiota composition, ii) estimation of phenotypic and genetic rela-
tionships between feed efficiency, digestive efficiency and microbiota composition to estimate
which proportion of microbiota composition is due to the overall genetic background of birds
and iii) Quantitative Trait Loci (QTL) detection of microbiota composition to identify regions
in which a variation of the DNA sequence will affect microbiota composition, through a mod-
ification of the environment provided to bacteria (e.g., physico-chemical conditions, nutrient

Digestive Efficiency and Microbiota in Chicken

PLOS ONE | DOI:10.1371/journal.pone.0135488 August 12, 2015 2 / 18



concentrations, immune system activity, . . .). As previous studies showed that the difference
in microbiota composition between efficient and non-efficient birds was greater in cecal con-
tent than in other intestinal compartments [2,11,16], we focused our study on this specific
digestive segment.

Materials and Methods

Animals and rearing
All animal care and experimental procedures reported in this paper were in accordance with
French and European regulations concerning animal experimentation, including authoriza-
tions to experiment on live birds no. 37–100, 006290, 37–123, 37–005, A37-162, 04726, 7275
for scientists and those delivered at 30/09/1996, 26/02/2007, and 09/09/2005 for technicians
from the French Ministry of Agriculture. The Experimental Unit where birds were kept is reg-
istered by the ministry of Agriculture with license number C-37-175-1 for animal experimenta-
tion. Measure of digestive efficiency in individual cages, blood sampling procedures for
genotyping, euthanasia procedures by injection of pentobarbital, scientific justification, evi-
dence for a lack of alternatives and endpoints were approved by the ethics committee in Ani-
mal Experimentation of Val de Loire (00886.02 and 01047.02). This ethics committee is
registered by the National Committee under the number C2EA-19. The personal license num-
ber from the French Veterinary Service for this study is 548.

Data were collected on chickens from a F2 population obtained by crossing two medium-
growth broiler lines divergently selected on their high (D+) or low (D-) digestive efficiency
determined by metabolizable energy corrected to zero nitrogen retention at 3 weeks (AMEn)
[1]. The divergent selection experiment started from a pure male line from the SASSO breeding
company, used as the father of the medium-growth crossbred commercial chickens. The F2
population, created to detect the QTLs for digestive efficiency, has been described in Tran et al.
[17]. Before crossing, the D+ and D- populations presented wide differences in feed and diges-
tive efficiency (30 to 40%) [18,19]. Using an F2 population instead of the initial divergent lines
allowed us to compare efficient and non-efficient birds in a population with a common genetic
background.

Five males and fourteen females per line (D+ and D-) were used as F0 grand-parents. Males of
the D+ and D- lines were mated respectively to females from the D- and D+ line to produce the
F1 generation (half D+×D- and half D-×D+). Six F1 sires (3 D+×D- and 3 D-×D+) were mated
to sixty F1 females of the reciprocal cross (i.e., D+×D- females for D-×D+males, D-×D+ females
for D+×D- males) to produce a total of 864 F2 birds (male and female). The F2 birds were reared
in 4 batches (between January and June 2009) on the floor from hatching to 8 d to allow normal
development of intestinal microbiota and subsequently transferred to individual cages in three
rearing cells until slaughter at 23 d to measure feed and digestive efficiency. Birds were fed a diet
similar to the diet used during the selection experiment [17], including 52.5% Rialto wheat and
6% soybean oil, 3110 kcal.kg-1 DM and 21.1% CP. Clinacox (0.02%) was used as anticoccidial
agent, as it has a limited effect on the development of intestinal microbiota [20,21].

Phenotypes
Birds were weighed at 0, 9, 14, 17, 20 and 23 d. Their feed intake was individually recorded
between 9 and 14 d, 14 and 17 d, 17 and 20 d and between 20 and 23 d. A balance trial with a
total collection of excreta was performed between 20 and 23 d to measure fecal digestive effi-
ciency traits as AMEn, coefficients of fecal digestive use of dry matter, starch, lipids and pro-
teins (CDUDM, CDUS, CDUL, CDUP). These digestive efficiency traits were determined
through near infrared spectroscopy following the method of Bastianelli et al. [22].
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Due to time constraints, it was not possible to select birds used for microbiota study on their
digestive efficiency. Instead, the subsample of 144 birds used for microbiota determination
were selected on their feed efficiency between 17 and 20 d, as feed efficiency and digestive effi-
ciency had been previously shown to be strongly genetically correlated (-0.70, [1]). The mean
values of feed efficiency, estimated through the feed conversion ratio (FCR, i.e. the ratio of feed
intake to weight gain) were 1.41±0.05 in the low FCR group (FCR_L) and 2.02±0.04 in the
high FCR group (FCR_H), respectively. Initial and final body weight of birds in the 2 groups
were similar (Table 1), as could be expected from the absence of genetic correlation between
AMEn and body weight.

Microbiota determination
Previous studies in these chicken lines showed that the greatest difference in microbiota com-
position between D+ and D- was in the cecal content [2]. This study was therefore focused on
this digestive segment. At 23 d, after 2h30 of feeding following 8 hours’ fasting, birds were
killed by pentobarbital injection, and their ceca immediately removed. Ceca were opened and
their content gently removed in order to obtain only the content and not the mucosa, frozen in
liquid nitrogen and stored at -80°C until further processing.

Microbial DNA was then extracted from cecal samples using the QIAamp DNA mini-kit
(QIAGEN, cat#51306). We used a combination of the methods of Yu et al. [23] and Stanley
et al. [11]. Briefly, 25 mg of cecal content were transferred to a tube with lysis buffer [11] and
sterile zirconium beads. Samples were homogenized at maximum speed (Frequency 30.sec-1)
Retsch MM301 for 3 min, followed by heating at 70°C for 5 min. Following centrifugation (5
min, 16 000 g, 4°C), a second extraction step was carried out. The two supernatants were
pooled for the DNA purification step. Proteinase K was added and the sample was heated at
70°C for 10 min to remove proteins. Ethanol was then added and the sample was purified
using a QIAamp column as described by the manufacturer. The sample was eluted in Tris-
EDTA buffer AE (Qiagen). DNA quantity and quality were measured on a Nanodrop
spectrophotometer.

16S rDNA was quantified by qPCR to determine the number of copies of the main bacterial
groups in the chicken gut within the Firmicutes phylum (lactobacillus genus, Lactobacillus sali-
varius and Lactobacillus crispatus species, Clostridium coccoides and Clostridium leptum

Table 1. Least squaremeans (± standard errors) of feed and digestive efficiency, body weight and feed intake in the high (FCR_H) and poor
(FCR_L) feed efficiency groups.

Traits1 FCR_L FCR_H Significance of FCR group effect

FCR (g.g-1) 1.41 ± 0.05 2.02 ± 0.04 <0.0001

AMEn (kcal.kg-1 DM) 3444 ± 44 2936 ± 39 <0.0001

CDUDM (%) 73.1 ± 0.9 63.1 ± 0.8 <0.0001

CDUS (%) 98.4 ± 1.1 88.2 ± 0.9 <0.0001

CDUL (%) 84.8 ± 2.0 61.6 ± 1.8 <0.0001

CDUP (%) 84.8 ± 0.6 76.8 ± 0.6 <0.0001

BW20 327.1 ± 6.0 319.5 ± 6.9 0.35

BW23 426.3 ± 7.8 427.2 ± 8.92 0.92

FI 212.7 ± 4.1 166.5 ± 4.6 <0.0001

1 FCR: feed conversion ratio between 17 and 20 d; AMEn: metabolisable energy corrected to zero nitrogen retention between 17 and 20 d; CDUDM,

CDUS, CDUL, CDUP: coefficients of fecal digestive use of dry matter, starch, lipids, and proteins between 17 and 20 d; BW20, BW23: body weight at 20

and 23 days; FI: feed intake between 20 and 23 days.

doi:10.1371/journal.pone.0135488.t001
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groups) and within the Proteobacteria phylum (Escherichia coli). The primers used for Lacto-
bacillus were those described by Walter et al. [24] and Heilig et al. [25] for forward and reverse
primers, respectively. The primers used for L. crispatus, L. salivarius, C. leptum, C. coccoides
and E. coli were those proposed by De Backer et al. [26], Harrow et al. [27], Matsuki et al. [28],
Matsuki et al. [29] and Huijsdens et al. [30], respectively.

Reactions were run in triplicate in 384 well plates in a final volume of 10 μl. The EpMotion
5070 liquid handling robot (Eppendorf, Le Pecq, France) was used to distribute the master mix
and DNA to the 384 well plates. The L. salivarius reaction consisted of 5 μl of TaqMan Univer-
sal PCR 2 × Master Mix (Applied Biosystems, Courtaboeuf, France), 0.2 μl of both 10 μM
primers (Eurogentec, Angers, France) and minor groove binder probe (Applied Biosystems),
1.9 μl of nuclease-free water and 2.5 μl of template DNA at the appropriate dilution. Amplifica-
tion was carried out with a Light Cycler 480 (Roche, Meylan, France) as follows: 10 min at
95°C, followed by 45 cycles of denaturation (10 s at 95°C), annealing (30 s at 60°C) and exten-
sion (30 s at 72°C). Reactions for the other bacterial groups consisted of 5 μl of Light Cycler
480 SYBR Green I Master Mix (Roche, Meylan, France), 0.5 μl of 10 μM primers (Eurogentec),
1.5 μl of nuclease-free water and 2.5 μl of template DNA at the appropriate dilution. The
cycling conditions were as follows: 10 min at 95°C, then 45 cycles of denaturation (10 s at
95°C), annealing (20 s at 60°C) and extension (30 s at 72°C). Following amplification, melting
curve analysis was included in order to assess the specificity of the amplified product. Standard
curves were generated by amplification of serial 10-fold dilutions of E. coli (K12-1 strain,
CIRM-BP 371), L. plantarum (DSM 20174, ATCC 14917, CIRM-BIA 466) genomic DNA
(International Center of Microbial Resources, CIRM, INRA, France), L. Salivarus (ATTC
11741, DSMZ 20555) and L. crispatus (ATCC 33820, DSMZ 20584) and used for the quantifi-
cation of total bacteria and E. coli and lactobacillus spp. L. salivarus and L. crispatus, respec-
tively. Reference clones EF445158 and EF445150 [31] were used to generate the standard
curves for the quantification of C. leptum and C. coccoides, respectively. The copy number for
each reaction was calculated from the standard curves and determined by the second derivative
maximum method [32]. Results are presented as number of 16S rDNA copies expressed per
gram of fresh sample (Table 2).

As preliminary studies showed that the Bacteroides genus was not detected in F0 birds from
D+ and D- lines [2], this group was not included in the present study.

Markers and genotyping
All F0, F1 and F2 birds were genotyped with a dedicated Illumina Infinium custom array includ-
ing 6,000 single nucleotide markers (SNP) markers chosen for their informativity in our design
and for their distribution across the genome [33]. The markers presenting deviations from the
Hardy-Weinberg equilibrium within families, inconsistent genotyping relative to pedigree or
genetic map information or poor quality of markers were discarded from the analysis in order
to reduce the risk of erroneous results [33]. Finally, 3,379 markers were used. The genetic map
was deduced from the physical position of the SNP markers and from the genetic consensus ref-
erence map published by Groenen et al. [34]. This set of markers covers 3,099.1 cM.

Statistical analyses
Phenotypic analyses. We first tested whether the composition of microbiota (count of

each category or ratio of counts between categories) and digestive efficiency parameters were
different between the feed efficiency groups. Due to their non-normal distributions, raw bacte-
rial counts were log-transformed before analysis and the ratios calculated with the log-trans-
formed counts of each category. The analysis of variance was performed with the GLM
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procedure of SAS/STAT Version 9.4 and model 1:

yijklmn ¼ mþ Hi þ Sj þ Ck þ RCl þ Gm þ eijklmn ð1Þ

where yijklmn is the performance of animal n (N = 144), μ the general mean, Hi the fixed effect
of hatch i (i = 1 to 5), Sj the fixed effect of sex j (j = males or females), Ck the fixed effect of rear-
ing cell k (N = 3), RCl the fixed effect of the raw of cage within the cell (N = 3), Gm the fixed
effect of FCR group (FCR_H, FCR_L), and eijklmn the residual pertaining to animal n.

In order to determine which microbiota characteristics might be related to digestive effi-
ciency, we carried out multifactorial correspondence analysis with the SPAD 7.0 software. For
each trait of microbiota and digestive efficiency, we determined three categories with equal fre-
quencies, i.e. the third with the lowest values, the third with the median values and the third
with the highest values (noted L, M and H, respectively). The analysis was performed using
microbiota as active traits (i.e. contributing to construction of axes) and projecting digestive
efficiency categories on the graph. The impact of active variables was assessed through their rel-
ative contribution to each axis. A t-test was then performed to determine whether digestive effi-
ciency traits were significantly associated with composition of microbiota.

Genetic analyses. In order to estimate both heritability of microbiota traits and their
genetic correlations with digestive efficiency, we added an animal genetic effect into the model
used for the analysis of variance (model 1) and estimated genetic parameters with VCE 6.0.2
software [35]. The pedigree used to construct the relationship matrix included 1571 animals.

Table 2. Least squaremeans (± standard errors) of cecal microbiota counts (qPCR) in group with low (FCR_L) or high (FCR_H) feed conversion
ratio.

Bacteria FCR_L FCR_H Significance of group effect

Bacterial count (log10 number of copies per g of cecal content)

Lactobacillus 11.17±0.07 11.39±0.06 0.0060

L. salivarius 10.50±0.12 10.96±0.10 0.0011

L. crispatus 11.24±0.10 11.33±0.09 0.4804

C. leptum 10.97±0.05 10.89±0.04 0.1343

E. coli 9.73±0.13 10.14±0.11 0.0071

C. coccoides 10.96±0.04 10.94±0.04 0.8136

Ratios of bacterial count (log10 number of copies per g of cecal content) of different bacteria categories

L. salivarius/Lactobacillus 0.941±0.009 0.963±0.007 0.0327

L. salivarius/L. crispatus 0.935±0.011 0.970±0.010 0.0085

L. salivarius/C. coccoides 0.958±0.011 0.993±0.010 0.0087

L. salivarius/C. leptum 0.958±0.011 0.998±0.010 0.0034

L. salivarius/E. coli 1.087±0.015 1.087±0.013 0.9536

L. crispatus/Lactobacillus 1.007±0.005 0.995±0.005 0.0571

L. crispatus/C. coccoides 1.028±0.009 1.029±0.009 0.8715

L. crispatus/C. leptum 1.027±0.010 1.034±0.010 0.4916

L. crispatus/E. coli 1.161±0.018 1.122±0.016 0.0689

C. leptum/Lactobacillus 0.983±0.007 0.961±0.006 0.0062

C. leptum/C. coccoides 1.317±0.115 1.105±0.108 0.1297

C. leptum/E. coli 1.138±0.016 1.084±0.015 0.0065

C. coccoides/Lactobacillus 0.982±0.006 0.966±0.005 0.0199

C. coccoides/E. coli 1.138±0.015 1.087±0.014 0.0076

E. coli/Lactobacillus 0.873±0.011 0.892±0.010 0.1702

doi:10.1371/journal.pone.0135488.t002
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QTL analysis. QTL detection was carried out with the QTLMap software [36] using a
half-sib model [37,38] with interval mapping based on maximum likelihood estimations [39].
This model does not make assumptions on the number of QTL alleles segregating in the design.
The traits were analyzed separately. Depending on preliminary analysis of variance, data were
pre-corrected for fixed effects of batch (4 levels), sex (2 levels), rearing cell (3 levels) and cage
row (3 levels). QTL analyses were performed by comparing the hypothesis of one QTL (H1)
versus no QTL (H0) to test the segregation of a QTL on each linkage group. For chromosome
Z, separate analyses were performed for males and females.

For each trait on each chromosome, the significance threshold at the chromosome-wide
level was calculated from the results of 5,000 simulations of performance under the null
hypothesis. For the most significant QTLs, 20,000 simulations were made to derive the
genome-wide p-value (PG) from the chromosome-wide p-value (PC) using an approximate
Bonferroni correction:

PG ¼ 1� ð1� PCÞ
1
r ð2Þ

where r is the ratio of the length of a specific chromosome to the length of the genome consid-
ered for QTL detection, as in Tilquin et al. [40]. Confidence intervals for QTLs (95%) were esti-
mated using the LOD drop-off method as proposed by Lander and Botstein [39].

The significance of the QTL effects within each sire family was tested using a Student test,
by assuming an equal distribution of the QTL alleles in the progeny. A QTL effect was retained
as significant for Student test p-values<0.05, and the corresponding sire families were assumed
to segregate for this QTL. These familial substitution effects were estimated in families found
to significantly segregate for the QTL.

Results and Discussion

Differences between groups and multifactorial analysis
The main differences in digestive and feed efficiency and in microbiota composition between
the FCR_L and FCR_H groups are presented in Tables 1 and 2, respectively. Differences in
FCR between the two groups were due to higher feed intake in FCR_H, as no difference of ini-
tial of final body weight was observed. Due to the incomplete genetic correlations between FCR
and digestive efficiency, the difference in digestive efficiency between the two groups (17.3%)
was lower than the expected 30 to 40% [18,41]. Differences between the two groups for the
coefficients of fecal digestive use of starch, lipids and proteins were similar to differences previ-
ously observed between the D+ and D- lines [42], the difference being lower for proteins
(10.4%) and higher for lipids (37.7%).

Differences between the two FCR groups regarding microbiota composition are shown in
Table 2. The groups mainly differed by higher counts for Lactobacillus, L. salivarius and E.
coli in the FCR_H group (+24.6%, +58.4% and +50.7%, respectively) than in the FCR_L
group. These variations in some bacterial groups resulted in differences in equilibrium
between bacteria. As L. salivarius but not L. crispatus differed between FCR_H and FCR_L,
their ratio to Lactobacillus was also different between the two groups, with relatively more L.
salivarius and less L. crispatus in less efficient birds (P = 0.03 and 0.06, respectively). The
ratios of clostridia to lactobacillus and to E. coli were also higher in efficient than in less effi-
cient birds (P<0.02). The association between the composition of cecal microbiota and feed
conversion ratio in chicken has already been reported by Torok et al. [16] and Stanley et al.
[11]. In the latter study, contrary to our study, a higher L. crispatus count was associated with
poor efficiency, but their study was based on a very different genotype and diet, which might
explain the difference in results.
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The phenotypic association between microbiota composition and digestive efficiency was
seen with the multifactorial analysis (Table 3, Fig 1). It first illustrated that the first factor of
variation in microbiota composition was E. coli, as together E. coli and the ratio of E. coli to
Lactobacillus, L. crispatus, C. leptum and C. coccoides represented 52.9% of the variability on
the first axis. The second axis reflected the equilibrium between Lactobacillus, L. crispatus and
clostridia, with 70.5% of the variability of the axis explained by Lactobacillus, C. leptum, the
ratios of L. crispatus to Lactobacillus, C. leptum and C. coccoides and the ratio of C. coccoides to
Lactobacillus. All traits of digestive efficiency were significantly associated with these two axes,
better digestive efficiency being associated with a lower E. coli count, and thus higher ratios of
other bacteria types to E. coli. On the second axis, better digestive efficiency was also associated
with lower Lactobacillus and C. leptum counts, higher ratios of C. coccoides and L. crispatus to
Lactobacillus and a lower ratio of C. leptum to Lactobacillus.

These associations between digestive efficiency and microbiota composition are consistent
with literature reports. Indeed, it was shown in previous studies that E. coli and Lactobacillus
were more frequent in the chicken ceca when birds were fed a wheat and barley diet, leading to
a lower AMEn, than when they were fed a corn diet leading to a higher AMEn [43,44].

The digestive microbiota in the ceca is dependent on the characteristics of this biotope such
as the nature and quantity of available substrate and transit time. It has previously been
reported that the transit time is much shorter in D- than in D+ birds [45]. This implies that D
+ birds have more time to absorb nutrients in the intestine, which promotes the development
of bacterial species able to survive in harsh conditions, whereas the development of bacteria
able to proliferate fast is favored in D- birds with shorter transit times.

The quantity and nature of nutrients in the ceca indicate that cecal function is more devel-
oped in D+ than in D- birds, the former having heavier cecal weights and cecal content than
the latter [45]. This may contribute to the better capacity of the FCR_L birds in our study to
extract energy and nitrogen from the diet, which thus leads to a higher AMEn and a lower
quantity of nitrogen available to be used by bacteria in uric acid fermentation. Moreover, the
relationship between cecal digestive microbiota and feed efficiency may be explained in part by
the large number of bacteria present in this digestive segment and by their high metabolic
capacity to produce volatile fatty acids by fermentation, which provides an additional energy
source for birds [46].

The development of cecal bacteria is also influenced by the nature of the substrates that come
both from the end of the small intestine and from the retro-peristaltic flux from the cloaca, the
latter including urinary products. Undigested compounds from the ileum in our FCR_H and
FCR_L groups were probably different as a consequence of their difference in the digestion of
proteins, starch and lipids. Moreover, urinary compounds mainly composed of uric acid may
also differ between the two groups [47]. Cecal contents may thus be relatively rich in protein
and uric acids in FCR_L birds, and conversely relatively rich in starch in FCR_H birds. These
different conditions may be responsible for the different bacterial development, for example the
positive relationship between digestive efficiency and the C. coccoides to Lactobacillus ratio
might partly be due to the ability of Clostridium spp. to utilize uric acid [48].

On the other hand, the relationship between digestive efficiency and microbiota composi-
tion may be due to the effects of microbiota on its host. The cecal digestive microbiota may
have an effect on digestive physiology via its production of metabolites such as butyrate, secre-
tion of neuroendocrine hormones and its interactions with the nervous system that innervates
the gastrointestinal tract or via neuropeptides [49–52]. Another contribution of cecal micro-
biota to fecal digestibility is its contribution to the fecal biomass. However, in the case of the D
+ and D- lines, this contribution is probably minor as D+ animals with the highest fecal digest-
ibility appeared to have more developed cecal microbiota [2].
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Table 3. Results of multiple correspondence analysis between cecal microbiota composition and digestive efficiency.

Axis

1 2

Eigen Value 0.3056 0.2552

Percentage of variance explained by the axis 15.28 28.04

Contribution of active variables to MCA analysis (%)

Lactobacillus 0.63 10.42

L. salivarius 4.25 2.66

L. crispatus 1.03 1.91

C. leptum 2.55 11.81

C. coccoides 0.89 0.05

E. coli 9.91 3.16

L. salivarius / Lactobacillus 6.05 0.50

L. crispatus / Lactobacillus 0.90 12.44

C. leptum / Lactobacillus 3.93 3.11

C. coccoides / Lactobacillus 1.46 11.06

E. coli / Lactobacillus 10.73 0.27

L. salivarius / L. crispatus 4.25 4.54

L. salivarius / C. leptum 7.13 0.34

L. salivarius / C. coccoides 4.04 2.82

L. salivarius / E. coli 5.66 0.00

L. crispatus / C. leptum 1.15 13.48

L. crispatus / C. coccoides 3.05 11.32

L. crispatus / E. coli 11.37 0.02

C. leptum / C. coccoides 0.08 1.99

C. leptum / E. coli 9.99 4.51

C. coccoides / E. coli 10.93 3.57

t-test values for illustrative variables1

AMEn2 Low3 -2.63 -2.18

Medium 0.73 -1.00

High 2.02 3.36

CDUDM Low -2.94 -1.83

Medium 0.96 -0.86

High 2.10 2.84

CDUL Low -2.18 -1.96

Medium 0.18 -0.82

High 2.17 3.00

CDUS Low -2.28 -2.36

Medium 0.67 -0.62

High 1.70 3.14

CDUP Low -3.28 -1.64

Medium 1.34 -1.70

High 2.07 3.52

1 a t-test value above 1.96 or below 1.96 means that the position of the category of illustrative variable on the axis is significantly different from zero
2 AMEn: metabolisable energy corrected to zero nitrogen balance; CDUDM, CDUS, CDUL, CDUP: coefficients of fecal digestive use of dry matter, starch,

lipids and proteins.
3 Low, Medium, High: each category includes one third of individual values

doi:10.1371/journal.pone.0135488.t003
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Heritability
Heritability of microbiota composition reflects the proportion of this composition that can be
attributed to the genetics of the host. As they were calculated on a low number of animals, the
genetic parameters presented in Table 4 have to be taken as indicative values. Heritability esti-
mates were generally low. However, among the bacterial groups or ratios that differed between
FCR_H and FCR_L birds, the ratios of L. crispatus, C. leptum and C. coccoides to E. coli pre-
sented significant heritability estimates (between 0.16 and 0.24). E. coli and the ratio of E. coli
to Lactobacillus presented similar heritability estimates but, due to higher standard error esti-
mates, they were not significant. By comparing the composition of fecal microbiota in lines
selected for high or low body weight, Zhao et al. [4] and Meng et al. [10] also found that micro-
biota differed between the two lines and that several species presented heritability. As in our
study, they found that L. salivarius was not heritable.

The presence of significant heritability for some microbiota components and of genetic cor-
relations between microbiota and digestive efficiency is consistent with the expected effects of
host genetics on microbiota. By selecting more and less efficient birds, we first changed the
quantity of undigested nutrients in the ceca that are used as growth substrates by bacteria. More-
over, several earlier studies on these lines showed that the biotope had been considerably modi-
fied in the small intestine, which also affected the conditions of microbiota development.
Indeed, we showed that acid secretions and bile acid secretions [17], gut motility [45] and the
structure of the intestinal epithelium [18,53] were very different between the two lines. All these
parameters may explain an indirect effect of host genotype on microbiota through modification
of the microbiota biotope [4]. Finally, the presence of several QTLs for digestive and feed effi-
ciency which are located on GGA16, that also carries the major histocompatibility complex,
highlights the fact that the birds’ immune system had probably been affected during the selec-
tion process, which would also directly affect the relationship between host and bacteria.

Both positive and negative genetic correlations were found between digestive efficiency and
microbiota composition. As for phenotypic correlations, we found negative genetic correlations
between Lactobacillus and starch and protein digestibility, and between E. coli and digestibility
of dry matter and lipids. The negative correlation between Lactobacillus and starch digestibility

Fig 1. Multiple correspondence analysis of digestivemicrobiota in cecal contents and digestive
efficiency traits. AMEn: metabolisable energy corrected to zero nitrogen retention; CDUDM, CDUL, CDUP,
CDUS: coefficients of fecal digestive use of dry matter, lipids, proteins, and starch; Lacto.: Lactobacillus
count; L. saliv.: L. salivarius count in cecal content; L. crisp.: L. crispatus count in cecal content; C. lept.: C.
leptum count in cecal content; C. cocco.:C. coccoides count in cecal content; H, M, L: third of individuals with
the highest, medium, and lowest values within a trait. The size of the squares is proportional to the relative
contribution of the category of active variables to the axes. The size of the circles is proportional to the cos²
between the axes and the category of the illustrative variable.

doi:10.1371/journal.pone.0135488.g001

Digestive Efficiency and Microbiota in Chicken

PLOS ONE | DOI:10.1371/journal.pone.0135488 August 12, 2015 10 / 18



may be due to the fact that the ceca of FCR_H group contain more undigested starch that can
be used by lactobacillus in fermentation in the ceca, thus favoring its development [54]. Simi-
larly, the negative correlation between digestibility of lipids and E. coli, L. crispatus/E. coli or C.
coccoides/E. colimay be due to the negative effect of E. coli on lipid digestibility in the small
intestine. A greater amount of E. coli decreases the digestibility of lipids and thus increases the
quantity of undigested lipids in the ceca, that can in turn be used by E. coli for its growth in this
segment [55,56]. This negative relationship between fecal lipid digestibility and the presence of
E. coli in the ceca has already been reported by Rodriguez et al. [43]. The negative correlation
may also originate from the effects of bacteria on the host, through the production of unfavor-
able metabolites, their secretion of neuroendocrine hormones and their interactions with the
enteric nervous system [52].

However, not all relationships between microbiota and digestive efficiency were negative.
Indeed, several positive correlations were observed between AMEn and C. coccoides and the C.
coccoides to Lactobacillus ratio. This may be explained by the caloric extraction from undigest-
ible polysaccharides by this Clostridium spp. which may increase energy available to the host
[6]. The positive genetic correlations between protein digestibility and the ratio of C. leptum to
lactobacillus (and C. coccoides to Lactobacillus although not significant) could be explained by
the ability of Clostridium spp. to metabolize amino acids [57] and to degrade uric acid into

Table 4. Heritability (± standard errors) of microbiota composition and genetic correlations (± standard errors) betweenmicrobiota composition
and digestive efficiency.

Trait h² Genetic correlations with

AMEn1 CDUDM CDUS CDUL CDUP

Log(L. salivarius) 0.048 ± 0.071 -0.084 ± 0.526 -0.333 ± 0.409 0.095 ± 0.639 -0.543 ± 0.572 -0.672 ± 0.269

Log(L. crispatus) 0.080 ± 0.058 0.235 ± 0.589 0.764 ± 0.388 -0.108 ± 0.623 0.230 ± 0.593 -0.255 ± 0.617

Log(Lactobacillus) 0.067 ± 0.069 -0.428 ± 0.355 0.043 ± 0.413 -0.599 ± 0.275 -0.553 ± 0.453 -0.850 ± 0.235

Log(C. leptum) 0.155 ± 0.134 0.212 ± 0.156 0.508 ± 0.184 -0.377 ± 0.233 -0.152 ± 0.197 -0.035 ± 0.452

Log(C. coccoides) 0.037 ± 0.082 0.476 ± 0.176 0.503 ± 0.206 0.267 ± 0.226 -0.063 ± 0.347 -0.278 ± 0.850

Log(E. coli) 0.164 ± 0.109 -0.175 ± 0.207 -0.658 ± 0.252 -0.027 ± 0.310 -0.642 ± 0.289 -0.061 ± 0.614

Log(L. salivarius)/ Log(L. crispatus) 0.150 ± 0.159 -0.221 ± 1.545 -0.710 ± 0.965 0.080 ± 1.575 -0.605 ± 1.435 -0.408 ± 0.669

Log(L. salivarius)/ Log(Lactobacillus) 0.067 ± 0.056 0.242 ± 0.304 -0.337 ± 0.324 0.531 ± 0.368 -0.111 ± 0.442 0.041 ± 0.764

Log(L. salivarius)/ Log(C. leptum) 0.080 ± 0.100 -0.095 ± 0.531 -0.391 ± 0.499 0.307 ± 0.601 -0.285 ± 0.671 -0.579 ± 0.319

Log(L. salivarius)/ Log(C. coccoides) 0.019 ± 0.044 -0.180 ± 0.741 -0.391 ± 0.767 0.075 ± 0.835 -0.501 ± 0.799 -0.736 ± 0.391

Log(L. salivarius)/ Log(E. coli) 0.057 ± 0.065 0.202 ± 0.602 0.691 ± 0.414 0.067 ± 0.664 0.505 ± 0.604 -0.302 ± 0.738

Log(L. crispatus)/ Log(Lactobacillus) 0.179 ± 0.108 0.651 ± 0.389 0.958 ± 0.151 0.340 ± 0.538 0.780 ± 0.323 0.483 ± 0.469

Log(L. crispatus)/ Log(C. leptum) 0.077 ± 0.049 0.192 ± 0.663 0.756 ± 0.428 -0.036 ± 0.688 0.342 ± 0.616 -0.278 ± 0.599

Log(L. crispatus)/ Log(C. coccoides) 0.136 ± 0.077 0.233 ± 0.499 0.803 ± 0.297 -0.064 ± 0.575 0.410 ± 0.479 -0.044 ± 0.570

Log(L. crispatus)/ Log(E. coli) 0.235 ± 0.094 0.102 ± 0.378 0.694 ± 0.295 -0.111 ± 0.425 0.522 ± 0.481 -0.044 ± 0.681

Log(C. leptum)/ Log(Lactobacillus) 0.086 ± 0.065 0.575 ± 0.311 0.274 ± 0.292 0.367 ± 0.274 0.494 ± 0.431 0.960 ± 0.282

Log(C. leptum)/ Log(C. coccoides) 0.126 ± 0.136 -0.346 ± 0.611 0.069 ± 0.525 -0.754 ± 0.477 -0.213 ± 0.715 -0.053 ± 0.568

Log(C. leptum)/ Log(E. coli) 0.207 ± 0.055 0.168 ± 0.238 0.702 ± 0.226 -0.172 ± 0.284 0.528 ± 0.257 0.043 ± 0.520

Log(C. coccoides)/ Log(Lactobacillus) 0.102 ± 0.058 0.638 ± 0.151 0.116 ± 0.184 0.758 ± 0.392 0.559 ± 0.460 0.749 ± 0.523

Log(C. coccoides)/Log(E. coli) 0.156 ± 0.076 0.294 ± 0.369 0.765 ± 0.271 0.045 ± 0.403 0.674 ± 0.302 0.142 ± 0.352

Log(E. coli)/ Log(Lactobacillus) 0.208 ± 0.135 0.021 ± 0.461 -0.597 ± 0.399 0.223 ± 0.486 -0.380 ± 0.426 0.258 ± 0.597

Bold values are significantly different from 0 (P<0.05)
1 AMEn: metabolisable energy corrected to zero nitrogen retention; CDUDM, CDUS, CDUL, CDUP: coefficients of fecal digestive use of dry matter,

starch, lipids and proteins

doi:10.1371/journal.pone.0135488.t004
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ammonia that can be used by the host to synthesize amino acids [58]. Clostridium spp. and
Lactobacillus may also be involved in regulation of the digestive physiology via the production
of beneficial active biological compounds [59,60].

QTL for microbiota
We detected a total of 14 QTLs that influence the composition of the microbiota (Table 5).
They were all significant only on the chromosome-wide scale. However, the QTL for C. leptum
count on chromosome 6, which was significant in all six sire families, was quite close to the
genome-wide significance level (P = 0.09). For 10 of these 14 QTLs, C. leptum and lactobacillus
were involved. This higher frequency of QTL in these two groups is consistent with their fre-
quency in cecal microbiota in this study [61]. Moreover, Clostridium spp. are able to degrade
the non-starch polysaccharides of wheat [62,63], and it is thus possible that our selection on
digestive efficiency with Rialto wheat specifically affected these bacteria. The effects of these
QTLs were quite high, which is partly due to the fact that we used birds with extreme FCR val-
ues for detection.

Several of these QTLs co-localized with QTLs for other traits detected in the same experi-
ment. First, co-localizations were found with the anatomy of the gut, such as intestine and par-
ticularly ileum weight and length (with QTLs 2, 7, 13 and 14 [17,64]) and proventriculus
weight (with QTLs 4 and 6, [17]). Secondly, QTLs 6 and 8 co-localized with the QTL for breast
yield [64]. Finally, QTLs for L. crispatus and L. crispatus to C. coccoides ratio co-localized with
a QTL for feeding behavior (unpublished data).

The QTL for C. leptum count on chromosome 6 was close to genome-wide significance, and
we therefore looked for potential candidate genes in this region. Relevant genes present in this
region are mainly linked to the inflammatory response of the intestine, which is consistent
with previous results in mammals showing the contribution of host genetics to the digestive
microbiota community [15]. Indeed, most of the genes shown to have an impact on the compo-
sition of gut microbiota are components of the immune system. In this study, candidate genes
appeared in the Toll-Like Receptor (TLR) and the transforming growth factor β (TGF-β) path-
ways. This is consistent with the role of intestinal bacteria in the stimulation of immune system
development and induction of a continuous anti-inflammatory response in the host [61,65].

The TLR receptors present in the intestinal epithelium are able to recognize molecular pat-
terns present in microbial cell walls and are the first line of defense in the immune response of
the host to microbes. They have also been shown to be involved in the control of microbiota in
mice [66]. They activate transcription factor NFκB, that in turn regulates the expression of
genes of both innate and adaptive immunity, including inflammatory cytokines [67,68]. Most
commensal bacteria, including C. leptum, are able to limit the immuno-regulatory NFkB path-
way by their production of butyrate [6,69]. The genes linked to NFκB in our QTL zone were i)
DMTB1 which activates NFκB and has been shown to limit intracellular invasion by Salmo-
nella enterica [70], ii) C6H10ORF46, the neddylation of which can be reduced by bacteria,
which in turn blocks the NFκB pathway [69], iii) GRK5 the expression of which inhibits the
expression of NFκB [68], and iv) PRDX3 which interacts with MAP3KIA to regulate expres-
sion of NFκB [71].

TGF-β is a cytokine involved in the secretion of interleukin 17 (IL-17) by Th17 and Treg
cells which contribute to the inflammatory process in the intestine [72], and its production is
stimulated by the presence of C. leptum [6,73]. Within the TGF-β pathway, our QTL zone con-
tained i) HTRA1 which inhibits signals from TGF-β family members [74], ii) RAB11FIP2
which is involved in the limitation of inflammatory responses to commensal bacteria through
its action of compartmentalization of Toll-Like receptors [75], iii) ADAM12 which limits the

Digestive Efficiency and Microbiota in Chicken

PLOS ONE | DOI:10.1371/journal.pone.0135488 August 12, 2015 12 / 18



production of IL-17 by Th17 cells [72], and iv) C10ORF88 which is also involved in the secre-
tion of IL-17 by Th17 cells through its effect on vitamin D metabolism [76]. Vitamin D also
regulates the innate immune response to microbiota [77].

In addition, the PSTK gene within the QTL for C. leptum (GGA6), which contributes to the
selenocysteine secretion pathway, is used by bacteria to fix selenium, a trace element that has

Table 5. QTL detected for microbiota composition.

QTL
number

Trait GGA Position
(M)

Confidence
interval (M)1

Markers flanking
the confidence

interval

NF2 Effect4 Chromosomewide
P level

Genome
wide P
level

N genes
in the
region6

1 Log(L.
crispatus)/ Log
(C. coccoides)

1 2.560 2.541–2.567 Gga_rs13911828,
GGa_rs13913250

3F3 0.814 0.048 NS5 14

2 Log(C. leptum)/
Log
(Lactobacillus)

2 2.390 2.325–2.400 Gga_rs15142674,
GgaluGA164535

5 0.552 0.047 NS 42

3 Log(L.
salivarius)/ Log
(Lactobacillus)

3 2.320 2.301–2.336 Gga_rs16324984,
Gga_rs14399484

2 0.860 0.037 NS 18

4 Log(L.
crispatus)/ Log
(C. leptum)

6 0.630 0.581–0.839 Gga_rs14579919,
Gga_rs15807987

3 0.677 0.028 NS 220

5 Log(C. leptum) 6 0.920 0.912–0.950 Gga_rs15813564,
Gga_rs16565135

6 0.895 <0.0001 0.090 36

6 Log(C. leptum)/
Log
(Lactobacillus)

6 0.980 0.620–1.009 GgaluGA300856,
Gga_rs16006607

5 0.903 0.043 NS 306

7 Log(C. leptum)/
Log
(Lactobacillus)

8 0.600 0.000–0.141 Gga_rs15892308,
GgaluGA323478

4F 0.605 0.023 NS 129

8 Log(Coli)/ Log
(Lactobacillus)

12 0.090 0.081–0.115 Gga_rs15632811,
Gga_rs14032854

4F 0.520 0.029 NS 50

9 Log(L.
crispatus)/ Log
(C. coccoides)

14 0.240 0.235–0.246 GgaluGA101400,
GgaluGA101629

3 0.897 0.029 NS 8

10 Log(L.
crispatus)

14 0.240 0.235–0.244 GgaluGA101400,
Gga_rs14074053

2F 1.241 0.019 NS 6

11 Log(L.
salivarius)/ Log
(Lactobacillus)

14 0.480 0.440–0.561 Gga_rs15738570,
GgaluGA104485

3 0.591 0.014 NS 64

12 Log(C. leptum)/
Log(C.
coccoides)

18 0.153 0.143–0.324 GgaluGA119123,
GgaluGA121355

4 0.476 0.048 NS 152

13 Log(L.
salivarius)/ Log
(C. leptum)

21 0.480 0.429–0.520 Gga_rs14285137,
Gga_rs14286198

3F 0.605 0.045 NS 53

14 Log(L.
salivarius)/ Log
(Lactobacillus)

26 0.310 0.268–0.344 GgaluGA196721,
Gga_rs15235289

3 0.532 0.048 NS 74

1 1-LOD-drop off confidence interval (lower and upper boundaries, cM)
2 Number of F1 sires families heterozygous for the QTL (P<0.05, Student test)
3 F: the QTL is fixed in F1 sires families in which it is significant
4 QTL effect as a proportion of the phenotypic standard deviation of trait
5 NS: P>0.150 at the genome wide level
6 Number of genes in the QTL region, as found by http://annotqtl.genouest.org/ interrogation

doi:10.1371/journal.pone.0135488.t005
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an anti-apoptotic function in the colonic crypts and contributes to the integrity of the intestinal
mucosa [78]. This gene is also involved in the regulation of calcium metabolism which is
required for normal early muscle development, which is also consistent with the fact that this
QTL co-localizes with a QTL for breast yield found in the same experiment [64].

Finally, our QTL region for C. leptum on GGA6 also includes genes involved in the regula-
tion of intestinal motility such as VMAT2 and BAG3, which to our knowledge has not been
reported before. BAG3 is expressed in the muscular layer of the intestine and has a probable
function in the regulation of motility of the intestine [79]. VMAT2 is a transporter of catechol-
amines such as dopamine and norepinephrine that affect both immunity and motility of the
intestine and have been shown to be stimulated by the presence of Clostridium spp., including
C. leptum [6]. This is also consistent with our previous results on the D+ and D- lines showing
wide differences in transit times between the two lines, particularly in the ceca [45], and this
factor may be involved in modification of digestive microbiota (including clostridia), as has
been reported in the mouse [80].

Conclusion
Our study clearly demonstrates the existence of genetic control by the host of its microbiota,
and the link between host genetics, microbiota composition and feed and digestive efficiency.
Lactobacillus, C. leptum and E. coli were identified as the most important factors in this interac-
tion. Moreover, the equilibrium between the different categories of bacteria is also an impor-
tant element of this interaction. The QTL for C. leptum on chromosome 6 indicates that the
inflammatory response of the gut and the motility of the digestive tract are the most probable
processes involved. Transcriptomic analyses are underway to confirm the involvement of these
candidate genes in determination of microbiota.
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