SUPPLEMENTAL MATERIAL

Gosselin-Badaroudine et al., http://www.jgp.org/cgi/content/full/jgp.201611614/DC1

Figure S1. AmCa_V4 belongs to the Ca_V4/Na_V2 ion channel family. A maximum-likelihood tree was generated using the PHYLIP package on an alignment comprising both sodium Na_v channels identified in the honeybee genome and the GenBank sequences used by Gur Barzilai et al. (2012). The bootstrap support (out of 100) is displayed on the branches. Ca_v channels are shown in purple. Na_v1 channels are in orange, and channels previously identified as Na_v2 channels are in blue, with the exception of channels that feature the DKEA selectivity sequence, which are displayed in green.

15

Figure S2. The use of chelating solutions abolishes contamination of the Ca^{2+} current by endogenous Ca^{2+} -activated chloride currents. (A) Oocytes expressing AmCa_v4 displayed a robust inward current characterized by two sets of slow kinetics as a response to depolarizing steps from -65 to 25 mV. (B) Currents recorded when oocytes were injected with a chelating solution before experiment displayed only one set of kinetics. (C) The fit parameters for the voltage dependence of activation were not statistically different when EDTA or BAPTA were used instead of EGTA in the chelating solution. (D) Time constants for current onset and decay were slightly different when EDTA or BAPTA were used instead of EGTA in the chelating solution. The oocytes injected with EGTA chelating solution displayed the fastest kinetics and lowest leak. Error bars represent SEM.

Figure S3. Effect of known auxiliary subunits on AmCa,4. (A) Representative current traces recorded in response to the activation protocol with oocytes expressing either AmCa,4 alone or AmCa,4 co-injected with TipE, TEH4, or Ca, β b. (B) Relative expression levels were measured using the same batch of oocytes on the same day and were normalized to the mean maximal conductance recorded for oocytes expressing AmCa,4 alone (n = 7-16). (C) The voltage dependence of activation and inactivation of AmCa,4 was not affected by the coexpression TipE (n = 6-24 for activation, n = 4-12 for inactivation). (D) Time constants measured during the voltage dependence of activation and the peak current recorded for each test pulse is shown in filled symbols. Time constants of current decay are shown in empty symbols. (E) Recovery from inactivation kinetics. Data are expressed as means ± SEM.

Parameter		Mean ± SEM	n
Activation			
V _{1/2} (mV)	AmCa _v 4	-21.9 ± 1.2	24
	$AmCa_v4 + TipE$	-23.3 ± 2.0	6
	$AmCa_v4 + TEH4$	-23.2 ± 1.3	6
	$AmCa_v4 + Ca_v\beta b$	-21.5 ± 1.7	8
k (mV)	AmCa _v 4	-4.5 ± 0.7	24
	$AmCa_v4 + TipE$	-3.6 ± 0.5	6
	$AmCa_v4 + TEH4$	-3.5 ± 0.5	6
	$AmCa_v4 + Ca_v\beta b$	-4.0 ± 0.4	8
Inactivation			
V _{1/2} (mV)	AmCa _v 4	-62.3 ± 0.6	12
	AmCa _v 4 + TipE	-62.0 ± 0.7	9
	$AmCa_v4 + TEH4$	-63.9 ± 0.3	4
	$AmCa_v4 + Ca_v\beta b$	-62.9 ± 0.8	9
k (mV)	AmCa _v 4	6.2 ± 0.2	12
	$AmCa_v4 + TipE$	6.1 ± 0.3	9
	$AmCa_v4 + TEH4$	6.6 ± 0.2	4
	$AmCa_v4+Ca_v\beta b$	6.2 ± 0.4	9

Table S1. Parameters of the Boltzmann equations fitted to the G-V and inactivation curves

 $V_{1/2}$ indicates midpoint and k indicates the slop factor. Data are presented as means ± SEM.

Table S2.	Parameters of the double ex	ponential equations fitted to the reco	overy from inactivation curves

Parameter		Mean ± SEM	n
A _{fast}	AmCa _v 4	0.67 ± 0.02	5
	AmCa _v 4 + TipE	0.68 ± 0.02	6
	AmCa _v 4 + TEH4	0.72 ± 0.01	12
	$AmCa_v4 + Ca_v\beta b$	0.71 ± 0.02	5
$\tau_{fast} (ms)$	AmCa _v 4	50 ± 5	5
	AmCa _v 4 + TipE	42 ± 3	6
	AmCa _v 4 + TEH4	51 ± 4	12
	$AmCa_v4 + Ca_v\beta b$	49 ± 6	5
τ_{slow} (s)	AmCa _v 4	4.7 ± 0.5	5
	AmCa _v 4 + TipE	4.9 ± 0.9	6
	AmCa _v 4 + TEH4	6.4 ± 1.2	12
	$AmCa_v4+Ca_v\beta b$	8.4 ± 1.8	5

 τ indicates the time constants; A indicates the weight of the time constants. Data are presented as means ± SEM.

Table S3. Ionic composition of the solutions used to measure the anomalous mole fraction effect

Free Ca ²⁺	Ca(OH) ₂	EGTA	NaOH	HEPES	NMDG
	mM	mM	mM	mM	mM
$0 \operatorname{Ca}^{2+}$	0	10	100	20	10
20 nM Ca ²⁺	2	9.82	100	20	8.09
2 μM Ca ²⁺	2	2.08	100	20	11.96
0.2 mM Ca ²⁺	0.2	0	100	20	14.8
$2 \ mM \ Ca^{2+}$	2	0	100	20	13

REFERENCE

Gur Barzilai, M., A.M. Reitzel, J.E.M. Kraus, D. Gordon, U. Technau, M. Gurevitz, and Y. Moran. 2012. Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. *Cell Reports*. 2:242–248. http://dx.doi.org/10.1016/j.celrep.2012.06.016