
HAL Id: hal-02635765
https://hal.inrae.fr/hal-02635765v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genomic selection in maritime pine
Fikret Isik, Jérôme Bartholomé, Alfredo Farjat, Emilie E. Chancerel, Annie A.

Raffin, Léopoldo Sanchez, Christophe Plomion, Laurent Bouffier

To cite this version:
Fikret Isik, Jérôme Bartholomé, Alfredo Farjat, Emilie E. Chancerel, Annie A. Raffin, et al.. Genomic
selection in maritime pine. Plant Science, 2016, 242, pp.108-119. �10.1016/j.plantsci.2015.08.006�.
�hal-02635765�

https://hal.inrae.fr/hal-02635765v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

 

 

Genomic selection in maritime pine  

 

Fikret Isik 1,2, Jérôme Bartholomé 1,3, Alfredo Farjat 2,4, Emilie Chancerel 1,3, Annie Raffin 1,3, 

Leopoldo Sanchez 5, Christophe Plomion 1,3, Laurent Bouffier 1,3* 

 

 

1/ INRA, UMR1202, BIOGECO, Cestas F-33610, France 

2/ Permanent address: Department of Forestry and Environmental Resources, North Carolina 

State University, Raleigh, NC, USA 

3/ Univ. Bordeaux, BIOGECO, UMR1202, Talence F-33170, France  

4/ Department of Statistics, North Carolina State University, Raleigh, NC, USA 

5/ INRA, UR0588, AGPF, 45075 Orléans, France 

 

* Corresponding author:  
Laurent Bouffier,  
Address: INRA, UMR1202, BIOGECO, Cestas F-33610, France  
Email: bouffier@pierroton.inra.fr 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

 

Abstract 

A two-generation maritime pine (Pinus pinaster L.) breeding population (n=661) was 

genotyped using 2,500 SNP markers. The extent of linkage disequilibrium and utility of 

genomic selection for growth and stem straightness improvement were investigated. The 

overall intra-chromosomal linkage disequilibrium was . Linkage disequilibrium 

corrected for genomic relationships derived from markers was smaller ( ). 

Genomic BLUP, Bayesian ridge regression and Bayesian LASSO regression statistical 

models were used to obtain genomic estimated breeding values. Two validation methods 

(random sampling 50% of the population and 10% of the progeny generation as validation 

sets) were used with 100 replications. The average predictive ability across statistical models 

and validation methods was about 0.49 for stem sweep, and 0.47 and 0.43 for total height and 

tree diameter, respectively. The sensitivity analysis suggested that prior densities (variance 

explained by markers) had little or no discernible effect on posterior means (residual 

variance) in Bayesian prediction models. Sampling from the progeny generation for model 

validation increased the predictive ability of markers for tree diameter and stem sweep but 

not for total height. The results are promising despite low linkage disequilibrium and low 

marker coverage of the genome (~1.39 markers/cM).  
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pinaster 
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1 Introduction 

Genomic selection (GS) is considered a paradigm shift in animal and plant breeding [1] and 

has the potential to revolutionize breeding of forest trees. GS aims to trace all the quantitative 

trait loci (QTL) controlling phenotype to predict genetic merit of individuals [2, 3]. GS relies 

on a large number of DNA markers that cover the whole genome to exploit the linkage 

disequilibrium (LD) between markers and any QTL. Theoretically, if the marker coverage is 

dense enough, all the QTL controlling a trait will be in LD with at least one marker [4]. 

Therefore, the success of GS depends on the effective population size and on the extent of 

LD between DNA markers and loci affecting complex traits [5]. In contrast to marker-

assisted selection, prior information on the association between phenotypes and markers, the 

location of QTL on the genome and their relative effect on the phenotype are not 

prerequisites for GS. Advances in high throughput genotyping technologies [6 8] has made 

available a large number of DNA markers to animal and crop breeders [9 12]. As a result, 

the concept of GS has been widely used for cattle breeding since 2008 [13 16] and has been 

extended to other animal and plant breeding programs world-wide [11, 17 20]. However, GS 

is its infancy with forest trees.  

There has been extensive coverage of statistical methods used in GS and they were classified 

into two groups [21]. In the first group, the i-th phenotypic outcome ( ) is regressed on 

markers via the regression function , where  is a vector of marker covariates 

and  is the vector of regression coefficients [22]. Bayesian shrinkage methods [2], ridge 

regression [23] or Bayesian LASSO regression [21] are statistical methods that fall into this 

category. Such models allow prediction of individual marker effects. The second approach 

uses genomic relationships derived from markers in a mixed model framework for prediction 

of genomic breeding values [24, 25]. This method is frequently called Genomic Best Linear 

Unbiased Prediction (GBLUP) and is an appealing method for ease of computation because 

there is no need to predict the marker effects. The number of solutions from the model is 

reduced to the number of individuals. Empirical and simulation studies suggest that the 

statistical methods usually differ only marginally in the predictive accuracy of genomic 

estimated breeding values [2, 26 28].  

Forest trees, particularly conifers subjected to breeding, have long (15 years or more) cycles 

of breeding and testing [29]. Breeding trees is logistically difficult to implement because of 
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their reproductive biology (late flowering), their large physical sizes and, notably, their late 

maturation for the phenotypic evaluation of economically important traits. Using markers for 

selection has long been promoted to reduce the cost and time of progeny testing [30]. Several 

proof-of-concept studies of genomic prediction in forest trees have been published in recent 

years based on small (<8k) number of SNP markers [28, 31 35]. Despite advances in 

developing genomic resources for forest trees [36 38] and promising results from proof-of-

concept studies, no application of GS in tree breeding programs has been reported [30, 39]. In 

addition, large physical genome sizes of conifers [40] may pose a challenge to achieving the 

necessary dense marker coverage of genomes. For example, the genome size of maritime 

pine (Pinus pinaster L.), is estimated to be 24.5 Gb [41]. The first whole-genome shotgun 

assembly of loblolly pine suggests a genome size of 20.1 Gb [42]. Since forest trees are still 

relatively undomesticated and characterized by large effective population sizes, the extent of 

LD is expected to be very low in these outcrossing species [42]. For example, in loblolly pine 

(Pinus taeda L.), the average short distance LD (physical scale) based on 19 candidate genes 

decayed to less than  within about 1500 base pairs [43]. In maritime pine the pattern 

of long distance LD (genetic scale) was examined over 12 chromosomes using 194 unrelated 

individuals and 2600 SNP markers with an average map distance of 1.4 cM between markers 

[44]. Authors reported complete lack of long distance LD.  

GS success, however, not only depends on the extent of LD at any given time but also on its 

dynamics over recombination cycles. Simulation studies suggested that response of GS will 

decline after each generation because LD weakens after recombination takes place [3, 45]. 

Therefore, a very large number of markers are likely needed to cover the whole genome in 

conifers in order to develop reliable and stable prediction models across generations. In this 

study, we used a maritime pine breeding population to estimate the extent of long distance 

LD and develop genomic prediction models. This is the first genomic prediction proof-of-

concept study for this species. The study is based on a breeding population from two 

successive generations of the breeding scheme. The objectives were two-fold: i/ carry out LD 

analysis for each linkage group while correcting for genetic relatedness in the population, and 

ii/ compare three statistical models genomic Best Linear Unbiased Prediction (GBLUP), 

Bayesian ridge regression and Bayesian LASSO for their efficiency in genomic predictions 

of growth and stem sweep (a measure of tree stem straightness), two important traits of the 

maritime pine breeding program.  
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2 Material and Methods 

2.1 Breeding population and pseudo phenotypes  

The maritime pine breeding program in southwestern France started in the 1960s with the 

phenotypic selection of 635 individuals (G0 population) from unimproved pine plantations 

[46]. Selected trees were grafted in clonal archives for breeding. Progeny from G0 trees were 

first obtained by collecting cones on selected trees in the forest (wind pollination with 

unknown male pollen) then by crosses between grafted copies, using different mating 

schemes. Progeny (n  100) from crosses were tested in replicated field trials to select the 

next generation population (G1 population). The breeding population will have completed 

three generations of breeding, testing and selection in 2020 (selection of G3 population). 

Stem sweep (distance between the tree stem and a vertical pole at 1.5 m above ground) was 

measured between age 7 and 12 years. Total height and tree diameter at 1.3 m above ground 

were measured between age 6 and 15 years. A meta-analysis consisting of 39 progeny trials, 

with more than 300,000 data points, was carried out to estimate breeding values (EBV) for 

stem sweep at age 8 years, total height and tree diameter at age 12 years using the Treeplan 

genetic evaluation system [47]. For the present study, 184 unrelated founders (G0 trees) and 

477 G1 trees were genotyped (Figure S1). Among the 477 G1 selections, 355 selections have 

both parents identified in the G0 population. The 122 remaining selections have only their 

mother identified in the G0 population as they were selected in open-pollinated progeny 

trials. In total, there were 191 maternal half-sib families in this G1 population. The number of 

individuals per half-sib family ranged from 1 to 13 with an average of 2.5 individuals per 

half-sib family. Inbreeding coefficients were equal to zero in the two-generation breeding 

population because it was comprised of unrelated founders and their offspring generation.  

We used EBV as pseudo phenotypes in genomic predictions. All EBV were based on 

progeny test data and pedigree derived additive genetic relationships with high accuracies, 

ranging from 0.67 to 0.99. By definition, the accuracy of EBV is the correlation between the 

true breeding values and the EBV [48]. The accuracy  is estimated as  

 where S is the standard error of the EBV, F is the coefficient of 

inbreeding and  is the additive genetic variance [49]. EBV for total height and tree 
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diameter were highly correlated, whereas EBV of these two traits had weak or no correlation 

with EBV of stem sweep (Figure 1). Although the range of accuracies was not large, using 

EBV as phenotypes in genomic prediction may introduce bias and heterogeneity [50]. We 

then compared EBV and the de-regressed breeding values (dEBV) as pseudo phenotypes to 

estimate the effect on reliability of genomic predictions. The dEBV for individual i was 

obtained as , where  is the EBV and  is the accuracy of EBV [50]. The 

resulting de-regressed breeding values were then weighted according to 

, where  is the heritability of the trait and c is the proportion of variance not 

accounted for by the markers (assumed to be 50%) [50, 51].  

2.2 Genotyping and LD analysis 

We used a 12K Infinium SNP array (Illumina Inc., San Diego, CA, USA) described by [52] 

to genotype 661 trees. One-year old pine needles (diploid tissue) were harvested to extract 

DNA. The Infinium assay was used to recover 2,600 informative markers from the G0 

population. In this study the same markers were assayed in the G1 population. Missing 

genotypic data points (3,265 or 0.19%) were imputed from the marginal allele distribution for 

each marker. In other words, missing genotypes were sampled from scored genotypes (0, 1 

and 2) assuming the population was in Hardy-Weinberg equilibrium. Markers with minor 

allele frequency (MAF) below 5% were discarded (100 out of 2600). In total, 2,500 markers 

were used for genomic prediction and model comparison. A high level of heterozygosity was 

found in the population with an average value of 0.39 (±0.02) over all individuals (Figure 

S2). 

LPmerge software [53] was used to produce a composite genetic linkage map based on five 

published [54 56] and two unpublished (kindly provided by MT Cervera) linkage maps. 

Markers were assigned to a genetic map position to analyze the extent of LD along 12 

maritime pine chromosomes (Figure S3). Intra-chromosomal LD (r2) between pairs of loci 

was estimated using the R package synbreed [57]. We also calculated the LD for each 

chromosome corrected for the relatedness in the population using the LDcorSV package in R 

[58]. The realized genomic relationship matrix (see details below) derived from 2,500 SNP 

markers was used for the estimation of unbiased LD ( ).  
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2.3 Statistical analyses for genomic predictions 

Genomic BLUP (GBLUP), Bayesian ridge regression and Bayesian LASSO regression 

models were used in estimation of genomic breeding values. Details of these three statistical 

models are given below. We used the BLR 1.3 [51] and synbreed 0.10-4 [57] packages in R 

3.1.2 environment [59] as the analytical framework for data organization, visualization, 

summary and statistical analyses.  

2.3.1 Genomic BLUP  

In GBLUP the inverse of the genomic relationship matrix G, derived from the markers is 

used to predict genomic estimated breeding values (GEBV). The realized genomic 

relationship matrix was computed as in [60]: 

       (Eq. 1) 

where  is the allele-sharing matrix with n rows (total number of genotyped individuals) and 

q columns (total number of markers). The elements of  were set to be -1, 0, and 1 denoting 

homozygote, heterozygote, and the other homozygote, respectively.  is the  matrix of 

allele frequencies with the i-th column given by , where  is the observed allele 

frequency of all genotyped subjects. The denominator of Eq. 1 scales  to be analogous to 

the additive genetic relationships matrix ( ) derived from pedigree [60]. The model for 

GBLUP using matrix notation is given by:  

 

         (Eq. 2) 

where  is the  vector of phenotypes or "pseudo-phenotypes",  is the  design 

matrix for the fixed effects,  is the  vector of fixed effects,  is a  incidence 

matrix for the random effects,  is the  vector of random additive effects for the 

individuals, and  is the  vector of random errors. The vector of random additive effects 

 and residuals  are assumed to be independent of each other and to follow a multivariate 

normal distribution of the form:  and , where  denotes a n-

dimensional vector of zeros and  is the n-dimensional identity matrix. The residual variance 

covariance matrix  in this case is a diagonal matrix with elements on the diagonal 

[61] were 
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solved to obtain GEBV:  

      (Eq. 3) 

The scalar  is defined as , which is equal to  where 

 is the residual variance, is the additive genetic variance explained by each locus,  is 

the total genetic variance and  is the frequency of i-th allele [61]. Parameter is the 

additive genetic variance of the GBLUP approach. The so-called mixed model equations (Eq. 

3) are not different from previously developed animal models, except for the fact that the 

genomic relationship matrix  was substituted for the numerator relationship matrix . The  

matrix in this case is the n-dimensional identity matrix , where n is again the number of 

individuals with phenotypic and genotypic information. Note that because of the BLUP 

framework, the system of equations can automatically solve for individuals who are 

genotyped but lack of phenotypic information.  

2.3.2 Bayesian Ridge Regression 

Ridge regression is a shrinkage regression method that was originally intended [62] to deal 

with the problem of high correlation among predictors in linear regression models of the form 

, where  is the  response vector,  denotes the  design matrix,  the 

 vector of regression coefficients, and  the  error vector. Ridge regression 

estimates are obtained by minimizing the penalized residual sum of squares [63]: 

   (Eq. 4) 

where  is the regularization parameter and needs to be tuned. The Bayesian approach to 

ridge regression in the context of genomic selection consists of assuming a Gaussian 

likelihood with independent and identically distributed marker effects. Thus, phenotype  is 

modeled as a function of the individual markers as follows: 

       (Eq. 5) 

where  is the  response vector of phenotypes,  denotes a  vector of ones,  is a 

scalar representing the intercept,  is the  genotype matrix for the  vector of 
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marker effects , and  is the  vector of random errors that follow a multivariate 

normal distribution . To complete the Bayesian model formulation, prior 

distributions to all model unknowns must be assigned. The R package BLR assigns a flat 

prior to the vector of fixed effects, thus  [51]. The vector  is assigned a 

multivariate normal prior distribution with a common variance to all effects, that is 

. This prior induces estimates that are the Bayesian equivalent to those 

obtained from ridge regression. Parameter  denotes the unknown genetic variance 

contributed by each individual marker and is assigned a scaled inverse  distribution with 

degrees of freedom  and scale , so  under the 

parameterization such that . Finally, the residual variance is 

assigned a scaled inverse  prior distribution with degrees of freedom , and scale 

parameter , that is . 

2.3.3 Bayesian LASSO Regression 

Both models described above assume that markers explain the same amount of variance 

(infinitesimal model) and markers effects are shrunk toward the mean at the same level. This 

is a convenient assumption but it is far from reality [51]. Shrinkage of markers could be 

specific and may provide higher accuracy of predictions [2]. The LASSO method combines 

shrinkage and variable selection principles [63]. A Bayesian version of LASSO regression 

was introduced to take the advantage of Gibbs sampling [64]. The model has the form of 

, which estimates are defined by: 

   ,   (Eq. 6) 

where  is the  response vector,  denotes the  design matrix,  the  vector 

of regression coefficients,  the  error vector. Parameter  is referred to as the 

regularization parameter. As  approaches to zero, the vector  becomes the ordinary least 

squares solution. Like with ridge regression, the LASSO regression coefficients are shrunk 

toward zero. However in the LASSO some of the coefficients are shrunk to exactly zero, 

which reduces the complexity of the model. As a result, and unlike ridge regression, the 

LASSO approach can also be used as a variable selection tool. The Bayesian LASSO 

regression model in the context of genomic selection is given by: 
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       (Eq. 7) 

where  is the  response vector of phenotypes,  denotes a  vector of ones,  is 

the intercept term,  is the  genotype matrix for the  vector of marker effects , 

and  is the  vector of random errors that follow a multivariate normal distribution 

, where  is the common error variance. In the BLR package, the vector of 

fixed effects is assigned a flat prior, hence . The vector  is given a multivariate 

normal distribution with marker-specific prior variances, that is, , where 

. Parameters  are assigned independent and identically distributed 

exponential priors, namely  for , where parameter  is given a 

Gamma prior distribution [64] with hyper-parameters  (shape) and  (rate), thus 

. Finally, the residual variance is assigned a scaled inverse  prior 

distribution with degrees of freedom , and scale parameter . That is, the expectations of 

residuals are .  

2.3.4 Model convergence and prior sensitivity analysis  

For the Bayesian models, the convergence of each parameter was assessed from visual 

inspection of the corresponding trace plot of the Monte Carlo Markov Chains draws, the 

estimated density, and the autocorrelation function of the draws to make sure the chains were 

mixing well; that is successfully moving around the parameter space. Furthermore, we 

carried out the Gelman and Rubin diagnostic [65] with five chains generated from over-

dispersed starting values, and also conducted the Geweke's diagnostic with the first 10% and 

last 50% of each chain to assess convergence. For the cross-validation analysis, 40,000 

iterations with a 10,000 burn-in period were used. 

The value of the hyper-parameters that define the Bayesian ridge and Bayesian LASSO 

models can be chosen to incorporate the analyst's prior belief or information about the 

proportion of phenotypic variance that is attributed to each component of the regression. 

Using the methods described in [51], we conducted a sensitivity analysis of the choice of 

prior on the resulting posterior distributions. The hyper-parameter values were set assuming 

that 20%, 40% and 60% of the observed phenotypic variance was due to genetic effects. For 

the validation analysis, the variance explained by the markers was assumed to be 50% for all 

traits.  
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2.3.5 Validation sampling methods and evaluation 

Two validation methods were used to compare the predictive ability of the three different 

statistical models (GBLUP, Bayesian ridge and Bayesian LASSO). In the first method, the 

whole population was split randomly into two sets (regardless of generation): the training set 

(TS, n=331) and the validation set (VS, n=330). This sampling mimics the situation where 

only half of the population is phenotyped and genotyped, and the other half is genotyped but 

without phenotype to evaluate genomic selection efficiency. In the second method, G0 

generation (184 individuals) and randomly sampled 90% of G1 population was used as 

training set (TS, 613). The remaining 10% of the G1 population was used as the validation 

set (VS, n=48). This scenario (G0+ 90% of G1) allowed having a larger training set (TS, 

n=613) and also allowed using the G0 population (founders) for model training. For both 

validation methods random sampling was repeated 100 times. The predictive ability of each 

replication was calculated with the validation set as the correlation between EBV and GEBV. 

The predictive ability and accuracy are related as , where H is the square 

root of broad-sense heritability [66]. The prediction bias of the fold was calculated by 

regressing the EBV on the GEBV in the validation set [26]. A regression coefficient of  

suggests no bias, whereas  and  indicate inflation and deflation, respectively [57]. 

Spearman rank correlation of each fold within each replication was calculated between EBV 

and GEBV. Mean squared error of each fold was calculated between the EBV and GEBV of 

validation set as . Individuals in validation 

set were ranked for their GEBV and the mean EBV of the top 10% individuals was calculated 

for each replicates.  
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3 Results 

3.1 Extent of LD along the 12 maritime pine chromosomes 

Among the 2,500 markers available for genomic prediction, 2,184 were mapped on the 12 

linkage groups (LG) of the maritime pine genetic map (Figure S3). The number of markers 

on each chromosome ranged from 152 (LG#8) to 201 (LG#9). The overall intra-

chromosomal LD was . Relatedness corrected LD was smaller ( ). 

Both LD estimates were significantly smaller than 0.1 (Pr < 0.01). Average regular LD  

values for each LG ranged from 0.008 to 0.019 and from 0.005 to 0.012 for related adjusted 

LD  (Table 1). For both  and , LD values decayed rapidly with increasing genetic 

distance as illustrated for LG1 (Figure 2). Illustrations of LD for all 12 chromosomes are 

presented in a supplemental file (Figure S4). As expected, the correction for relatedness 

among genotypes using realized genomic relationships tended to decrease LD values 

especially for genetically closely linked markers. The scatter plot of regular LD and 

relationship corrected LD suggested that when genetic relationships are taken into account, 

the frequency of LD estimates greater than 0.6 was considerably reduced (Figure S5). 

Among the 876  values greater than 0.6, about 90.8% involved physically linked SNPs 

belonging to the same contig, while 5.6% involved completely genetically linked SNPs (0 cM 

in the component maps). The remaining 3.6% are more likely related to bias in composite 

linkage map construction as discussed in [44].  

3.2 Genetic relationships  

Additive genetic relationships derived from the pedigree and realized genomic relationships 

derived from SNP markers are presented in Figure 3. Concerning the pedigree-based 

estimates, a high majority of individuals had zero relationships as a result of limited 

relatedness in the population. Non-zero covariances clustered into two distinct groups, 0.25 

and 0.50, corresponding to expectations for half and full-sibs, respectively. Relationships 

derived from shared alleles are also clustered into two groups when non-zero coefficients 

were excluded, but they showed a continuous bimodal distribution centered on 0.25 and 0.50 

(Figure 3). Inbreeding coefficients (F) were distributed around 0 within the expected range 
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of variation (Table 2, Figure S6). Since the base population is known to be unrelated, null 

inbreeding coefficients were expected for the progeny population (G1).  

3.3 Model convergence and marker-trait association  

The Gelman and Rubin convergence plots calculated from five chains were used to monitor 

model convergence for the Bayesian statistical models Bayesian ridge, and Bayesian LASSO 

(Figure S7A, B). The Gelman and Rubin convergence plots suggest that convergence of the 

Monte Carlo Markov Chains to the stationary distribution is reached after about 10,000 

iterations since approximate convergence is diagnosed when the upper limit of the shrink 

factor is close to one.  

The sensitivity analysis of the choice of prior on the resulting posterior distributions 

suggested that prior densities had little or no discernible effect on posterior means (Figure 

S8A). The hyper-parameter values that define the prior distributions were set assuming that 

20%, 40% and 60% of the observed phenotypic variance were due to genetic effects. The 

similar to each other for the Bayesian ridge model. Similarly, for the Bayesian LASSO 

mo

were almost identical (Figure S8B). 

3.4 De-regressed breeding values (dEBV) as pseudo-phenotypes  

We compared model performance statistics for using dEBV and EBV as pseudo phenotypes. 

The comparisons were carried out for the cross-validation scenario of sampling 10% of the 

G1 population.  It can be concluded that using the dEBV versus EBV did not have a 

considerable effect on the model performance statistics (Table 3, Table S2). For height and 

stem sweep the predictive ability estimates were similar for EBV and dEBV regardless of 

statistical models used. For example, the predictive ability for tree diameter was about 0.43 

(average across three statistical models) when dEBV was used as a phenotype (Table S2), 

while it was 0.47 with EBV. For tree height and diameter, the rank correlations were slightly 

higher for dEBV (Table S2) than for EBV (Table 3) while they were identical (0.55) for 

stem sweep. Except for supplemental Table S2, all the results in this paper are based on 

using EBV as phenotype.  
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3.5 Genomic prediction and model comparison 

The performance of statistical models were compared using the predictive ability, rank 

correlations, bias, mean-squared error of genetic predictions and the phenotype mean of the 

top 10% ranked selections based on GEBV (Tables 3 and 4). Statistical models produced 

similar predictive ability estimates (see an example for tree height in Figure 4). The 

predictive ability estimates of markers for diameter were low compared to height and stem 

sweep. For example, using GBLUP, the average predictive ability for diameter was 0.39 

while it was 0.47 and 0.49 for height and stem sweep, respectively (Table 4). Predictive 

abilities of genomic predictions for height and stem sweep were similar regardless of 

sampling method and statistical model used (Figure S9). The average predictive ability for 

height across statistical models and validation scenarios was about 0.47, while it was 0.49 for 

stem sweep.  

Rank correlations between GEBV and EBV were equal to or smaller than the predictive 

ability estimates for the three traits, but they followed the same trend, i.e. when a predictive 

ability value was high for a given validation scenario, so was the rank correlation. Statistical 

models had almost no effect on rank correlations. Diameter, with a range of 0.36 to 0.42, had 

lower rank correlations than tree height (range of means 0.43 to 0.46). Stem sweep exhibited 

higher rank correlations across different sampling and statistical models with a range of 0.47 

to 0.55.  

The bias of the model is the deviation of the slope from the regression line  when 

phenotype is regressed on GEBV. A model with no bias ( ) is preferred in genetic 

evaluation so that GEBV would be on the same scale as BV obtained from the phenotypic 

data. In terms of bias, splitting the population in half for model training and validation 

performed generally better (Table 4) than sampling 10% of G1 population for validation 

(Table 3). Bayesian LASSO always produced larger bias (slope < 1) estimates in both 

sampling methods than GBLUP and Bayesian ridge. Considering the best random 

sampling/model combination, bias were for the three traits. 

Interestingly, when the individuals were ranked based on their GEBV and the phenotypic 

mean of the top 10% were compared for statistical models, Bayesian LASSO provided 

clearly higher GEBV for the validation sets (Table 3, 4) and for the whole data sets (Table 
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S1). For example, when 50% random sampling was used for cross validation, the mean 

diameter of the 10% best individuals was 1.18 for Bayesian LASSO whereas it was 0.97 and 

0.95 for Bayesian ridge and GBLUP models, respectively (Table 4). A similar large 

difference between statistical models was also observed when sampling 10% of the G1 

population as validation set (Table 3).  
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4 Discussion 

4.1 Cross validation over generations of the breeding population 

In this study, we introduced the first comprehensive analysis of relatedness corrected LD and 

genomic prediction in maritime pine, an important species for wood production in the South-

Western Europe. Our study covers a two-generation breeding population. This allowed us to 

sample the progeny generation (G1) for cross validation. Previous studies on forest trees split 

a population of the same generation into training and validation sets to predict GEBV [28, 32, 

34]. Splitting the same generation for model training and validation may not be optimal to 

estimate the prediction ability of markers for forward selection. In such cases the sibs are 

expected to share large segments of chromosomes and a small number of markers might be 

constructing the pedigree by tracing large haplotypes segregated in the families [31] as 

opposed to exploiting the LD associated with factors controlling the traits. This is especially 

true for a population with a small effective population size and for families with large 

numbers of progeny. The predictive ability of models based on splitting the same generation 

for cross-validation will likely decrease substantially in the subsequent generations. Our 

results suggest that there is a marginal advantage for the across generation validation over 

that performed from random halves. This advantage could come from higher levels of 

relatedness between training and validation in the former approach, although the benefit of a 

larger training set cannot be excluded. In general, it has been suggested [67] that training 

populations should comprise large levels of diversity for producing a robust calibration, while 

the validation is best when it comprises relatedness links to training sets. In this sense, 

including our founder population in the training set helped to have a larger diversity, while 

validating over progeny assured relatedness links.  

4.2 Extent of LD and consequences in terms of GS 

LD is widely used to assess the effect of evolutionary forces (e.g. selection, genetic drift) on a 

population and to infer marker-trait association in genome-wide association studies [68]. The 

extent of LD and its relationship with genomic prediction accuracies have been widely 

covered in simulation studies [4, 69, 70]. In a simulated barley population, marker density 

and LD interactions caused significant changes in prediction accuracies and the estimation of 
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LD was suggested to determine marker density in genomic prediction [71]. When marker 

density is at low coverage, predictions may rely primarily on genetic relationships established 

by the markers rather than tracing LD between marker-tagged QTL [70, 71]. DNA markers 

can capture additive genetic relationships even with low LD and may produce genomic 

predictions with accuracies greater than zero [70]. By definition LD is a non-random 

association between markers. In a breeding population, LD might be biased because of the 

genetic relationships or because of the genetic structure (different genetic groups) in the 

population [58]. We carried out LD analysis for each maritime pine chromosome, based on a 

composite genetic linkage map [44]. The average LD across 12 LGs was about r2 = 0.006 

after correcting for genetic relatedness with a mean density of 1.39 marker/cM. Our results 

are consistent with previous studies. High LD estimates in maritime pine were reported for 

only physically linked SNP markers located on the same gene [44]. They reported a lack of 

long distance LD over 12 chromosomes and no inter-chromosomal LD. Absence of long 

range LD was also reported in Pinus sylvestris L. [72] and in Pinus taeda L [73]. Low LD 

suggests that a large number of markers might be needed to trace QTLs that are in LD with 

markers. Using deterministic simulations, 10 markers/cM genotyping density was suggested 

to achieve the same accuracy level obtained from a classical genetic evaluation based on 

phenotype [69]. In our study, the average marker coverage was about 1.39 marker/cM. 

Considering the large genome (24Gb) of maritime pine and the low LD, a larger number of 

markers would be needed to trace QTLs controlling complex traits for genomic prediction. 

However, the genetic size of conifer genomes is still on the range of any plant with much 

smaller physical sizes. Therefore, there are strong reasons to believe that some parts of 

conifer genomes are completely inactive with respect to recombination. This idea was 

reinforced by a recent study in Cryptomeria japonica (a member of the Cupressaceae 

botanical family) in which high LD was found along BAC clones, i.e. across large physical 

distances [74]. Besides, the recombination comparison of angiosperms and gymnosperms 

showed that gymnosperms have less recombinations than angiosperms [75]. This 

consideration should certainly be taken into account before drawing definite conclusions 

about marker density for genomic prediction in conifers. 
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4.3 The distribution of genomic relationships  

Genomic relationships were used in estimation of unbiased LD and in GBLUP. Diagonal 

elements of the genetic relationship matrix (1+F) estimated from markers were distributed 

around 1.0 within the expected range of variance (Table 2, Figure S6). A fraction of realized 

genomic relationships derived from markers was negative suggesting that pairs of individuals 

shared fewer alleles than expected based on allele frequencies. Similarly, positive realized 

genomic coefficients close to zero indicate that pairs of individuals shared more alleles than 

expected based on marginal allele frequencies. This is due to the fact that genetic 

relationships estimated from markers are a function of observed allele frequencies. 

Genotyping mistakes and/or errors in pedigree may cause estimates outside of expected 

boundaries of relationships [76]. Nevertheless, realized genomic relationships had a 

continuous distribution with modes matching the expectations for half and full-sibs (Figure 

3). This distribution of realized genomic relationships around expectations is the result of the 

Mendelian sampling term that creates differences in allele sharing between pairs of sibs for a 

given family [77]. A pedigree-based approach of genetic evaluation is blind to these 

differences, as all sibs are assumed to share the same genome that is identical by descent. 

4.4 Trait heritability versus predictive ability of markers 

Heritability of a trait is considered an important factor affecting the predictive ability of 

markers in genomic predictions [13, 69]. It is assumed that genomic predictive ability is 

particularly beneficial for traits with low heritability [78]. In loblolly pine, predictive ability 

of markers for lignin and cellulose was considerably higher than the predictive ability of 

markers for tree height and stem volume [31]. Cellulose and lignin content are known to have 

higher heritability than growth traits in loblolly pine [79]. In another study on loblolly pine a 

high positive correlation was observed between the heritability of 17 traits and predictive 

ability of markers [28]. In this study we analyzed tree diameter ( ), stem sweep 

( ) and tree height ( ) with different heritability estimates. The overall 

predictive ability of markers for stem sweep and tree height was higher compared to 

diameter, supporting the conclusions of an earlier simulation study [78] and also concurring 

with the results reported for loblolly pine [31,32]. For traits with low heritability, larger 

number of markers and greater model training size might be needed to obtain reliable and 

unbiased GEBV.  
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4.5 Overall prediction ability of markers 

The average reliability of GEBV in this study varied from 0.43 to 0.55. These estimates are 

lower than the correlation of true and EBV (ranged from 0.67 to 0.99) obtained from progeny 

tests. This is not surprising since the training models had small sample size; marker density 

was low and the long range LD decayed sharply within a short genetic distance along the 

chromosomes. Yet the predictive abilities of markers in this study were similar or higher for 

growth traits (diameter = 0.43, height = 0.47) compared to previous studies on several 

conifers. For example, accuracy values of 0.38 to 0.49 were reported for growth traits in a 

cloned population of loblolly pine [28]. In white spruce (Picea glauca Voss.) low accuracies 

were reported for within family (0.36) and between family (0.18) selection for tree height at 

age 22 years [34].  

4.6 Comparison of prediction accuracy between statistical models 

In our study, the statistical models did not differ noticeably for various model evaluation 

statistics (predictive ability, rank correlations, mean squared error etc.). Similar results were 

reported in the literature based on simulations [2, 21]. In loblolly pine, the accuracy of 

predictions for 17 traits differed marginally across various statistical models [28]. In a 

simulation study that mimicked a barley population, a GBLUP approach produced more 

accurate predictions than other methods that fit markers simultaneously, suggesting that 

capturing the genetic relationship was more important than capturing LD. GBLUP is an 

attractive statistical method to obtain GEBV and has been widely used in simulation and 

empirical data [21]. In GBLUP, the experimental design factors can be included in the 

models. The genotype by environment interaction can be formulated and variance-covariance 

structures can be incorporated into GBLUP models to account for heterogeneity. 

Furthermore, multivariate models can be fit to account for genetic correlations between traits. 

Computationally GBLUP is less demanding because it does not predict the individual marker 

effects in a mixed model approach but this is also the major drawback of GBLUP.  

4.7 EBV versus de-regressed EBV 

In prediction of GEBV, the phenotype of individuals is regressed on genetic markers in a 

training population. The ideal phenotype would be true breeding values (TBV) measured in a 
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population of unrelated individuals without selection [50]. In reality the TBV are never 

known. Instead phenotypes adjusted for systematic effects (e.g. experimental design factors), 

estimated breeding values (EBV) from genetic evaluation, average progeny performance or 

repeated measures on individuals are used to estimate marker effects [50]. The consequence 

of using different phenotypes in animal breeding was a concern and various statistical 

methods were introduced to de-regress EBV [80]. If family is the target for selection and 

EBV of families are used in GEBV, the benefit of de-regressing the EBV may not materialize 

in forest trees as we saw in this study. The analyzed population consisted of mostly unrelated 

individuals from two generations of breeding. An important part of the individuals (306 out 

of 661) had at least one parent unknown (wind pollinated). The EBV of 661 individuals were 

derived from a  0.66 to 

0.99). These considerations argue in favor of using EBV instead of de-regressed EBV. 

4.8 Conclusions 

In conclusion, this study showed encouraging results of applying genomic selection in 

maritime pine. The predictive ability of markers for growth and stem sweep was around 0.50 

despite low average LD (0.006) observed in the population with one cycle of breeding. 

Sampling of progeny for model validation increased the accuracy GEBV. A larger number of 

individuals from third generation need to be genotyped and the whole population needs to be 

analyzed to further test the validity of the GS model. Such analysis is underway by our group.   
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Figure 1: Scatter plots (lower diagonal), histograms (diagonal) and correlations (upper 
diagonal) between stem sweep, tree height and diameter with probability values (H0: ). 
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Figure 2: Linkage disequilibrium (LD) in chromosome 1 based on squared allele frequency 
( ) and LD corrected for genetic relatedness ( ).  

A) Regular ( ) and corrected ( ) LD between pairs of markers against the genetic distance 
(cM) as scatter plot with smoothed spline (red), showing a rapid decline of LD within a short 
genetic distance.  

 

B) Regular (left) and corrected (right) LD between pairs of markers as heat map (the upper 
diagonal matrix of LD between markers). The lines on the diagonal show the location of the 
markers on linkage group #1.  
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Figure 3: Additive genetic relationships derived from the pedigree (top panel) and realized 

genomic relationships (bottom panel) derived from SNP markers. A high majority of 

individuals had zero covariance (relationship) showing limited relatedness in the population. 

The distribution of the coefficients of relatedness is tri-modal, clearly showing three peaks (0, 

0.25 and 0.50), the expected coefficients between half-sibs and full-sibs (or parent offspring). 

The scale of the y-axis is square root of the frequency. 
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Figure 4: The predictive ability ( ) of genomic estimated breeding values (GEBV) for tree 

height in a validation data set ( sampled from G1 population) using GBLUP, Bayesian 

ridge and Bayesian LASSO methods (red dots). The blue dots (small dots) represent the 

training set ( genotypes from G0 and G1).
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Table 1: Summary statistics of linkage disequilibrium for each linkage group (LG) before 

correcting for relatedness ( ) and after correcting for relatedness ( ) between individuals. 

LG Length (cM) # of markers 
  

Mean Min Max 
 

Mean Min Max 

1 115.0 169 0.014 3.45E-10 1 
 

0.008 2.60E-11 1 

2 153.2 180 0.010 2.1E-12 1 
 

0.006 6.10E-12 1 

3 140.5 194 0.008 9.32E-13 1 
 

0.005 1.50E-12 1 

4 139.5 184 0.010 8.24E-13 1 
 

0.005 5.00E-11 1 

5 140.2 164 0.013 3.49E-11 1 
 

0.006 1.30E-13 1 

6 114.5 194 0.011 4.48E-11 1 
 

0.007 2.60E-12 1 

7 140.5 190 0.010 4.99E-10 1 
 

0.005 3.90E-11 1 

8 133.8 152 0.011 9.41E-12 1 
 

0.007 4.70E-13 1 

9 111.4 201 0.010 1.34E-11 1 
 

0.005 2.20E-13 1 

10 147.4 165 0.009 1.42E-12 1 
 

0.005 6.50E-14 1 

11 111.5 197 0.019 4.71E-11 1 
 

0.012 9.80E-12 1 

12 144.4 194 0.010 3.79E-12 1 
 

0.006 5.50E-12 1 
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Table 2: Genetic relationships from pedigree and markers using the shared allele frequency. 

The average coefficient of relationship is essentially zero (0.0046 from pedigree and -0.0015 

from markers) and the average inbreeding coefficient F is close to 0, as expected for a 

population with only one generation of breeding. 

 1+ Inbreeding Relationships 

Methods Min Mean Max Min Mean Max 

Pedigree 1.0 1.0 1.0 0 0.0046 0.5 

Realized 0.862 0.994 1.139 -0.145 -0.0015 1.085 
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Table 3. Model evaluation statistics using random sampling of 10% of individuals (48 trees) 

from G1 population with 100 replications. Model performance statistics for GBLUP, 

Bayesian ridge regression (BRidge) and Bayesian LASSO (BLasso) for tree diameter, height 

and stem sweep were presented. 

Trait / statistics GBLUP BRidge BLasso 

Diameter / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.46  (0.14-0.72) 0.47  (0.13-0.72) 0.47  (0.09-0.69) 

Rank correlation 0.42  (0.06-0.68) 0.42  (0.06-0.68) 0.41  (0.02-0.67) 

Mean squared error 0.42  (0.23-0.65) 0.41  (0.24-0.66) 0.43  (0.25-0.71) 

Bias (regression slope) 0.92  (0.27-1.51) 0.91  (0.25-1.50) 0.72  (0.16-1.25) 

Mean best 10% 1.08  (0.81-1.31) 1.08  (0.83-1.33) 1.24  (0.93-1.58) 

Height / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.47  (0.1-0.66) 0.47  (0.11-0.66) 0.46  (0.15-0.67) 

Rank correlation 0.44  (0.03-0.67) 0.44  (0.03-0.68) 0.43  (0.05-0.66) 

Mean squared error 0.49  (0.31-0.81) 0.49  (0.31-0.81) 0.52  (0.34-0.85) 

Bias (regression slope) 0.79  (0.15-1.25) 0.79  (0.16-1.23) 0.65  (0.20-1.11) 

Mean best 10% 1.49  (1.15-1.87) 1.49  (1.16-1.88) 1.64  (1.24-2.06) 

Stem Sweep / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.55  (0.23-0.73) 0.55  (0.22-0.73) 0.54  (0.20-0.73) 

Rank correlation 0.55  (0.22-0.76) 0.55  (0.22-0.76) 0.54  (0.18-0.77) 

Mean squared error 0.49  (0.27-0.79) 0.49  (0.27-0.79) 0.52  (0.31-0.82) 

Bias (regression slope) 0.85  (0.27-1.46) 0.85  (0.27-1.46) 0.73  (0.21-1.21) 

Mean best 10% 0.77  (0.39-1.10) 0.77  (0.40-1.10) 0.90  (0.47-1.28) 
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Table 4: Model evaluation statistics using random sampling  across the population with 100 

replications. The whole data set ( ) was split into training ( ) and validation 

sets ( ). Model performance statistics for GBLUP, Bayesian ridge regression 

(BRidge) and Bayesian LASSO (BLasso) for tree diameter, height and stem sweep are 

presented. 

Trait / statistics GBLUP BRidge BLasso 

Diameter / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.39  (0.30-0.50) 0.40 (0.31-0.50) 0.38  (0.29-0.48) 

Rank correlation 0.37  (0.28-0.49) 0.37  (0.28-0.48) 0.36  (0.26-0.48) 

Mean squared error 0.46  (0.39-0.54) 0.46  (0.39-0.54) 0.49  (0.41-0.57) 

Bias (regression slope) 0.95  (0.60-1.96) 0.90  (0.61-1.50) 0.63  (0.46-0.82) 

Mean best 10% 0.95  (0.65-1.14) 0.97  (0.74-1.15) 1.18  (1.05-1.39) 

Height / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.47  (0.35-0.55) 0.47  (0.35-0.55) 0.45  (0.34-0.53) 

Rank correlation 0.46  (0.34-0.57) 0.46  (0.34-0.56) 0.44  (0.33-0.55) 

Mean squared error 0.57  (0.47-0.76) 0.57  (0.47-0.74) 0.60  (0.49-0.77) 

Bias (regression slope) 0.98  (0.63-1.74) 0.97  (0.65-1.55) 0.73  (0.48-0.98) 

Mean best 10% 1.37  (1.11-1.70) 1.37  (1.14-1.67) 1.56  (1.36-1.82) 

Stem Sweep / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.49  (0.40-0.57) 0.49  (0.41-0.57) 0.48  (0.36-0.57) 

Rank correlation 0.48  (0.41-0.57) 0.48  (0.41-0.57) 0.47  (0.36-0.56) 

Mean squared error 0.61  (0.50-0.73) 0.61  (0.50-0.72) 0.63  (0.52-0.75) 

Bias (regression slope) 0.97  (0.53-1.64) 0.97  (0.62-1.50) 0.77  (0.55-1.03) 

Mean best 10% 0.69  (0.41-1.00) 0.68  (0.47-0.85) 0.86  (0.72-1.05) 
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Figure S1: Pedigree of maritime pine breeding population. Pedigree Viewer software 
(http://www-personal.une.edu.au/~bkinghor/pedigree.htm) was used to visualize the 
relatedness between two generations. The population is composed of two tiers with 184 
individuals in G0 and 477 individuals in G1. Black lines indicate link between female parents 
and their progeny and blue lines indicate link between male parents and their progeny. 
Average inbreeding and maximum inbreeding coefficients were zero in the population 
because of unrelated founders and one selection cycle. The maximum maternal and paternal 
family sizes were 13 and 25, respectively.  
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Figure S2: Genotype calls in the population. The frequency of genotype calls ranged from 
0.17 (AA) to 0.025 (AT/TA). A high proportion of genotype calls (61%) were homozygous 
(GG, CC, AA and TT). 
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Figure S3: High density genetic map of maritime pine and LD on each chromosome. 
Positions of the 2,183 mapped markers on the 12 chromosomes are illustrated. The number of 
markers is given at the bottom of each chromosome. 
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Figure S4: See separate files  
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Figure S5: Relationship of two estimates of LD (r² and r²v) between all pairs of markers 
on linkage groups. Different classes of inter-marker distances 

are represented. The data showed that regular LD estimates are biased upward because of 
relatedness between individuals.  
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Figure S6: Inbreeding coefficients of 661 individuals derived from 2500 SNP markers. For a 
non-bred population the expected inbreeding coefficient is 1  0.2 Std dev. Too high and too 
low inbreeding values indicate genotyping mistakes and/or errors in pedigree [78]. The 
inbreeding estimates in our data are within the expected boundaries.  
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Figure S7A: Evolution of the Gelman and Rubin's shrink factor as the number of iterations 
increases for five MCMC chains of the residual variance for height as the response variable. 
The Bayesian ridge (Right) and Bayesian LASSO (Left) models converge after 10000 
iterations. 

 
 
Figure S7B: Bayesian ridge (upper panel) and Bayesian LASSO (lower panel) convergence 
monitoring plots for the residual variance. The trace plots and autocorrelation functions used 
40,000 samples. The burn-in period was set to 10,000 based on the Gelman and Rubin's 
convergence diagnostic with five parallel chains.  
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Figure S8: Priors (dashed lines) and estimated scaled posterior densities (solid lines) for the 
residual variance  assuming three informative priors for height trait for Bayesian ridge (A) 
and Bayesian LASSO (B) regression models. The prior densities were set assuming that the 
proportion of phenotypic variance attributed to the residuals were 80% (red), 60% (green), 
and 40% (blue).  
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Figure S9: Comparisons of three statistical models for genomic estimated breeding values 
(GEBV). The box plots show the distribution of 100 predictive ability and rank correlations 
for three traits. The vertical lines in the middle of the boxes are the medians. The minimum 
and maximum estimates are shown as circles below and above boxes, respectively.   
 
A) Sampling 50% of the whole population   
 

 
 
B) Sampling 10% of the G1 population 
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Table S1: Performance of statistical models Bayesian ridge (BRidge) and Bayesian LASSO 
(BLasso) on the whole dataset (no sampling for validation). BLasso model was clearly 
superior when all the performance statistics were taken into account.   
 

Trait  Statistics GBLUP BRidge BLasso 

Diameter Predictive ability 0.92 0.92 0.97 

 Rank correlation 0.91 0.91 0.96 

 Mean squared error 0.25 0.12 0.05 

 Bias (regression slope) 1.46 1.45 1.23 

 Mean best 10% 1.08 1.16 1.34 

Height Predictive ability 0.93 0.94 0.97 

 Rank correlation 0.93 0.93 0.96 

 Mean squared error 0.47 0.13 0.06 

 Bias (regression slope) 1.35 1.34 1.19 

 Mean best 10% 1.53 1.61 1.76 

Sweep Predictive ability 0.94 0.94 0.97 

 Rank correlation 0.94 0.94 0.96 

 Mean squared error 0.14 0.13 0.07 

 Bias (regression slope) 1.32 1.32 1.19 

 Mean best 10% 1.05 1.08 1.25 
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Table S2: Cross validation using random sampling (without replacement) of 10% from G1 
population. Model performance statistics for GBLUP, Bayesian ridge regression (BRidge) 
and Bayesian LASSO (BLasso) for de-regressed tree diameter, height and stem sweepness 
were presented 
 

Trait / statistics GBLUP BRidge BLasso 

Diameter / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.43  (0.04-0.72) 0.43  (0.04-0.72) 0.42  (0.01-0.69) 

Rank correlation 0.46  (0.09-0.73) 0.47  (0.09-0.74) 0.46  (0.04-0.70) 

Mean squared error 0.53  (0.29-0.89) 0.52  (0.29-0.83) 0.54  (0.32-0.84) 

Bias (regression slope) 0.98  (0.17-2.03) 0.98  (0.18-1.97) 0.75  (0.05-1.45) 

Mean best 10% 1.14  (0.89-1.42) 1.14  (0.90-1.43) 1.31  (1.01-1.72) 

Height / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.48  (0.10-0.71) 0.49  (0.11-0.72) 0.47  (0.00-0.70) 

Rank correlation 0.50  (0.07-0.71) 0.51  (0.07-0.71) 0.50  (0.02-0.69) 

Mean squared error 0.59  (0.37-0.94) 0.59  (0.37-0.94) 0.62  (0.37-1.00) 

Bias (regression slope) 0.90  (0.13-1.45) 0.90  (0.14-1.45) 0.74  (0.03-1.18) 

Mean best 10% 1.60  (1.30-1.91) 1.59  (1.30-1.90) 1.75  (1.38-2.10) 

Stem Sweep / Mean  (min-max) Mean  (min-max) Mean  (min-max) 

Predictive ability 0.55  (0.24-0.74) 0.55  (0.24-0.74) 0.55  (0.26-0.76) 

Rank correlation 0.55  (0.26-0.74) 0.55  (0.27-0.74) 0.55  (0.29-0.71) 

Mean squared error 0.62  (0.33-0.91) 0.61  (0.33-0.91) 0.64  (0.34-0.95) 

Bias (regression slope) 0.84  (0.30-1.18) 0.83  (0.30-1.18) 0.77  (0.34-1.20) 

Mean best 10% 0.90  (0.34-1.48) 0.90  (0.35-1.47) 0.96  (0.40-1.34) 

 


















































