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Regulation of gene expression in the brain plays an important role in behavioral plasticity and decisionmaking in
response to external stimuli. However, both can be severely affected by environmental factors, such as parasites
and pathogens. In honey bees, the emergence and re-emergence of pathogens and potential for pathogen co-in-
fection and interaction have been suggested asmajor components that significantly impaired social behavior and
survival. To understand how the honey bee is affected and responds to interacting pathogens, we co-infected
workers with two prevalent pathogens of different nature, the positive single strand RNA virus Black queen
cell virus (BQCV), and the Microsporidia Nosema ceranae, and explored gene expression changes in brains
upon single infections and co-infections. Our data provide an important resource for research on honey bee dis-
eases, andmore generally on insect host-pathogen and pathogen-pathogen interactions. Raw andprocessed data
are publicly available in the NCBI/GEO database: (http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE81664.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81664

2. Introduction

The brain constitutes the central component of the insect nervous
system. The regulation of gene expression in the brain plays an impor-
tant role in behavioral plasticity and decision making in response to ex-
ternal stimuli [1]. Social insects such as honey bees represent good
models to study the relationship between brain gene expression (i.e.
neurogenomics) and behavioral modulations [2–4]. Insect societies are
composed of reproductive females (queens), males and non-reproduc-
tive workers that each display a remarkably distinct behavioral reper-
toire. Workers in particular exhibit striking patterns of division of
labor and behavioral maturation that are crucial for colony survival
and growth, which generally consist of a sequence of behaviors
known as temporal polyethism, from nursing and nest construction to
nest guarding and food foraging [5]. Several external factorsmaymodify
this behavioral sequence, such as food availability and colony demogra-
phy [5]. Pathogen infections also accelerate maturation towards early
foraging, a change in behavior that is considered to function as a form
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of social immunity in insect societies [6]. Pathogens such as
Microsporidian and viruses have been shown to accelerate temporal
polyethism in honey bee colonies [7–9] as well as dramatically altering
brain gene expression, including genes involved in neural function and
foraging behavior [10].

Among the multiple pathogens infecting honey bees [11], the gut
parasite Nosema ceranae, a Microsporidia which recently switched
from its original host, the Eastern honey bee Apis cerana, to theWestern
honey bee A. mellifera, is one of the most prevalent parasite of honey
bees in Europe [12]. Honey bees are also infected by several RNA viruses
[13], and one of the most prevalent is the positive single strand RNA
virus, Black queen cell virus (BQCV) [14].

In a previous study, we showed that BQCV and N. ceranae interact
synergistically to increase worker bee mortality [15]. Using samples
from the same experiment, we sequenced the brain transcriptome of
worker bees infected by the two pathogens, alone or in combination,
and compared it to control bees. Here, we explore the genome-wide re-
sponse of worker bee brains to experimental infection.

3. Materials and methods

3.1. Experimental infections

Workers honey bees Apis mellifera carnica originated from colonies
located in Halle (Saale), Germany. Colonies had been treated to control
Varroa mites with Varidol® (Amitraz; TolnAgro, Hungary) the previous
fall, six months before the experiment. Two day-old worker honey
bees were experimentally infected individually with 105 N. ceranae
spores and 1.4 × 109 genome equivalents of BQCV per os, alone or in
combination (see details in [15]). Bees were kept 13 days post-infection
inmetal cages (10×10×6 cm) comprising 30 individuals from the same
colonies and treatment, with an 8 cm2 piece of organic beeswax. Cages
were held in incubators at 30 °C ± 1 and 50% RH and bees were fed
50% sucrose solution ad libitum following standardized guidelines [16].
Three replicates using three different honey bee colonies were used
within a treatment, and the same colonies were used across treatments.

3.2. RNA-sequencing

At the end of the experiment, bees were flash frozen in liquid nitro-
gen and brains dissected on dry ice. RNA was extracted from a pool of
four brains (from all four treatments and three replicates except co-in-
fection, for which only two replicates could be analyzed) using Trizol
and the RNeasy Mini Kit (Qiagen). Sample preparation was performed
using the DGE DpnII Sample Preparation Kit (Illumina, Inc., San Diego,
CA, USA) with 2 μg RNA. Library preparation of mRNAwas perform fol-
lowing the TruSeq Stranded mRNA Sample Preparation Kit from
Illumina.

3.3. Data analysis

Image analysis and base calling were performed using the HiSeq
Control Software and Real-Time Analysis component. Demultiplexing
was performed using Illumina's sequencing analysis software CASAVA
1.8.2. The quality of the data was assessed using FastQC from the
Babraham Institute and the Illumina software SAV (Sequence Analysis
Viewer). Reads were mapped to the Apis mellifera genome (Amel_4.5)
using the eland_rna module of CASAVA 1.8.2. NCBI annotation file
(seq_gene.md.gz; 2012-12-17) was used to generate splice junctions
automatically. Reads were also aligned to a set of contaminants, includ-
ing the ribosomal RNAs, the PhiX genome (Illumina control) and the
Illumina adapters. Reads mapping to contaminants were discarded.
Gene counting was performed with HTSeq count (union mode). As
the sequencing was strand-specific, the reads were mapped to the op-
posite strand of the gene. Before any statistical analysis, genes with
b15 reads summed across all the analyzed samples were filtered out.
Differentially expressed genes were identified using the Bioconductor
R package edgeR 2.6.2 and the Upper Quartile normalization method
[17]. Genes with adjusted p-value b5% (according to the Benjamini-
Hochberg FDR method [18]) were declared differentially expressed.
Functional analysis based on GO terms was performed using the online
platform DAVID 6.7 [19]. Overlap tests with previously published brain
transcriptomes upon parasitism with Varroa mites and N. ceranae [10]
were performed using a hypergeometric test.

4. Results

A total of 875,319,378 reads were generated, with an average of
79,574,489 per replicate (±5,023,017 sem). After quality control and
alignment to the A. mellifera genome, 397,450,508 reads (average per
replicate: 36,131,864 ± 3,629,065 reads) were uniquely assigned to
exons and used for statistical analysis of the host response to the exper-
imental inoculation treatments (details in Supplementary Table 1).

The number of genes showing significant changes in expression
level upon infection was markedly different between treatments.
While 144 genes where differentially expressed in brains of workers in-
fected by BQCV, only 13 genes had a different level of expression in
brains of bees infected by N. ceranae (Fig. 1). Co-infection with the
two pathogens induced the differential expression of 67 genes, includ-
ing 29 genes that were also differentially expressed in brain of worker
bees infected by BQCV, and 6 genes also differentially expressed in
brain of bees infected by N. ceranae; 31 genes were differentially
expressed in co-infected bees only. Among the latter, three cytochrome
oxidase P450 genes (LOC408453, CYP4G11 and LOC412209) and two
genes coding for odorant binding proteins (OBP4 and OBP18) were sig-
nificantly down-regulated in co-infected bees only. Conversely, the
gene coding for the protein yellow-x1 (LOC724293) was significantly
up-regulated in co-infected bees. Finally, one gene coding for a heat
shock protein (LOC724488) was consistently down-regulated after all
pathogen treatments, including co-infection.

The functional analysis of genes differentially regulated showed no
significantly overrepresented GO terms in workers bees infected with
N. ceranae or co-infected with both pathogens. However, we found a
significant overrepresentation of genes involved in immune functions
that were differentially expressed in brains of bees infected with BQCV
(Benjamini-Hochberg corrected p = 0.039). Several genes from the
Toll and Imd pathways were up-regulated, such as the antimicrobial
peptides abaecin (LOC406144), apidaecin (Apid1 and Apid73) and
hymenoptaecin (LOC406142), but also Rel, Lys-2, the Drosophila homo-
log of PIRK (LOC100578156), and the gene coding for the pathogen rec-
ognition protein PGRP-S2. More importantly, two genes from the RNAi
antiviral pathway, AGO2 and Dicer (LOC726766), were found up-regu-
lated in both treatments including BQCV. Although no functional
group associated to brain and neuronal activities were overrepresented
in the list of differentially expressed genes, we found the chemosensory
protein CSP6, a light sensitive protein (Lop2), the heat shock cognate
protein Hsc70-4 and a neuropeptide CCHamide-1 receptor-like
(LOC411632) to decrease in expression upon infection by BQCV. Infec-
tion by N. ceranae induced lower expression of the chemosensory pro-
tein CSP1 but increased expression of the neurotransmitter NT-4. A
complete list of genes exhibiting significant differential expression be-
tween treatments and control is available in Supplementary Table 2.

Comparison with a previous study investigating effect of the Varroa
mite andN. ceranae on honey beeworker brain gene expression [10] re-
vealed significant overlaps, with 27 and 2 genes found in response to
Varroa/BQCV and both N. ceranae studies, respectively, in independent
experiments (Supplementary Table 3).

5. Discussion

This study reports the transcriptome responses of the honey bee
brain to two different pathogens, an RNA virus and a gut Microsporidia.



Fig. 1. Venn diagram showing the number of significantly differentially regulated gene transcripts between control and experimentally infectedworker honey bees, and overlaps between
the different experimental inoculation treatments with the two honey bee pathogens.
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We found that BQCV induces a more dramatic change in gene expres-
sion than theMicrosporidiaN. ceranae in brains. Themain reason is like-
ly the capacity of the virus to reach and infect the central nervous
system of its host, while N. ceranae is strictly restricted to the gut of
honey bees. Such a difference of impact was also observed in a previous
study comparing the effect of the Varroamitewhen transmitting anoth-
er RNA virus, Deformed wing virus (DWV), and the sameMicrosporidia
N. ceranae [10]. Interestingly, we found that genes from the antibacteri-
al/antifungal pathways Toll and Imd, including several AMPs, where not
triggered upon infection with N. ceranae, but rather involved in the
response to BQCV. Although observed in other model insect species
[20], the involvement of these pathways in the antiviral response re-
mains to be elucidated [21]. More importantly, we confirmed experi-
mentally the role of the RNAi genes Dicer and AGO2 in the antiviral
response of honey bees, as previously observed in response to another
virus [22].

An important aspect of our transcriptome study is that the response
of the host to co-infection with two pathogens was also analyzed. BQCV
and N. ceranae have been shown to interact synergistically in honey bee
workers, with co-infection significantly decreasing host survival [15].
With these transcriptome sequences we identify candidate genes in-
volved in pathogen interactions. For instance, genes involved in the be-
havior and responses to external stimuli such as yellow-x1 [23] and
odorant binding proteins [24] were found significantly differentially
expressed in co-infected bees only. We believe that such data will pro-
vide important resource for research on honey bee diseases, and more
generally on insect host-pathogen and pathogen-pathogen interactions.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.09.010.
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