D. Adams and E. Otarola-castillo, geomorph: Geometric Morphometric Analysis of 2d/3d Landmark Data, 2012.

D. C. Adams, F. J. Rohlf, and D. E. Slice, Geometric Morphometrics: Ten Years of Progress Following the 'Revolution', Italian Journal of Zoology, vol.71, issue.1, pp.5-16, 2004.

V. Bonhomme, A Graphical Introduction to Momocs and Outline Analysis Using R, 2012.

V. Bonhomme, R. Frelat, and C. Gaucherel, Application of Elliptical Fourier Analysis to Watershed Boundaries: A Case Study in Haiti, Geomorphologie -Quantitative Hydro-Geomorphology, vol.1, pp.17-26, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02643173

V. Bonhomme, S. Prasad, and C. Gaucherel, Intraspecific Variability of Pollen Morphology as Revealed by Elliptic Fourier Analysis, Plant Systematics and Evolution, vol.299, issue.5, pp.811-816, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649820

F. L. Bookstein, Morphometric Tools for Landmark Data: Geometry and Biology, 1991.

A. Bowman, Review of 'Morphometrics with R', Journal of Statistical Software, vol.31, issue.1, pp.1-2, 2009.

J. M. Chambers, Programming with Data: A Guide to the S Language, 1998.

J. Claude, Morphometrics with R, 2008.

J. Claude, Elliptic Fourier Analysis: Three Worked Examples in R, Procrustes Superimposition, vol.24, pp.94-102, 2013.

A. Courtiol, J. B. Ferdy, B. Godelle, M. Raymond, and C. J. , Height and Body Mass Influence on Human Body Outlines: a Quantitative Approach Using an Elliptic Fourier Analysis, American Journal of Physical Anthropology, vol.142, issue.1, pp.22-29, 2010.

J. S. Crampton, Elliptical Fourier Shape Analysis of Fossil Bivalves: Some Practical Considerations, Lethaia: An International Journal of Palaeontology and Stratigraphy, vol.28, issue.2, pp.179-186, 1995.

S. Dray and A. B. Dufour, The ade4 Package: Implementing the Duality Diagram for Ecologists, Journal of Statistical Software, vol.22, issue.4, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

I. Dryden, shapes: Statistical Shape Analysis. R package version 1.1-6, 2012.

S. Ferson, F. J. Rohlf, and R. K. Koehn, Measuring Shape Variation of Two-Dimensional Outlines, Systematic Biology, vol.34, issue.1, pp.59-68, 1985.

M. Friess and M. Baylac, Exploring Artificial Cranial Deformation Using Elliptic Fourier Analysis of Procrustes Aligned Outlines, American Journal of Physical Anthropology, vol.122, issue.1, pp.11-22, 2003.

C. Genolini, A (Not So) Short Introduction to S4, 2008.

C. R. Giardina and F. P. Kuhl, Accuracy of Curve Approximation by Harmonically Related Vectors with Elliptical Loci, Computer Graphics and Image Processing, vol.6, issue.3, pp.277-285, 1977.

H. Iwata, H. Nesumi, S. Ninomiya, Y. Takano, and Y. Ukai, Diallel Analysis of Leaf Shape Variations of Citrus Varieties Based on Elliptic Fourier Descriptors, Breeding Science, vol.52, issue.2, pp.89-94, 2002.

H. Iwata, S. Niikura, S. Matsuura, Y. Takano, and Y. Ukai, Evaluation of Variation of Root Shape of Japanese Radish (Raphanus Sativus L.) Based on Image Analysis Using Elliptic Fourier Descriptors, Euphytica, vol.102, issue.2, pp.143-149, 1998.

D. Kendall, A Survey of the Statistical Theory of Shape, Statistical Science, vol.4, issue.2, pp.81-120, 1989.

C. P. Klingenberg, MorphoJ: An Integrated Software Package for Geometric Morphometrics, Molecular Ecology Resources, vol.11, issue.2, pp.353-357, 2011.

F. P. Kuhl and C. R. Giardina, Elliptic Fourier Features of a Closed Contour, Computer Graphics and Image Processing, vol.18, issue.3, pp.236-258, 1982.

N. Macleod, Generalizing and Extending the Eigenshape Method of Shape Space Visualization and Analysis, Paleobiology, vol.25, issue.1, pp.107-138, 1999.

H. J. Miller and E. A. Wentz, Representation and Spatial Analysis in Geographic Information Systems, The Annals of the Association of American Geographers, vol.93, issue.3, pp.574-594, 2003.

H. Moellering and J. N. Rayner, The Harmonic Analysis of Spatial Shapes Using Dual Axis Fourier Shape Analysis (DAFSA), Geographical Analysis, vol.13, issue.1, pp.64-77, 1981.

E. Paradis, Analysis of Phylogenetics and Evolution with R, 2012.

E. Paradis, J. Claude, and K. Strimmer, ape: Analyses of Phylogenetics and Evolution in R Language, Bioinformatics, vol.20, issue.2, pp.289-290, 2004.
URL : https://hal.archives-ouvertes.fr/ird-01887318

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

S. Renaud and J. R. Michaux, Adaptive Latitudinal Trends in the Mandible Shape of Apodemus Wood Mice, Journal of Biogeography, vol.30, issue.10, pp.1617-1628, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00698162

J. T. Richtsmeier, B. Deleon, V. Lele, and S. R. , The Promise of Geometric Morphometrics, American Journal of Physical Anthropology, vol.119, issue.S35, pp.63-91, 2002.

J. T. Richtsmeier, J. M. Cheverud, and S. Lele, Advances in Anthropological Morphometrics, Annual Review of Anthropology, vol.21, pp.283-305, 1992.

F. Rohlf and J. Archie, A Comparison of Fourier Methods for the Description of Wing Shape in Mosquitoes (Diptera: Culicidae), Systematic Biology, vol.33, issue.3, pp.302-317, 1984.

F. J. Rohlf, An Overview of Image Processing and Analysis Techniques for Morphometrics, Proceedings of the Michigan Morphometrics Workshop, vol.2, pp.47-60, 1990.

F. J. Rohlf and L. F. Marcus, A Revolution in Morphometrics, Trends in Ecology and Evolution, vol.8, issue.4, pp.129-161, 1993.

F. J. Rohlf and D. Slice, Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks, Systematic Zoology, vol.39, issue.1, pp.40-59, 1990.

C. G. Small, The Statistical Theory of Shape, 1996.

D. W. Thompson, On Growth and Form, 1917.

E. A. Wentz, A Shape Definition for Geographic Applications Based on Edge, Elongation, and Perforation, Geographical Analysis, vol.32, issue.2, pp.95-112, 2000.

Y. Yoshioka, H. Iwata, R. Ohsawa, and S. Ninomiya, Analysis of Petal Shape Variation of Primula sieboldii by Elliptic Fourier Descriptors and Principal Component Analysis, The Annals of Botany, vol.94, issue.5, pp.657-664, 2004.

C. T. Zahn and R. Z. Roskies, Fourier Descriptors for Plane Closed Curves, IEEE Transactions on Computers, vol.21, issue.3, pp.269-281, 1972.

I. E. Pondicherry,

F. Montpellier and . Current,