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Microbiological Risk Assessment (MRA) is a structured process

for determining the public health risk associated with

foodborne pathogens. In recent years, there has been a strong

tendency in providing food safety decisions based upon

quantitative assessment. Especially, variability and uncertainty

inherent to biological processes have been integrated in food

safety management through the use of powerful statistical and

probabilistic techniques. Besides, recent developments in

omic technologies may fill knowledge gaps on strain diversity

and physiological variability, and, open new perspectives to

refine hazard identification. Last, to satisfy the societal demand

for balanced recommendations on food, MRA could be, in a

near future, embedded into a more comprehensive assessment

including chemical and nutritional issues, but also, cost and

sustainability considerations.
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Introduction
The World Health Organization (WHO) and the Food and

Agriculture organization (FAO), particularly through the

Codex Alimentarius Commission (CAC) have encouraged

the research community (academy, regulatory agencies) to

perform Microbiological Risk Assessment (MRA). In 1999,

they published a guideline to facilitate the use of MRA [1].

MRA is a structured process for determining the public

health risk associated with biological hazard in food. It

includes hazard identification, exposure assessment, haz-

ard characterization and risk characterization [1]. General-

ly, in MRA, the microbial propagation from the primary

production up to consumer’s plate is taken into account.

That enables to suggest and evaluate management options
Current Opinion in Food Science 2016, 8:120–126 
associated with any step of the ‘‘farm-to-fork’’ continuum.

In this context, MRA is often quantitative and more

precisely probabilistic. Probabilistic refers to the process

of characterizing inputs using probability density distribu-

tions [2]. That provides the flexibility of comparing the

efficiency of different risk reduction measures by predict-

ing their effect on the model output, while taking the

variability into account. Concerning the exposure assess-

ment, the probability of having a consumer exposed to a

pathogenic hazard depends upon the level of the pathogen

in the food and the consumer’s habits (Figure 1). The level

of pathogen in food is a function of its ability to adapt to

multiple process/formulation stresses encountered during

the production and distribution chain, but also upon the

food matrix and the potential presence of endogenous flora

which might limit or, on the opposite, enhance the patho-

genic growth. Concerning the hazard characterization, that

is evaluation of the nature of the adverse health effects

associated with the hazard [1], the probability for a con-

sumer of being ill once exposed depends upon the envi-

ronmental conditions that the pathogen has undergone

before ingestion (in particular during food transformation

and distribution), the pathogen virulence and the host

susceptibility (Figure 1). Within both exposure assessment

and hazard characterization, there are a lot of different

sources of variability which have to be taken into account to

estimate accurately the risk. Omic technologies (particu-

larly genomics and transcriptomics), whose potential use in

food safety have recently been reviewed [3��,4], might help

to decipher this variability, while statistical and probabi-

listic techniques should help in digesting the amount of

data and turn it in useful information. The objective of this

review is to cover all these aspects by sharing some insights

into the current status and future trends in foodborne

pathogen risk assessment, from the microbial cell to the

societal demand perspective.

Risk-based food safety management
MRA is interconnected with risk management and risk

communication in the risk analysis process. In 2002,

WHO and FAO set down the basis of risk-based food

safety management [5]. Within this latter framework, a

Food Safety Objective (FSO) corresponds to the maxi-

mum frequency and/or concentration of a hazard in a food

at the time of consumption that provides or contributes to

an Appropriate Level of Protection (ALOP) of the popu-

lation. The Performance Objective (PO) is directly relat-

ed to the FSO but is set at a step before the time of

consumption (e.g. at the point of product release from

manufacture) [5]. Operational critical limits (such as
www.sciencedirect.com
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Microbiological Risk Assessment, food safety management: their place in the farm-to-fork-to-human continuum.
Critical Control Points in HACCP) and microbial criteria,

are then set to guarantee that process and formulation

associated with a given food product comply with PO and

FSO [6–10]. This recently introduced risk-based food

safety management comes on top of, but does not replace,

prerequisite programmes and HACCP plan (Figure 1).

To have a risk-based food safety management effectively

implemented, it is necessary to make a quantitative link

between operational settings (e.g. thermal process crite-

ria) and PO or FSO. That is possible using the well-

established Modular Process Risk Model introduced

15 years ago by Nauta [11]. In this model, the food

transformation/distribution operations are divided into

smaller steps influencing microbial contamination level

(concentration and prevalence), among them: (i) the

introduction of microorganisms with the raw materials,

(ii) the microbial inactivation (for instance by heat treat-

ment), (iii) the potential post-process recontamination of

the product, and (iv) the growth or survival of microor-

ganisms during intermediate or final storage. Quantitative

MRA were first of all developed for foodborne bacteria,

however nowadays, there are studies focused on devel-

opment of mathematical models describing the exposure
www.sciencedirect.com 
and/or the risk of norovirus and hepatitis A virus associat-

ed with food consumption [12–14].

Although food process and formulation are important

factors to take into account when assessing the risk and

identifying measures to prevent or control this risk, recent

MRA studies have pointed out that consumers, by their

preferences and behaviours, play a crucial role in the

overall risk of foodborne disease. For instance, Daelman

et al. [15] have highlighted that time and temperature in

consumer refrigerators were the most important variables

(top rank in the model including in-factory process and

retail distribution steps) impacting the level of Bacillus
cereus in cooked chilled products at the moment of con-

sumption. Beside storage, a substantial proportion of

foodborne disease has been attributable to improper food

preparation practices in consumers’ homes [16]. It is also

worth mentioning that still nowadays, despite official

recommendations, many consumers keep preferring

undercooked hamburgers [17]. For all these reasons, it

seems reasonable to forecast that research on consumers

will continue in the near future: assessment of their role,

perception and communication towards them, impor-

tance of labelling, social network role, etc.
Current Opinion in Food Science 2016, 8:120–126
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Essential place of variability in risk
assessment
Variability refers to real and identifiable differences be-

tween individuals within a population addressed by risk

assessment. Variability is inherent to any biological pro-

cess [18] and does not disappear with more data collec-

tion. There are a lot of sources of variability along the

farm-to-human continuum (Figure 1), which could be

split into three groups: those associated with the patho-

gen, with the food product and with the consumer.

Concerning the pathogen, microbial contamination of

raw material or factory environment varies between

batches and plants while microbial adaptation to stress

encountered during food processing/formulation and vir-

ulence vary between strains of a given species [19,20] and

even among cells from a given strain [21�]. Concerning

the food product, its characteristics (texture, pH, aw, etc.)

vary between batches, its endogenous flora composition

varies, among other, with raw material origin and season.

Consumer is also a large source of variability: by his/her

behaviour and awareness regarding food safety, and
Figure 2
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his/her susceptibility to disease as the pathogen host.

To decipher better the variability, high-resolution

omics-based analyses such as genomics, transcriptomics,

proteomics and metabolomics embody a promising tool-

box (Figure 2) [22].

Omic technologies may fill knowledge gaps in
MRA
Variability first arises from the diversity of pathogenic

agents and sources of contamination, which makes the

identification of hazard complicated. One application of

omics in MRA concerns the use of Whole Genome

Sequencing (WGS) for a more accurate hazard identifica-

tion. Indeed, the use of WGS in genomic epidemiology of

outbreaks caused by a pathogen enables a resolution gain

in identification of the bacterial agent with respect to

traditional epidemiological tools [23]. Routine use of

WGS for surveillance has been implemented in

2013 by the U.S. CDC for all human Listeria monocytogenes
isolates [3]. WGS has been also applied for the detection

of parasites and viruses but not yet as a routine method
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[3]. Moreover, through analysis of genetic variability,

tracking similarities between single-nucleotide polymor-

phisms (SNPs) among various bacterial isolates provides

new insights to identify the sources of contamination

[24�] and understand the mechanisms of transmission

of infection [25]. The significant advances in Next Gen-

eration Sequencing (NGS) technologies also offer the

possibility to profile entire microbial communities in

complex and contaminated food matrices all along the

food chain supply without a priori consideration and

without culture bias. However the main obstacle to

integration of metagenomics in MRA resides in the rela-

tive but not absolute quantification of reads, limiting its

application to detection rather than quantification. Shot-

gun metagenomic sequencing has recently been used to

track in spinach multicontaminated samples Shiga toxin-

producing Escherichia coli [26]; it might be also used for

ranking risk of detection of antibioresistance genes [27].

As well as genomics, metabolomics through gas chroma-

tography–mass spectrometry [28] and MALDI-TOF

mass spectrometry techniques [29] can also be used for

bacterial identification in the form of specific metabolite

or protein fingerprints [4].

On the other hand, the exposure assessment step of MRA

needs to integrate the variability of adaptation/stress

responses associated with bacterial growth and survival

all along the food chain supply. Omic methods could help

to progress in this direction. For instance, identification of

pathways involved in pathogen stress adaptation patterns

has been determined by comparative genome analysis in

food [30]. More recently, differential gene expression

analysis and genome-wide transcriptome analysis have

been used to identify food-related stress resistance bio-

markers [31–34].

In hazard characterization, there are a lot of studies

aiming at identifying virulence factors in microbial patho-

gens [35,36]. However the potential metabolic capacities

of pathogens to adapt to food and host environments

would worthy to be investigated [37,38], that might be

done by combining different omic strategies altogether as

suggested by Yang [39]. On the other hand, Gale et al. [40]

explored the possibility of building a dose–response

model for RNA virus but they could not succeed in having

a quantitative estimation of probability of infection on the

basis of omic data. Finally, metabolomics and more

specifically fluxomics seems a valuable technique to

progress on hazard characterization [41], even if recon-

structing causal gene-metabolite network will be always

difficult [42].

Statistical and probabilistic techniques to
support risk assessment
To date, generating omic data does not support risk

assessment, except maybe for hazard identification. To

create added-value information for risk assessment, after
www.sciencedirect.com 
the compulsory step of bioinformatics, comes the step of

statistical and probabilistic analysis.

Among the statistical techniques, regression is tradition-

ally used. For instance, WGS data have been compared to

data of in vitro adherence to epithelial cells (as a proxy for

virulence) using a mixed effect regression model in a

study on Shiga toxin-producing E. coli [24�]. The authors

pointed out that the main bottleneck in their approach

was the difficulty of translating genotype-level multidi-

mensional information into the single dimension associ-

ated with the measure of risk. Partial Least Square

Regression (PLSR) is another regression technique used

to interpret omic data. PLSR has been carried out to

identify biomarkers (i.e. a set of genes whose expression

varies with the microbial environment changes) of acidic

stress resistance and osmotic and acidic stress resistance

for Bacillus weihenstephanensis [32] and L. monocytogenes
[31], respectively. Although somewhat black box ap-

proach (the specific role of genes in stress response are

not well determined), the identification of biomarkers

could lead to the quantification of probability of exposure

in food.

Beside regression, Bayesian networks and graph theory

method are powerful techniques to decipher information

from a multidimensional set of data. Bayesian networks

have been used to build gene regulatory networks, based

on gene knocking-out experiments [43], graph theory

method [44] has been carried out by Pin et al. [45] in

an attempt of elucidating the molecular mechanisms

underlying E. coli lag phase, with the objective of pre-

dicting its duration.

Bayesian inference might be also a valuable tool to

overcome the challenge of lack of biological data (a large

set of data does not mean that the right data have been

collected). In contrast with ‘‘classical’’ statistics (i.e. fre-

quentist approach), in Bayesian inference, prior knowl-

edge of biologists (food microbiologists, microbial

ecologists, food safety assessors, epidemiologists, . . .)
can be combined with data generated on purpose to

estimate more accurately model parameters. Recently,

Bayesian inference has been applied to omic data to

understand the dynamic of a microbial community struc-

ture in human [46].

Not only for analysing omic data but more generally for

facing the lack of data inherent to biological phenomena

in MRA, the use of Bayesian techniques (Bayesian infer-

ence, Bayesian graphical models) is gaining interest

[47,48�]. They have been used to assess microbial preva-

lence [49] and contamination level [50], inactivation of

pathogens in food [51,52], and more generally in micro-

bial exposure or risk assessment [48�,53,54]. The lack of

data is a source of uncertainty. Uncertainty and variability

correspond to two distinct notions. As already mentioned,
Current Opinion in Food Science 2016, 8:120–126
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variability represents the natural variation in a population

(statistical population: food, process, microorganism, hu-

man). Uncertainty refers to a lack of data. In exposure

assessment, uncertainty could be associated with a lack of

data to characterize the level of raw material contamina-

tion, growth rate, gene expression, etc. In hazard charac-

terization, for instance, uncertainty could be associated

with a lack of data to characterize the virulence due to the

difficulty of generating large sample size with in vivo
experiments. Uncertainty arises also from our lack of data

when building a model (exposure assessment model and/

or dose–response model), resulting in having not the right

model, not the right model parameter estimates, or both.

In some cases, we can reduce uncertainty by obtaining

better information (more data, better expert elicitation),

but this may not always be possible. The current trend in

quantitative MRA is to distinguish between variability

and uncertainty [2,55] by running second order Monte

Carlo simulations [56–58]. In such a case, the efficiency of

different risk reduction measures, in absolute or relative

terms, is estimated with a confidence interval capturing

the uncertainty.

Nevertheless, for the time being, these promising statis-

tical and probabilistic techniques have not yet been fully

exploited in the MRA arena. They could be furthermore

used in both exposure assessment and hazard characteri-

zation to ultimately quantify probability of exposure and

probability of illness (Figure 1). Moreover, integration of

variability and uncertainty along the farm-to-human con-

tinuum, with or without the help of omic technology,

could render the risk assessment too complex and then

difficult (not to say impossible) to use by risk managers at

the operational level. As recently stated, ‘‘Assessment

needs inclusion of variability and uncertainty, manage-

ment needs discrete decisions’’ [59]. An effort in com-

munication has to be made, as well as an effort in

developing easy-to-use decision support tools. Some

are now in development [60], others are already on the

market [61] and used by food safety authorities [62,63].

Foodborne pathogen risk assessment as a
part of a global challenge in food safety
Food safety is not limited to pathogenic microorganisms:

chemical risk needs to be assessed as well. On top of this,

nutrition component of food is also important. Consumer

can be lost among numerous, and somewhat contradictory,

pieces of information concerning food and diet spread by

media and internet, there is a need for balanced, scientifi-

cally-based, messages. To address this demand, a risk and

benefit assessment (RBA) discipline has emerged recently

[64�]. The EFSA authority [65] advises mirroring the

traditional risk analysis process to undertake a risk-benefit

analysis, while considering some differences like the addi-

tion of a benefit assessment and a risk-benefit comparison.

When possible, RBA output is expressed in term of burden

of diseases, estimated using quantitative metrics such as
Current Opinion in Food Science 2016, 8:120–126 
Disability Adjusted Life Years (DALY). These metrics

provide a comprehensive assessment of the consequences

of a disease by integrating the quality of life lost and

premature death [66]. The first and most popular studies

related to RBA concerned a comparison of chemical risk

and nutritional benefit linked to fish consumption [67–69],

however, research has now diversified into a wider range of

food categories. RBA approach, with DALY as endpoint, is

integrated in the FDA tool ‘‘iRISK’’ [62].

Beyond health criteria, economic and environmental cri-

teria may be also important for consumers, manufacturers

and authorities. Multi-Decision Criteria Analysis (MCDA)

[70] is a valuable technique to address this multidimen-

sional issue [71�]. It explicitly and systematically combines

a large range of quantitative and qualitative factors. MCDA

has been recently used to rank biological hazards [72] and

evaluate chemicals based on their exposure potential [73].

MCDA and more generally risk ranking methodologies

might provide, in the future, additional insights to deliver

eventually a comprehensive, well-structured, analysis on

which risk managers could lean on to make decisions and

communicate them adequately.

Conclusion
In recent years, there has been a strong tendency in

providing food safety decisions based upon quantitative

risk assessment. Variability and uncertainty inherent to

biological processes are now considered in the assessment

through the use of probabilistic techniques. The current

trend is to separate uncertainty from variability, when

building models and communicating results, and, to use

Bayesian approaches in the data analysis process. There

are also attempts to include omics in microbial risk

assessment. That will open new perspective, particularly

in hazard identification: potential new microbiological

hazards might be detected at an early stage. Omic tech-

nologies could also help in understanding and then char-

acterizing variability of microorganisms and their

responses to stress encountered in the farm-to-fork-to-

human continuum. Finally, it seems reasonable to fore-

cast that risk-benefit assessment including microbiolog-

ical, chemical and nutritional issues, will take off in the

next ten years as well as more comprehensive assessment

including economical and sustainability considerations.
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