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Abstract

Lyme disease is a zoonosis caused by various species belonging to the Borrelia burgdorferi bacterial species complex. These
pathogens are transmitted by ticks and infect multiple, taxonomically distinct, host species. From an epidemiological
perspective, it is important to determine whether genetic variants within the species complex are able to spread freely
through the whole host community or, instead, if certain variants are restricted to particular hosts. To this end, we
characterized the genotypes of members of the B. burgdorferi species complex; the bacteria were isolated from more than
two hundred individuals captured in the wild and belonging to three different rodent host species. For each individual, we
used a high-throughput approach to amplify and sequence rplB, a housekeeping gene, and ospC, which is involved in
infection. This approach allowed us to evaluate the genetic diversity both within and among species in the B. burgdorferi
species complex. Strong evidence of genetic differentiation among host species was revealed by both genes, even though
they are, a priori, not constrained by the same selective pressures. These data are discussed in the context of the
advancements made possible by multi-locus high-throughput sequencing and current knowledge of Lyme disease
epidemiology.
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Introduction

A large percentage of the pathogens that infect humans are

zoonotic [1] and are maintained in local host reservoirs. Pathogens

can be specific to a single host species, or they can possess a more

generalist transmission strategy and infect multiple, unrelated host

species [2]. Identifying these hosts remains a challenging task that

can have crucial implications for infectious disease management

strategies [3].

Studying the genetic diversity of zoonotic pathogens can

provide valuable insights into various aspects of their epidemiol-

ogy. For example, analyses of the diversity of pathogens within

infected individuals can reveal information about the exposure

and/or the susceptibility of hosts to different pathogen genotypes.

Furthermore, cases of host co-infection, in which a host is

simultaneously infected by different pathogen genotypes, are

influenced by the contact dynamics between hosts and infectious

agents, the establishment of host defenses, and potential interac-

tions between and among pathogen genotypes. Finally, observa-

tions of genetic differentiation between pathogens that infect

different host species provide information about genetic exchanges

between pathogens found in different potential reservoirs and

potential specialization events.

With these goals in mind, the Borrelia burgdorferi species complex

is an ideal model system in which to study the spread of zoonotic

pathogens within a community of hosts. This species complex

includes the pathogens that cause Lyme borreliosis, one of the

most frequent vector-borne zoonotic diseases in the Northern

Hemisphere. Bacteria of the B. burgdorferi species complex are

acquired and transmitted by ticks during their blood meals and

infect many different host species, including small mammals, birds,

and reptiles. While species of the complex are thought to have host

ranges restricted to one or a few host species, the host specificity of

individual bacterial genotypes has yet to be evaluated [4]. Finally,
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this species complex also provides an opportunity to study co-

infection, as individual hosts are usually infested by several ticks,

each of which can transmit a different bacterial genotype [5].

The process of infection by members of the B. burgdorferi species

complex involves many different bacterial genes. Among these, the

outer surface protein encoded by the ospC gene is characterized by

a peculiar pattern of polymorphism, one that is shaped by

diversifying selective pressures that arise as a function of host

diversity at both a genetic and an immunological scale. In

addition, recombination plays an important role in the evolution

of this genome region [6], and the shuffling of genotypes caused by

recombination could result in the disruption of any potential

associations between ospC genotypes and those of housekeeping

genes. However, residual association might still result from either

selective or epidemiological constraints that induce linkage

disequilibrium at the whole genome scale. Therefore, by

comparing the patterns of diversity found in housekeeping genes

with those found in infection-related genes, we can obtain

information about the evolution of the B. burgdorferi species

complex.

Recent developments in sequencing technology have provided

the opportunity to investigate the genetic diversity of pathogens

within and among hosts in greater detail. Massive parallel

sequencing can be used to obtain numerous sequences from the

pathogens within a single host and to characterize multiple loci

within each pathogen. Moreover, pathogens infecting several hosts

can be characterized in a single high-throughput sequencing run,

providing an efficient way to perform studies across a community

of hosts.

In this context, the aim of this study was to describe patterns of

genetic differentiation within and among populations of the B.

burgdorferi species complex that infect three rodent species. Hosts

were sampled in a French peri-urban forest over the course of

several years, and bacteria were characterized using High-

Throughput Multi-Locus Sequence Typing (HiMLST) [7]. This

aimed at obtaining an accurate description of genotypes that infect

the studied hosts. Characterization of pathogens targeted both a

housekeeping gene and an infection-related gene, differentiated by

different phylogenies, to evaluate potential evolutionary scenarios.

Results are discussed in the context of current knowledge of

molecular epidemiology into the B. burgdorferi species complex.

Materials and Methods

Ethic statement
All conducted experiments complied with the current laws of

France. Trapping and collection of rodents conducted on the study

site (Forêt de Sénart, Essonne, France) were carried out under the

control of Laurent TILLON (Office National des Forêts), Head of

Research Group mammals. The project was approved by the

Ethics Committee in Animal Experiment (CEMEA Auvergne).

Rodents were euthanized by cervical dislocation. Ear punch

biospsies were limited to the minimum size needed, the puncture

was disinfected with hydrogen peroxide and checked before

releasing the animal.

Sample selection
As part of another study, Siberian chipmunks (Tamias sibiricus

barberi), bank voles (Myodes glareolus), and wood mice (Apodemus

sylvaticus) were caught during field sampling performed in the forest

of Sénart (3200 ha, 48u409N, 02u299E), located near Paris

(France), over the course of six years, from 2005 to 2010. An

ear biopsy was taken from each animal, from which we extracted

DNA; PCR Restriction Fragment Length Polymorphism (RFLP)

analysis was then used to test whether the animals were infected

with bacteria belonging to the B. burgdorferi species complex [8] [9].

As the aim of this study was to evaluate, in depth, the genotypic

diversity present within these hosts, we selected 228 infected

individuals (Table S1) using a random stratified sampling strategy,

targeting a maximum of 30 individuals per host species per year, as

long as there were enough samples; the sample contained 125

chipmunks, 93 bank voles, and 10 wood mice.

Sample characterization
The purpose of this study was to compare the patterns of genetic

differentiation observed in a housekeeping gene with those from a

gene obviously affected by host-driven selective pressures. From

among the different markers included in the MLST scheme that

has been developed for the B. burgdorferi species complex, we

focused on partial sequences of rplB, a housekeeping gene. We also

studied partial sequences of ospC, an infection-related gene with

antigenic properties that is affected by balancing and/or negative

frequency-dependent selective pressures that arise from host-

pathogen interactions [10] [5]. Evidence of these evolutionary

patterns can be observed in ospC sequence data and seem to be

widespread among species within the B. burgdorferi species complex.

Markers were amplified independently via semi-nested PCR for

each DNA sample using the GoTaq kit (Promega, Fitchburg,

USA). Outer amplifications were performed using the modified

primers rplB_Out_F (59 AGGGTATTAAGACTTATAAGC 39)

and rplB_Out_R (59 AGGCTGTCCCCAAGGAGAYAC 39) for

rplB [11]. For ospC, primers ospC_F1 (59 GGGAWCCAAAATC-

TAATAYAA 39) and ospC_R1 (59 ATATTGACTT-

TATTTTTCCAGTTAC 39) were used [6]. Amplifications were

performed using a total volume of 25 ml, which included 8 ml of

DNA extract, 0.25 ml of Taq polymerase, 10 pmol of each primer,

and the buffer provided by the manufacturer at a final

concentration of 1X. Amplifications were performed using the

following reaction cycle parameters: an initial denaturation step at

95uC for 10 min, followed by 40 cycles, each composed of a

denaturation step at 94uC for 30 s, an annealing step of 30 s (at

58uC for rplB or 56uC for ospC), and an elongation step at 72uC for

40 s. These cycles were followed by a final elongation step of

5 min at 72uC.

For the inner PCR amplifications, the forward primers for each

region were composed of two parts: 1) a 30-base-pair (bp)

oligonucleotide required for the unidirectional sequencing process

on a 454 platform (59 CCTATCCCCTGTGTGCCTTGG-

CAGTCTCAG 39) and 2) a gene-specific oligonucleotide to bind

the sequence region of interest. The target-specific oligonucleo-

tides were the primers rplB_In_F (59 CGCTATAAGACGACTT-

TATC 39) for rplB [11] and ospC_F2 (59 AAAAGGAGGCA-

CAAATTAATG 39) for ospC [12]. Similarly, the reverse primer

was composed of three parts: 1) a 30-bp oligonucleotide required

for sequencing on a 454 platform (59 CCATCT-

CATCCCTGCGTGTCTCCGACTCAG 39); 2) a 12-bp oligo-

nucleotide tag corresponding to the individual host from which the

DNA had been extracted; and 3) rplB_Out_R or ospC_R1, which

had already been used for the outer PCR amplifications. Inner

amplifications were performed using the same thermal cycling

parameters as described above, except that the annealing

temperature was fixed at 58uC for both sets of primers.

For each locus, 10 ml of the PCR product obtained from the

inner amplification reaction was mixed in a 15-ml tube (BD

Biosciences, San Jose, USA). The mixture was vortexed, and 2 ml

were pipetted and purified using the NucleoSpin PCR Clean-up

Kit (Macherey-Nagel, Düren, Germany). The quantity of DNA

after purification was assessed by spectrophotometry at 260 and
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280 nm (Nanodrop, Thermo Scientific, Wilmington, USA). Equal

amounts of purified rplB and ospC PCR products were then mixed

with each other and sent to GATC-Biotech (Konstanz, Germany)

for sequencing on 1/16th of a GS FLX+ run.

Sequence analysis
Assignment of sequences to individuals and loci. Raw

sequences were assigned to their respective individual host animals

and target loci using a BLAST approach [13]. We matched the

individual-host-specific 12-bp tag at the beginning of each

sequence with our reference tag sequences using BLASTN. To

ensure the best possible assignment for each sequence, BLAST

searches were performed using the following parameters: the

query strands to search against database for BLASTN was fixed at 1;

the reward for nucleotide match was fixed at 4; the penalty for a

nucleotide mismatch was fixed at 5; the gap opening cost was fixed

at 3; the gap extending cost was fixed at 5; and the used word size

was fixed at 4. The best hit was saved and used to assign each

sequence to an individual host.

To assign each sequence to its respective locus (rplB or ospC), we

then used BLASTN to compare each sequence to those in a

database that contained different representative sequences of the

target loci from the B. burgdorferi MLST database (http://borrelia.

mlst.net) [11] and from GenBank [14]. BLAST searches were

performed using the default parameters. Sequences were assigned

to a given locus based on the best BLAST hit if the length of the hit

was longer than 130 bp with a percentage of identity higher than

80%. Nucleotides corresponding to primers were removed, and

assigned sequences were saved for further analysis.

distribution of mismatches along the alignments of the assigned

sequences, we decided to use only the first 500 bp of the

sequences for subsequent analyses (data not shown). We also

removed from the dataset all sequences shorter than 350 bp, of

which there were relatively few. We constructed two alignments

of the respective sequences of each locus of each individual using

K-Align       [15].

Genotype delineation. A major drawback of high-through-

put sequencing methods is the relatively high base-calling error

rate. This issue could present a problem for within-species studies

of diversity as analyses are likely to be affected by the introduction

of low-frequency variants that are, in reality, artifacts of

sequencing error. In order to circumvent this problem, genotypes

and genotype groups were delineated according to two successive

distance-based nearest-neighbor classifications.

First, we used the sequence alignments obtained for each locus

from each host individual to define a subset of nucleotide sites that

contained only sites with Single-Nucleotide Polymorphisms

(SNPs); in order to be included in the subset, each site had to be

successfully base-called in more than 40% of sequences and had to

contain at least two alleles that were present in more than 5% of

the sequences in the alignment. We then computed pairwise

distances between the sequences contained in each alignment

based on the number of selected SNPs in which they differed.

Gapped positions were ignored during pairwise comparisons.

Finally, sequences were clustered so that the pairwise distance

between a given sequence and another of the same group (i.e.

genotype) was equal to or lower than a locus-specific threshold.

These thresholds were fixed according to the diversity pattern of

each marker. As rplB appeared to contain little intra-specific

diversity, we set the threshold for divergence at one nucleotide site.

However, we observed more genetic divergence within the ospC

sequences and therefore set the ospC threshold at two sites. For all

of the genotypes identified, we then obtained consensus sequences

based on the majority rule for each locus in each individual host.

Next, to identify genotypes that were present in different host

individuals, all consensus sequences and singletons obtained from

our intra-individual analysis were grouped together according to

the algorithm described above. Then, a majority-rule consensus

sequence was found for each genotype that was shared across

multiple hosts. To ensure robust data, genotypes that were

represented by three or fewer sequences in the larger dataset were

removed before subsequent analyses.

Differentiation among host species and sampling

years. In order to assess the influence of various structuring

factors on the observed genetic diversity, we performed an analysis

of molecular variance (AMOVA) on the sequence dataset [16],

with host species, sampling year, and host individual as structuring

factors. This analysis was based on the genotypes defined above,

and, within individual hosts, each genotype was weighted

according to the number of sequences it contained. In order to

prevent bias in the analysis resulting from the impact of inter-

specific divergence among Borrelia species, genotypes were

considered to be genetically equidistant from each other. The

analysis was performed with the amova function in the ade4

library in R [17].

Genotype phylogeny and delineation of genotype

groups. We used a phylogenetic approach to further examine

the diversity of the observed genotypes. For each locus, consensus

sequences and reference sequences were aligned to each other

using K-Align [15] these reference sequences were the same as

those that had been previously used for locus assignments.

Phylogenetic searches were performed with a maximum likelihood

approach using PHYML [18],and we chose the most appropriate

model of evolution for each alignment according to the Akaike

Information Criterion (AIC) [19] calculated using the APE library

in R [20]. A phylogenetic network was obtained for each locus

using the Neighbor-Net method [21] in SPLITSTREE4 [22]. The

distance matrices used to create the networks were computed from

alignments with PAUP* 4.0 b10 [23] using the best model for each

locus, i.e. GTR+G for rplB and GTR+I+G for ospC [24] [25].

The substitution rate matrices were estimated via maximum

likelihood and assuming empirical nucleotide frequencies. As

calculated by the PHYML analysis, the shape parameter of the

gamma distribution for rplB was fixed at 0.227; for ospC, the

proportion of invariable sites and the shape parameter of the

gamma distribution were fixed at 1.117 and 0.169, respectively.

Using the networks, we were able to empirically delineate

groups of closely related genotypes. We were then able to calculate

the proportion of individuals within each host species that was

infected by any given group of closely related genotypes.

Genotype associations and co-occurrence. To search for

multi-locus associations, i.e. associations between the different

genotypes of the two markers, a graph analysis illustrating the

frequency of co-occurrence of the different genotype groups within

hosts was performed for both marker. First, we constructed an

incidence matrix (m*n), with m as the number of individual hosts

and n as the number of genotype groups. This matrix described

the presence or absence of the different genotype groups among

host individuals. We then created a co-occurrence matrix (n*n)

that described the amount of co-occurrence of genotype groups

within individuals by multiplying the incidence matrix by its

transpose. One-half of the resulting matrix provided the informa-

tion required to build a graph that described the co-occurrence of

genotypes over all individual hosts. Second, we evaluated

preferential associations among genotype groups using a ‘‘greedy’’

approach [26] to assess modularity. Measures of modularity aim to
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determine the adequacy of different classification schemes in

representing clusters and divisions in datasets; here, the clusters

represented the co-occurrence of genotypes in individual hosts. In

the first step of this analysis, each genotype group was considered

to be a set. At each step, the algorithm combined two sets such that

the resulting classification had the highest degree of modularity as

compared to all possible combinations of sets; this was performed

until a single set remained. We calculated estimates of modularity

for each classification by comparing the fraction of co-occurrence

of genotype groups that fall within the sets of the classification with

the expected value of the same quantity if the co-occurrences

happened randomly without regard for sets of classification [27].

In the final step of the analysis, the classification with the highest

modularity from all the generated classifications was selected.

This analysis was performed using the igraph library in R [28].

The co-occurrence matrix was obtained from the incidence matrix

using the graph.incidence and the bipartite.projection functions.

The classification analysis was performed using the fastgreedy.-

community function, and graphical output was produced using the

tkplot function.

Finally, to obtain quantitative information on the frequency of

co-infection by the different genotypes identified in the host

community, we used the data from each marker to calculate how

frequently an individual host was infected by at least two different

genotypes.

Results

In total, we obtained 16,913 sequences. Of these, 16765 of them

were assigned to individual hosts and deposited to the Sequence

Read Archive (SRA) database under the accession SRP032755.

16,222 sequences, i.e. 95.9% of the total raw sequences, were

assigned to individual hosts and one of the two loci. In the sample

of all of the 228 studied mammals, we obtained, on average, 33.2

rplB sequences and 37.9 ospC sequences per host individual. A few

individuals did not yield any sequences, but we were able to

successfully obtain rplB sequences from 96 chipmunks, 92 bank

voles, and 8 wood mice, and ospC sequences from 94 chipmunks,

90 bank voles, and 5 wood mice.

Using the nearest-neighbor classification algorithm, genotypes

were delineated from the sequences for each locus; genotypes

containing fewer than four sequences were excluded from

subsequent analyses. Consequently, our rplB dataset included 33

unique genotypes identified from 87 chipmunks, 87 bank voles,

and 7 wood mice. In the phylogenetic analysis based on the rplB

data, these genotypes formed five major genotype groups

(Figure 1). Most of these groups, with the exception of the group

G3, were closely related to previously described, reference

sequences. Genotype groups G3 and G4, whose members had

been recovered from 86 bank voles and 48 chipmunks, respec-

tively, clustered with sequences of B. afzelii. Sequences of the G1

genotype group were isolated from 46 chipmunks; the sequences

seemed to correspond to those from B. burgdorferi, while G2

genotype sequences grouped with the sequence of the B. spielmanii

rplB72 allele. Genotype group G5, whose sequences clustered with

those of B. garinii, was recovered from only two individual hosts.

Within each genotype group, most sequences were obtained from

only a single host species, as most members of the G1, G2, and G4

genotypes were isolated from chipmunks and the majority of the

G3 sequences came from bank voles. The relatively few sequences

recovered from wood mice were found in groups G2 and G4.

In the ospC analysis, 80 genotypes were retained after grouping

via the the nearest-neighbor classification algorithm. The genetic

diversity displayed in the phylogenetic network of ospC sequences,

when compared with that of the rplB network, was consistent with

the higher number of genotypes (Figure 2). Based on this network,

ospC genotypes were delineated into 14 groups, in which, as in the

rplB data, there was a clear influence of host specificity. Groups

G1, G2, G4, G9, G10, G11, G12, G13, and G14 included mainly

sequences from chipmunks, while groups G3 and G8 consisted

mainly of sequences recovered from bank voles. Sequences

isolated from wood mice clustered in genotypes G2 and G10.

We studied the genetic differentiation among Borrelia genotypes

detected in our sample using an AMOVA, in which the

explanatory factors were host species, sampling year, and host

individual. As expected from the phylogenetic networks, a

substantial percentage of the molecular variance in our sample

was explained by the different host species for both loci, 58% for

rplB and 21% for ospC (Tables 1 and 2). Sampling year failed to

explain much molecular variance (,1%). Finally, 11 and 17% of

the observed variance could be explained by intra-individual

variation in rplB and ospC, respectively.
adegrees of freedom; bsums of squares; cmean squares;

dcomponents of covariance; epercentage contribution to the total

covariance; fPhi statistic.

The graph of genotype associations illustrates the frequency of

co-occurrence of the different genotype groups for both markers in

host individuals (Figure 3). By using measures of modularity to

classify groups of co-occurring sequences, we found that the

genotype groups isolated from bank voles were distinct from those

isolated from chipmunks. We also found evidence that supports

the delineation of various species in the Borrelia burgdorferi species

complex. Among the various associations detected by this analysis,

we observed that several ospC genotype groups were associated

with a single rplB genotype. In addition, chipmunks were infected

by several rplB genotype groups, indicating co-infection by

different species of Borrelia. Of the individuals from which

sequences were recovered, 26% of chipmunks and 11% of bank

voles were co-infected by different rplB genotypes, while more than

30% of chipmunks, bank voles, and wood mice were co-infected

by multiple ospC genotypes (Table 3).

Discussion

In previous studies, genotypes of the B. burgdorferi species

complex have been characterized using multiple techniques,

including MLST using Sanger sequencing [29] [30] [31] [11]

[32] and PCR-RFLP [33]. These two methods are complementary

as the first gives an accurate estimation of the relatedness between

bacterial genotypes and the second is more useful in detecting co-

infection. Here, we used HiMLST [7] to efficiently characterize

the genetic diversity of the B. burgdorferi species complex within

three sympatric mammal species. As expected, high-throughput

sequencing is potentially quite valuable in these types of studies

because it combines the advantages of both MLST and PCR-

RFLP.

Benefits associated with high-throughput sequence
typing

High-throughput sequencing of the rplB and the ospC markers of

the B. burgdorferi species complex revealed a high degree of

bacterial diversity within infected chipmunks, bank voles, and

wood mice in the forest of Sénart (France). The observed rplB

genotypes were analyzed in the context of pre-existing MLST data

and were found to correspond to four species of Borrelia: i) B. afzelii,

including a genotype group that was not described in the

dedicated MLST database, ii) B. burgdorferi s.s., iii) B. garinii, and

iv) B. spielmanii. When we used this method to assign a species label
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to the main genotype of each infected individual, we found that

the result was very similar, but not identical, to results obtained by

PCR-RFLP (Table S1, [8] [9]). An advantage of a HiMLST

approach over PCR-RFLP, however, is that a more detailed

description of genotypes is possible due to the increased resolution

of the sequence data and the high number of sequences obtained

from each sample. For example, at the rplB locus, we were able to

identify subspecific groups within B. afzelii, and an even higher

degree of genetic diversity was observed at the ospC locus.

Additionally, the phylogenetic analysis based on this marker

revealed that the ospC genotypes associated with a given host

species do not form monophyletic groups, an observation that

reflects the evolutionary processes, such as diversifying host-driven

selective pressures and recombination, that affect this gene [6].

Patterns of association among ospC and rplB genotypes
In spite of the fact that the observed distribution of sequence

polymorphism in the rplB data was quite different from that of

ospC, we were able to identify common co-occurrence patterns

among the genotype groups. Some of these co-occurrence patterns

described multilocus associations, i.e. multilocus sequence types,

which were common within the samples studied. In particular,

these patterns revealed that multiple ospC alleles were associated

with a single allele of rplB, probably because of recurrent

recombination in the ospC region. Furthermore, co-occurrence of

distinct genotypes of a single locus, as we observed in the rplB

housekeeping gene, can provide information about the co-

infection of host individuals by different bacterial lineages.

Statistical developments that allow researchers to quantify the

relative impact of both kinds of co-occurrence patterns will be

invaluable in future analyses of similar metagenomic data.

Differences in co-infection patterns among hosts
As described above, the co-infection of individual hosts in our

samples by different genotypes was not rare. For example, our

graph analysis revealed the frequent presence in bank voles of two

ospC variants genetically linked with a single rplB allele. In

chipmunks, however, we observed more co-infection events, which

can involve multiple combinations of different Borrelia species, a

finding that could be explained by several hypotheses. First, at

these study sites, chipmunks have a higher tick burden than bank

voles do [34]. This could result in a higher probability of contact

with bacteria of the B. burgdorferi species complex and, conse-

quently, a higher risk of co-infection. Second, the chipmunk is

considered an invasive species in the Sénart forest; it was

introduced there in the early 1970s [35], and the species had

colonized the study site by the late 1990s. An increase in the

allocation of an individual’s resources to reproduction at the cost

of allocation to immune responses has been presented as a

potential strategy of successful invasive species [36]. It might thus

Figure 1. Phylogenetic network of rplB sequences. The network includes consensus sequences of the genotypes recovered in this study (blue)
as well as reference sequences for species in the Borrelia burgdorferi complex. The genotypes identified in this study formed empirically delineated
genotype groups that are indicated with blue dotted lines. The pie charts connected to each main genotype group show the proportion of
genotypes in the group that were isolated from each host species: Siberian chipmunks (purple), bank voles (green), or wood mice (orange).
doi:10.1371/journal.pone.0088581.g001
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be that the chipmunk population established in Sénart has a low

investment in immune function, resulting in a higher degree of

susceptibility to infection by bacteria of the B. burgdorferi species

Figure 2. Phylogenetic network of ospC sequences. The network includes consensus sequences of the genotypes recovered in this study (blue)
as well as reference sequences for species in the Borrelia burgdorferi species complex. Genotype groups are delineated by blue dotted lines, and
capital letters to the side of each group represent unique ospC alleles detected in previous studies [37]. The pie charts connected to each main
genotype group show the proportion of genotypes in the group that were isolated from each host species: Siberian chipmunks (purple), bank voles
(green), or wood mice (orange).
doi:10.1371/journal.pone.0088581.g002

Table 1. Results of the AMOVA performed on rplB sequence
data.

Levels of variability Dfa SSqb MSqc Sd %e Phif

Among host species 2 1039.14 519.57 0.27 58.19 0.58

Among years within host
species

12 77.05 6.42 0.003 0.58 0.01

Among samples within
years

172 922.79 5.37 0.14 29.83 0.72

Within samples 7072 373.20 0.053 0.053 11.41 0.89

adegrees of freedom; bsums of squares; cmean squares; dcomponents of
covariance; epercentage contribution to the total covariance; fPhi statistic.
doi:10.1371/journal.pone.0088581.t001

Table 2. Results of the AMOVA performed on ospC sequence
data.

Levels of variability Dfa SSqb MSqc Sd %e Phif

Among host species 2 439.44 219.72 0.11 20.93 0.21

Among years within host
species

11 190.96 17.36 0.001 0.23 0.003

Among samples within
years

163 2451.03 15.04 0.32 61.94 0.79

Within samples 8238 713.59 0.087 0.087 16.90 0.83

doi:10.1371/journal.pone.0088581.t002
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complex. Finally, it is possible that more bacterial genotypes are

able to infect chipmunks than bank voles.

Differentiation among hosts
The strong genetic differentiation observed between bacterial

genotypes that infected bank voles and those that infected

chipmunks is compatible with the hypothesis of host-specificity

in bacterial populations. In spite of the difference in polymorphism

patterns between rplB and ospC, genotypes that were isolated from

chipmunks and bank voles were significantly different from each

other at both markers. Indeed, this study did not identify any

bacterial genotype that was present at high frequencies in both

host species. Our data support previous results, obtained via PCR-

RFLP, that show that in a sample of chipmunks and bank voles,

genotypes of B. burgdorferi s.s. were found only in chipmunks.

However, the use of PCR-RFLP did not allow that previous study

to discriminate between genotypes of B. afzelii associated with

either chipmunks or bank voles [8]. Together with those of the

current study, these results demonstrate that chipmunks and bank

voles are hosts of independent genotype groups within the B.

burgdorferi species complex. The ability of different strains of Lyme

borreliosis-causing bacteria to persist in two independent host

species could be explained by two non-exclusive hypotheses. First,

a given host species might be able to clear infections caused by a

specific subset of Borrelia genotypes or bacterial lineages could

differ in their ability to infect the two host species, which would

result in different infection cycles for the different genotypes.

However, it cannot be excluded that chipmunks and bank voles

are simply exposed to different bacterial genotypes as a result of

host-vector interactions, a situation that could result in the

creation of different, host-specific transmission cycles. For exam-

ple, if ticks have a higher probability of parasitizing a given host

species, some degree of differentiation in both housekeeping and

virulence-related genes would likely result. It would therefore be

interesting to compare samples from questing ticks and feeding

ticks to determine if there are changes in the diversity of genotypes

of the B. burgdorferi species complex.

Origin of low frequency infections
Unlike chipmunks and bank voles, wood mice are only

infrequently infected by strains of the B. burgdorferi species complex

[8], and all but one of the genotypes identified from wood mice

were shared with the two other host species. This finding could

indicate that wood mice are able to become infected but do not

play a critical role in the dynamic of the B. burgdorferi species

complex in Sénart forest. This infection pattern in wood mice

Figure 3. Visual representation of patterns of genotype group associations found in this study. The graph includes genotypes of both
target loci and from all three host species. Each distinct community of co-occurring genotype groups is highlighted in a different color, and the
thickness of lines is proportional to the frequency of co-occurrence. Vertices were placed empirically; genotypes located towards the top of the figure
correspond to those mainly found in bank voles, while those towards the bottom were associated with chipmunks. The cluster of genotypes at the
bottom left corresponds to strains of B. burgdorferi s.s. and that on the top and bottom right to B. afzelii.
doi:10.1371/journal.pone.0088581.g003

Table 3. Percentage (%) of host individuals of each host
species in which co-infection by at least two genotypes of the
Borrelia burgdorferi species complex was detected.

Host species rplB ospC

Tamias sibiricus barberi 19.54 38.64

Myodes glareolus 4.55 31.33

Apodemus sylvaticus 0 0

Results are shown for both the rplB and ospC datasets.
doi:10.1371/journal.pone.0088581.t003
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might be due to either i) a relative paucity of bacterial strains that

are adapted to infect wood mice, or ii) the low susceptibility to

Borrelia of wood mice in Sénart. The infection of a few chipmunks

and bank voles by atypical (e.g., B. garinii) and/or low frequency

genotypes might illustrate similar infection patterns.

Perspectives
To conclude, this study used high-throughput sequencing to

reveal that strains of the Borrelia burgdorferi species complex that

were isolated from three sympatric rodent host species presented

strong evidence of genetic differentiation at two different loci

subject to distinct evolutionary pressures. This result strengthens

the need of experimental studies to investigate properly the

adaptation of host specific lineages to assess more accurately the

dynamic of Lyme disease bacteria among hosts. The efficiency of

the HiMLST procedure opens new avenues of study and offers

exciting opportunities for further characterization of the diversity

and evolution of pathogens infecting host species and vectors. It is

indeed important to take into account the variability of pathogens

within samples to i) assess properly their population genetic

structure and, ii) compare the diversity among infected individuals

and eventually at a tissue scale within individuals.

Supporting Information

Table S1 Information on the host individuals sampled and the

identity of the Borrelia species that were detected in each sample via

PCR-RFLP [8] [9] and/or HiMLST. Species labels were assigned

to genotypes in this study based on the genotype groups present in

the rplB data. Genotype G1 was assigned to Borrelia burgdorferi s.s.,

G3 and G4 to Borrelia afzelii, and G5 to Borrelia garinii. 0means that

the species was not detected by PCR-RFLP or HiMLST; 1that the

species was detected only by PCR-RFLP; 2that species was

detected only by HiMLST; and 3species was detected by both

methods; Xno sequences were retained for this individual after

genotypes containing fewer than four sequences were removed.
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