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1.  INTRODUCTION

Process-based crop models are developed to simu-
late the interactions between plants, climate, soil,

and management practices at a plot scale (Jones et
al. 2003, Keating et al. 2003, van Ittersum et al. 2003,
Holzworth et al. 2014). They mimic the dynamic
responses of agricultural systems to environmental
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ABSTRACT: We assessed the weather data aggregation effect (DAE) on the simulation of crop-
ping systems for different crops, response variables, and production conditions. Using 13 process-
based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for
2 crops (winter wheat and silage maize) under 3 production conditions for the state of North
Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25,
50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and
water use efficiency. Five metrics, viz. the spatial bias (Δ), average absolute deviation (AAD), rel-
ative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE
on both the input weather data and simulated results. For weather data, we found that data aggre-
gation narrowed the spatial variability but widened the Δ, especially across mountainous areas.
The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes
over the region. The DAE increased when coarsening the spatial resolution of the input weather
data. The DAE varied considerably across different models, but changed only slightly for different
production conditions and crops. We conclude that if spatially detailed information is essential for
local management decision, higher resolution is desirable to adequately capture the spatial vari-
ability for heterogeneous regions. The required resolution depends on the choice of the model as
well as the environmental condition of the study area.
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changes and anthropogenic influences such as the
increasing concentration of CO2. Results of crop
models can inform decision makers on policies rele-
vant to food security and sustainability, and climate
change mitigation and adaptation (Webber et al.
2014). The policies are normally made at administra-
tive levels such as county, province, and country
(Jones 1993, Glemnitz et al. 2011, Resop et al. 2014),
and overall trends and spatial variability (e.g. hotspot
areas that are particularly vulnerable to climate
change) of the region are of particular interest to
decision makers (Schulze 2000, Crossman & Bryan
2009, Müller et al. 2014). To provide supporting infor-
mation for these 2 aspects, input data and crop mod-
els need to be up-scaled to sufficiently represent the
spatial variability of a region (Ewert et al. 2011).

Agro-ecosystems can display different magnitudes
of spatial heterogeneity at regional or larger scales,
because of the variability in the environmental con-
ditions (climate and soil) and management practices.
Applying crop models at corresponding scales re -
quires geospatial data at a specific spatial resolution
as input data and model parameters to capture the
heterogeneity. The spatial resolution of the simula-
tions is jointly determined by the availability of
weather-soil-management data as well as the mod-
eler’s data handling and computing capacity (Zhao et
al. 2013). In addition, all of the input data need to be
aggregated or disaggregated to one consistent spa-
tial resolution before executing a model. Many meth-
ods such as mean, weighted mean, majority, and
 central- pixel can be employed in data aggregation
(Bian & Butler 1999). No matter which method is used,
a distortion of the original data cannot be avoided
(Meentemeyer 1989). When the distorted data and
parameters are used in the models, they affect the
simulated results depending on the sensitivity of a
model to the distortion (Bormann et al. 2009). Further-
more, for regions where high-resolution data are not
available, the reliability of the coarse resolution simu-
lation for decision making is often questioned. Such
resolution and aggregation related issues can be
referred to as the data aggregation effect (DAE).

Quantifying the DAE can improve the under-
standing of uncertainty resulting from the choice of
spatial resolution of input data for cropping system
simulations and related climate change impact
assessments (Mearns et al. 1999, 2001, 2004, Zhao
et al. 2015). DAE has been studied for different
input data (e.g. soil, weather, and management),
crops, response variables, production conditions, and
various crop models (Van Bussel et al. 2011, Folberth
et al. 2012, Angulo et al. 2013, Nendel et al. 2013,

Zhang et al. 2014, Eyshi Rezaei et al. 2015). Many
methods such as frequency distribution (Angulo et
al. 2013), visual comparison (Van Bussel et al. 2011,
Zhang et al. 2014), and spatially absolute difference
calculation (Folberth et al. 2012, Eyshi Rezaei et al.
2015, Zhao et al. 2015) were employed in these stud-
ies. These studies focused on a few aspects of the
DAE with 1 or a limited number of models. The con-
clusions from these studies are diverse. Angulo et
al. (2013) pointed out that uncertainty in yield simu-
lation derived from the weather data aggregation
was negligible compared to the uncertainty caused
by the differences of 4 crop models. Van Bussel et
al. (2011) concluded that weather and management
data at coarse resolution (100 km) could be used to
simulate the wheat phenology in Germany. Olesen
et al. (2000) found that a 10 km or finer spatial reso-
lution of input data can improve the simulation
accuracy in modeling the winter wheat yields in
Denmark. Mearns et al. (2004) and Di  Vittorio &
Miller (2014) found that aggregation of weather
data resulted in high uncertainty for simulation of
crop yields at regional scales. Mummery & Battaglia
(2002) found that by using low-resolution input
data, the mean productivity for large geographic ex -
tents can be biased, especially for regions with het-
erogeneous soil conditions. Zhao et al. (2015) found
that the DAE was proportional to the spatial hetero-
geneity of environmental conditions of the study
area in simulating winter wheat yield at the national
scale of Germany.

The magnitude of the DAE on simulations may also
depend on the non-linear relationships between spe-
cific response variable and input data (Mearns et al.
1999, Hansen & Jones 2000). Non-linear relationships
are frequently used to simulate crop responses to
extreme events (e.g. frost damage and heat stress;
Porter & Semenov 2005), which are considered with
threshold parameters in crop models (Eyshi Rezaei et
al. 2015). Aggregation of weather data shortens the
tails of the distribution, resulting in fewer extreme
events (Durman et al. 2001, Eyshi Rezaei et al. 2015);
consequently, as threshold parameters differ across
crop models for different crops, the responses of
 different crop models to weather data aggregation
are likely to be different. For example, Mearns et al.
(1999) found that the CERES and EPIC models be -
haved differently when changing weather data from
fine to coarse resolution in simulating corn yields.
Easterling et al. (1998) found that higher spatial reso-
lution of weather data improved the simulation ac -
curacy for wheat but not for hay. However, previous
studies have used a single or only a few models to
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investigate the DAE. Involving more models could
help further clarify the role of crop models in the scal-
ing effects and uncertainty. Moreover, equations and
processes in the simulations differ when simulating
different production conditions and different response
variables. For instance, simulating potential yield
requires fewer processes (mainly limited by tem -
perature and solar radiation) than the yield under
nitrogen+water limited production conditions (deter-
mined by weather, and limited by soil water and
nitrogen availability). Even under a specific produc-
tion condition and using a specific model, the sensi-
tivity of a response variable to input data could vary
when the parameterization of a model changes due
to the interactions between the processes and the
parameters. Tsvetsinskaya et al. (2003) pointed out
that management options (e.g. irrigation and ferti -
lization) could interact with the effect of changing
spatial resolution of climate data. Although these
questions have been frequently raised, a systematic
evaluation to understand the DAE to guide the
choice of spatial resolution in regional-scale studies
is still pending.

Hence, we aimed to quantify the DAE (or the effect
of changing the spatial resolution of weather input
data) on simulated results, and to compare the DAE
across a large ensemble of crop models, 3 response
variables, 2 crops, and 3 production conditions. Using
13 process-based crop models at 5 spatial resolutions,
we simulated yields and calculated evapotranspira-
tion (ET) and water use efficiency (WUE) for 2 crops
(winter wheat and silage maize) for the state of North
Rhine-Westphalia (NRW), Germany — a temperate-
humid region with pronounced differences in eleva-
tion. The spatial bias (Δ), average absolute deviation
(AAD), relative AAD (rAAD), root mean squared error
(RMSE), and relative RMSE (rRMSE) were used to
quantify the DAE, while Hoffmann et al. (2015, this
CR Special) quantified the DAE on the mean and
median of all grid cells in the study area. Correlations
between spatial heterogeneity of simulated variables
and the DAE were also investigated.

2.  METHODS

2.1.  Study area

The study area was NRW, a state in the west of
Germany (Fig. 1) that covers an area of 34 084 km2.
Nearly 50% of the state is located in the flat plains
of the Westphalian Lowland and Rhineland, both of
which extend broadly into the North German Plain.

The topography rises towards the south and east of
the state and merges into Germany’s Central Up -
lands. The elevation varies from 4 to 842 m above sea
level. As agriculture is the most dominant land use
type (>60% of the land area), we did not consider a
land use mask in this study and simulations were
conducted for the entire area.

2.2.  Climate and soil data

Thirty years (1982−2011) of interpolated grid
weather data including maximum, mean, and mini-
mum temperature and sunshine hours at 1 km spatial
resolution and monthly frequency were obtained from
the German Meteorological Service (https:// werdis.
dwd.de/werdis/toBrowseTheme1.do). The description
of procedures used to produce the monthly gridded
weather data can be found in Kaspar et al. (2013). The
number and spatial distribution of the weather sta-
tions for the different variables are shown in Fig. S1
in the Supplement, available at www.int-res. com/
articles/ suppl/ c065p141_supp.pdf. The solar ra di a tion
was calculated by Angstrom equations from the sun-
shine hours and Angstrom coefficients, which were
calculated from a global dataset of radiation at rela-
tive low resolution (0.5°) (Posselt et al. 2011). This re-
sulted in visually coarse grid cells at 1 km resolution
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Fig. 1. Location and topography of the study area, North
Rhine-Westphalia (NRW), Germany (data source: Federal
Agency for Cartography and Geodesy, Germany, www.
bkg.bund.de). The red area in the inset national map of 

Germany indicates the location of NRW 
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(Fig. 2). Daily data from weather stations were then
combined with the monthly grid data to in crease the
temporal resolution from monthly to daily (Siebert &
Ewert 2012). Daily precipitation sum at 1 km resolu-
tion was obtained directly from the German Meteoro-
logical Service (REGNIE dataset, http:// werdis. dwd.
de / werdis/ retrieve _ data. do? pidpat =de. dwd. hydromet.
regnie.daily&toplevel= true). In contrast to the other
weather variables, the terrain was also considered in
the interpolation of daily precipitation sum (Rauthe
et al. 2013). The 1 km resolution data were then ag-
gregated to the coarse resolutions (10, 25, 50, and
100 km). The weather conditions for the study areas
at 5 spatial resolutions are shown in Fig. 2. The de-
tailed procedures for processing the weather data are
described in Zhao et al. (2015).

The main focus of this paper was to study the effect
of aggregation of weather data on the simulation out-
puts. Therefore, the potential influences from soil
parameters were excluded by using a single 4-layer
soil profile. The soil type represents the dominant soil
in the cropland of NRW according to GDNRW (2001)
(Table 1).

2.3.  Crop modeling

Two crops (winter wheat and silage maize) were
simulated under 3 production conditions (i.e. potential,
water limited, and nitrogen+water limited). The typi-
cal management practices for this area were obtained
from a farm planning handbook (Datensammlung
KTBL 2008) and used to parameterize the phenology
and management of the crop models. Winter wheat
and silage maize were sown each year on 1 October
and 20 April, respectively. Ninety percent of the
aboveground biomass (grain yield and straw) was re-
moved at harvest and the stubbles (10% of above-
ground biomass and roots) were left on the field. The
maximum rooting depth was set at 1.5 m for both
crops. A sowing depth of 4 cm and plant density of
400 plants m−2 were used for winter wheat; and a sow-
ing depth of 6 cm and plant density of 10 plants m−2

were used for silage maize. Under nitrogen+water
limited conditions, 130, 52, and 26 kg N ha−1 were re-
spectively applied on 1 March, 15 April, and 1 June
for winter wheat; 30 and 208 kg N ha−1 were respec-
tively applied on 1 April and 1 June for silage maize.

144

Fig. 2. Mean historical
weather data in North
Rhine-Westphalia (NRW),
Germany, at 5 different
spatial resolutions (1, 10,
25, 50, and 100 km). Each
variable at different reso-
lutions shares 1 color bar
at the end of each row.
The 2 temperature vari-
ables are daily minimum
and maximum over 30 yr
(1982−2011). Precipitation
and solar radiation are an -
nual sums over the same 

period 
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Average reported harvest dates and yields in NRW
for the 2 crops were provided to the modeling groups
and used to calibrate the models. The average
reported harvest date and yield of dry matter for win-
ter wheat were 1 August and 7.2 t ha−1. The common
reported harvest date and yield of dry matter for si -
lage maize were 20 September and 14.3 t ha−1 (https://
www.regionalstatistik.de/genesis/online/logon).

The simulated dry matter yield (t ha−1, grain for
winter wheat and aboveground biomass for silage
maize), growing season evapotranspiration (ET,
mm), and water use efficiency (WUE, kg m−3) were
used as the response variables. WUE was calcu-
lated as the ratio of yield to ET over the growing
season.

Thirteen process-based crop models (12 for
winter wheat and 10 for silage maize), viz. APSIM
(Keating et al. 2003, Holzworth et al. 2014),
APSIM-Nwheat (Asseng et al. 1998, 2004), APSIM-
modified (Wang et al. 2002, Keating et al. 2003),
AquaCrop (Raes et al. 2009, Steduto et al. 2009,
Vanuytrecht et al. 2014), COUP (Jansson 2001,
Conrad & Fohrer 2009), DayCent (Del Grosso et al.
2006, Yeluripati et al. 2009), EPIC (Williams et al.
1983, Williams 1995), HERMES (Kersebaum 2007,
2011), LandscapeDNDC (Haas et al. 2013, Kraus et
al. 2015), SIMPLACE<LINTUL> (Gaiser et al. 2013,
Zhao et al. 2015), MCWLA (Tao et al. 2009, Tao &
Zhang 2013), MONICA (Nendel et al. 2013), and
STICS (Brisson et al. 1998, Bergez et al. 2013),
were involved in this study. The description of
these models can be found in Table S1 in the Sup-
plement. For each production condition and each
crop, the total number of simulations was 34 691
(34 168, 410, 80, 24, and 9 for 1, 10, 25, 50 and
100 km, respectively). Average results across all
the models (ensemble mean) were computed and
presented. The simulated yield of the ensemble
mean was compared with observed yields from
1999− 2011 (Fig. S2).

2.4.  Quantifying the effect of aggregating
weather data

The weather data at coarse resolutions were pro-
duced through spatial data aggregation (Fig. 3).
Aggregation was conducted by taking the mean of
the grid cells of 1 km resolution covered by the
coarser resolution grid cell. The aggregation was ap -
plied to the daily weather data, which were then
used as inputs into the crop models.

In the aggregation, the coarser-resolution data use
one value to represent many higher-resolution val-
ues, thus the bias (Δ) could be calculated (Fig. 4). The
values at the highest resolution (1 km) were treated
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Layer LD WP AD FC AC IWC Clay Silt Sand BD Corg C:N pH
(cm) (m3 m−3) (m3 m−3) (m3 m−3) ST (m3 m−3) (m3 m−3) (mm) (%) (%) (%) (g m−2) (%)

1 30 0.17 0.085 0.36 0.45 0.09 57 24 60 16 1.4 2.76 17.2 6.2
2 90 0.17 0.085 0.36 0.45 0.09 171 24 60 16 1.4 0.38 6.4 6.6
3 80 0.13 0.065 0.37 0.44 0.07 192 14 75 11 1.4 0.27 6.9 6.8
4 30 0.01 0.005 0.04 0.11 0.07 9 3 7 90 1.4 0.25 6.9 7.0

Table 1. Texture and properties of the 4-layer soil profile used to parameterize the soil part of the crop models. LD: layer depth
(cm); WP: soil water content at wilting point; AD: air-dry soil water content; FC: soil water content at field capacity; ST: soil
water content at full saturation; AC: air capacity; IWC: initial soil water content; BD: bulk density; Corg: initial organic carbon; 

C:N: carbon:nitrogen ratio

Fig. 3. Illustration of data aggregation and the data aggrega-
tion effect (DAE) for input and output data (modified after
Zhao et al. 2015). The original high-resolution data (upper
left) refers to the daily weather data at 1 km resolution; these
data are aggregated to produce the coarse resolutions
(upper right). Both sets were used to drive the crop models.
The difference between the results of the 2 resolutions is the 

input DAE 
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as ‘true,’ and Δ was quantified by taking the differ-
ence between values at coarse resolutions (10, 25, 50,
and 100 km) and the highest resolution (1 km) (Eq. 1).
Since grid cell numbers of the different resolutions
differed, the metrics could not be directly calculated.
Thus the coarser resolution data were first disaggre-
gated to the high resolution (Fig. 4).

We calculated Δ as:

Δi,j = DCi,j − OHi,j                          (1)

where i indicates different variables (weather and
response variable), j indicates different grid cells, the
DCi,j is the disaggregated value for a specific grid cell
j of variable i, OHi,j is the original value at 1 km reso-
lution for grid cell j of variable i. The Δi,j aimed to
quantify the spatial difference introduced by the
weather data aggregation, but could not reveal the
overall change for the whole study area (Willmott &
Matsuura 2005). We therefore calculated 2 metrics,
the AAD and RMSE, to generalize the bias for the
whole study areas. The AAD was calculated as:

                     (2)

The RMSE was calculated as:

                     (3)

where n is the number of grid cells of the
highest resolution (1 km). The AADi and
RMSEi indicate the average effect for vari-
able i for the whole study area. For exam-
ple, if the AADi or RMSEi for simulated
yield equals 1 t ha−1, then data aggregation
causes 1 t ha−1 bias in simulated yield on
average. In addition, RMSEi puts more
weight on large differences because of the
square of the differences. Hence, the
RMSE is capable of capturing the change
in hotspot areas, whereas the AAD is
capable of capturing the change in average
conditions (Davis & Dodd 2003). The mean
of the simulated response variables differed
across crop models and 2 crops. To be
comparable across models and crops, we
further calculated the relative values of
AAD and RMSE for the response variables
as:

       
(4)

       
(5)

where , which is the mean of the

variable i across all the grid cells ( j) for a specific
model, and n is the number of grid cells. The unit for
rAAD and rRMSE is percentage (%).

2.5.  Relationship between spatial heterogeneity
and DAE

To test the hypothesis that the increasing hetero-
geneity of response variables increases the DAE,
we correlated the spatial heterogeneity of simulated
results with the DAE. We quantified the spatial
 heterogeneity of the simulated results for each
model, each production condition, each crop, and
each response variable by the standard deviation
(SD) of all the grid cells at 1 km resolution.

                     (6)

                     (7)

where n is the number of grid cells at 1 km resolu-
tion (34 168 for NRW), i indicates different response
variables, and j indicates different grid cells at
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Fig. 4. Illustration of the disaggregation method and quantification of
the data aggregation effect (DAE; modified after Zhao et al. 2015).
The coarse-resolution data (upper right) refer to simulated results at
coarse resolution. They are disaggregated to the high-resolution data
set (upper left). The difference between the disaggregated results and
the results directly simulated by the high-resolution input data (lower
left) is named delta (Δ, lower right). The metrics used to quantify DAE 

in the example are calculated according to Eqs. (1−5)
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1 km resolution. The spatial heterogeneity of the
1 km results was then regressed and plotted against
the DAE.

3.  RESULTS

3.1.  Aggregation effect on historical mean weather
data

The aggregation-caused Δ of all 4 weather vari-
ables notably increased with decreased spatial
 resolution, especially in the southwestern mountain-
ous regions (Fig. 5). The Δprecipitation ranged roughly
from −400 to 400 mm yr−1, Δmaximum temperature from
−3 to 3°C, Δminimum temperature from −2 to 2°C, and 
Δsolar radiation from −200 to 200 MJ m−2 yr−1. The spatial
pattern of bias for radiation differed from other
 variables in that the values did not increase much
from 50 to 100 km resolution. The signs of the bias
values for precipitation were opposite to the other
3 variables.

Consistent with the spatial Δ, the RMSE and AAD
continually increased when the resolution became
coarser (Table 2). The AAD varied in the same direc-
tion as RMSE but with lower values.

3.2.  Aggregation effect on simulated response
variables

Spatial patterns of simulated wheat yields under
the 3 different production conditions and for different
resolutions are shown in Fig. 6. The ensemble means
show high yields in the northern and western flat
lowland regions and lower yields in the southern and
southeastern mountainous regions (Fig. 6). This was
consistent for the different production conditions and
for the different resolutions. At high resolution (1 km)
and under the nitrogen+water limited production
conditions, the simulated spatial patterns and varia-
tions were consistent with the historically mean ob -
served yields from 1999−2011 (Fig. S2a). In the low-
yielding regions, simulated potential yields were
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Fig. 5. Bias (Δ) of the historical weather variables (1982−2011) caused by data aggregation. Δ was calculated according to Eq.
(1). The weather variables from top to bottom are minimum and maximum temperature, mean annual precipitation, and mean 

annual solar radiation, with a bias of 10, 25, 50, and 100 km (from left to right) 
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around 7 t ha−1, while the nitrogen and water avail-
ability limited the simulated yields to less than 5 t
ha−1. The simulated low-yielding hot spot areas grad-
ually dis appeared with the coar sening of the resolu-
tion regardless of production conditions. The simu-
lated yields decreased moderately when water and
nitrogen stresses were included. This was consistent
for all spatial resolutions.

Consistent with the spatial pattern of the histori-
cally observed yields of silage maize (Fig. S2b), the
simulated ensemble mean showed higher yields for
silage maize in the northwestern lowland regions

and lower yields in
the southeastern moun-
tainous regions (Fig. 7).
The contrast between
high and low simulated
maize yields is much
stronger than for wheat
(Fig. 6). At 1 km resolu-
tion, in the low-yielding
regions, the simulated
potential yields were
around 12.0 t ha−1 and

the simulated yields limited by the availability of
nitrogen+water stress were reduced to less than 8.5 t
ha−1. The low-yield areas disappeared at the 100 km
resolution for all 3 production conditions. The differ-
ences between the simulated potential yields and
water-limited yields were smaller than the difference
between the simulated water-limited and nitrogen-
limited yields.

When aggregating the weather data from high to
coarse resolutions, the rRMSE and rAAD increased
for the 2 crops, for all 13 models and the model
ensemble mean (Figs. 8 & S3). The increases differed
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Weather data RMSE (AAD)
10 km 25 km 50 km 100 km

Minimum temperature (°C) 0.20 (0.14) 0.31 (0.22) 0.40 (0.30) 0.52 (0.39)
Maximum temperature (°C) 0.29 (0.19) 0.42 (0.29) 0.54 (0.39) 0.66 (0.48)
Precipitation (mm yr−1) 44.57 (31.74) 74.01 (52.54) 106.81 (75.58) 119.76 (85.57)
Solar radiation (MJ m−2 yr−1) 23.33 (15.59) 33.37 (24.07) 41.68 (30.37) 49.27 (36.21)

Table 2. Data aggregation effect, indicated by the root mean squared error (RMSE) and
 average absolute deviation (AAD, in parentheses) for historical (1982−2011) minimum tem -
perature, maximum temperature, mean annual precipitation, and mean annual solar radiation

Fig. 6. Simulated yield of
winter wheat (ensemble
mean, average over all
models from 1982−2011)
for 5 resolutions (1, 10,
25, 50, and 100 km) and
3 production conditions,
i.e. potential, water lim-
ited, and nitrogen+water 

limited
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considerably across models and 3 response variables.
The increase in rRMSE and rAAD at coarse resolu-
tions was larger (i.e. steeper slopes of the response)
from 10 to 50 km than from 50 to 100 km. The highest
rRMSE for winter wheat yield and WUE is >12%
(outputs from LandscapeDNDC), and for silage
maize yield and WUE about 10%. For 1 specific
model, the ranks of rRMSE for the same model were
not consistent for different response variables, e.g.
the rRMSE of DNDC for winter wheat yield was the
highest across all the models but was one of the low-
est for the growing season ET.

The rRMSE and rAAD varied only slightly across
the 3 different production conditions for the 2 crops
(Fig. 9). The ranges of the rRMSE median were be -
tween 2.5 and 4.2%. The rRMSEs for yield increased
when the crops were stressed due to water shortage,
but decreased when the crops were further stressed
due to nitrogen limitations. The rRMSEs for yield of
silage maize were larger than for winter wheat, while
the rRMSEs for the other 2 variables were similar for
the 2 crops. Generally, the rAADs were smaller than
rRMSEs, and also did not vary much across the 3 pro-
duction conditions.

3.3.  Relationship between DAE and spatial
 heterogeneity

The DAE significantly increased in proportion to
the spatial heterogeneity of the simulated response
variables (SD of simulated results across all grid
cells) at 1 km for each response variable (Fig. 10 and
see Figs. S8 & S9 for winter wheat and silage maize,
respectively). The relationship was stronger for the
simulated yield than for the other 2 response vari-
ables (ET and WUE). Coarser spatial resolution was
associated with stronger DAE for most of the models.
The differences across different production condi-
tions were small.

4.  DISCUSSION

Information about the required spatial resolution
for regional impact assessments is important. High-
resolution data could capture spatial variability but at
the cost of intensive computing and data manage-
ment. Simulations at coarse resolution demand less
computing power at the cost of losing the spatial vari-
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Fig. 7. Simulated silage
maize yield by ensemble
mean (average over all
models from 1982−2011)
at 5 resolutions (1, 10,
25, 50, and 100 km) and
3 production conditions,
i.e. potential, water lim-
ited, and nitrogen+water 

limited
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ability within coarse-resolution pixels. For the first
time, a systematic analysis was performed to quantify
DAE for weather input data across scales and study
how they depend on crop type, production condition,
response variable, and crop model.

4.1.  Performance of the crop models and ensemble
mean

In this study, the models were independently cali-
brated by different crop modelers based on limited
information about the mean growing period (sowing
and harvest dates) and crop yields over the last
decade as the average over the whole study area.
After calibration, the majority of models that were
used (only the mean of 1 model had >20% bias)

could closely simulate the observed mean yield
under nitrogen+water limited con ditions. The yields
of winter wheat and silage maize of the model
ensemble mean were comparable to the observed
yields with respect to both spatial patterns and varia-
tion ranges at 1 km resolution (Figs. 6, 7, & S2). The
good performance of the model ensemble mean is in
line with many other studies that used the crop
model ensemble (Palosuo et al. 2011,  Rötter et al.
2011, Asseng et al. 2013, 2015, Falloon et al. 2014).

In contrast to the good performance of the ensemble
mean, spatial patterns of simulated yields differed
across models. In some cases, simulated patterns
were in the opposite direction across models (Figs. S4
& S5). The reason for this could be the different sensi-
tivity of models to weather variables (Eitzinger et al.
2013, Watson & Challinor 2013). To confirm this, we
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Fig. 8. Weather data aggrega-
tion effect on simulated yield,
evapotranspiration (ET), and
water use efficiency (WUE),
indicated by the relative root
mean squared error (rRMSE)
compared to the 1 km resolu-
tion. The RMSE is relative to the
mean of the variable across all
grid cells for a specific model.
Values shown are the means of
rRMSE in 3 production condi-
tions. Solid lines were used
for models that simulated both
 winter wheat and maize, while
dashed lines were used for 
models that simulated only 1 crop
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conducted a sensitivity analysis between the simu-
lated yield change (ΔYield) and the change in weather
variables (ΔWeather variables). The results showed that the
correlations between ΔYield and ΔWeather variables were
considerably different across models. For winter
wheat, half of the models had a negative correlation

coefficient, while the other half of the
models had a positive correlation coeffi-
cient (Fig. S6). For silage maize, the signs
were generally consistent among models.

The differences between winter wheat
and silage maize across models could also
result from the calibration of the phenol-
ogy-related parameters, especially the
cardinal temperatures and thermal time
requirement for crop development. We
provided the modelers with typical har-
vest dates for both crops. Winter wheat
was harvested based on thermal time
requirement to reach maturity, but silage
maize was harvested no later than a spec-
ified date (20 September). For winter
wheat, this implied a shorter growing sea-
son and low yield when growing in moun-
tainous areas where temperature and
radiation are typically lower, particularly
for models calibrated with a low base tem-
perature for development or a short ther-
mal time requirement to reach maturity.
On the other hand, for wheat models
parameterized with higher base tempera-
ture or longer thermal time requirements
to reach maturity, a lower yield would be
simulated due to the shorter growing sea-
son and limited radiation interception.
Furthermore, most of the models used the
method of radiation use efficiency (RUE)
and the dynamics of leaf area to simulate
the yields (Table S1). However, the way
RUE and leaf area index dynamics were
computed differs across models, e.g. a con-
stant versus varying RUE with develop-
mental stage and temperature (Table S1).
This could be another reason for the oppo-
site spatial patterns (Mearns et al. 1999,
Adam et al. 2011).

4.2.  Relationship between DAE on
weather and response variables

Changing the spatial resolution caused
obvious biases (Δ) in the historical mean

weather data, especially in the southwestern moun-
tainous regions (Fig. 5), with a high spatial hetero-
geneity due to the high terrain differences (Fig. 2). In
contrast, the weather conditions in the flat lowland
regions were relatively homogeneous, and therefore
the aggre gation only caused small biases. Since a sin-

151

Fig. 9. Variation of relative root mean squared error (rRMSE) and relative
average absolute deviation (rAAD) of yield, evapotranspiration (ET), and
water use efficiency (WUE) across 3 production conditions, i.e. potential,
water limited, and nitrogen+water limited. Boxplots created using values
of different models and different resolutions (10, 25, 50, and 100 km). Hor-
izontal line in each box: median; asterisk: mean; edges of box: lower and
upper hinges (25th and 75th percentiles, Q1 and Q3); whiskers extend to
Q1 − 1.5 × the inter-quartile range (IQR) and Q3 + 1.5 × IQR, where IQR = 

l.5 × (Q3 − Q1); dots beyond the whiskers: outliers
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gle soil  profile was used for all grid cells and
changing of weather data was the only factor that
changed the spatial variability in the simulated re-
sults, the changes were well captured by the crop
models; thus high correlations were found between
the bias in weather data and simulated response vari-
ables (Fig. S6). Since averaging was employed to ag-
gregate the data to coarse resolutions, the resultant

data were either higher or lower than the original
high-resolution data. When the simulated outputs
consistently responded to the change in weather vari-
ables due to aggregation, the spatial patterns of the
biases were similar across different models. In con-
trast, when the responses were not consistent (linear
or non-linear), the spatial pattern of biases varied
across different models (Hansen & Jones 2000).
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Fig. 10. Relationships between spatial heterogeneity of simulated response variables for winter wheat (indicated by standard
deviation of grid cells at 1 km resolution, SD) and the data aggregation effect (DAE, indicated by root mean squared error
[RMSE] across different resolutions). Each point represents a crop model simulation at a specific resolution under a specific
production condition. The different production conditions are indicated by different markers and colors. The resolutions or the 

aggregation levels are indicated by the size of the marker
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4.3.  Variation of DAE across production
 conditions, crops, response variables, and models

The rAAD and rRMSE were used to summarize the
impact of DAE for the entire study area. There was lit-
tle effect of changing production conditions on both
rAAD and rRMSE (Fig. 9). The reason could be that
including soil water and nitrogen limitations did not
introduce much extra spatial heterogeneity for the re-
sponse variables, and the DAE was mainly determined
by the spatial heterogeneity of weather. This may be
due to the high input of nitrogen fertilizer prescribed
for the simulations, which are consistent with the high
input agriculture in Germany and due to the fact that
soil data (soil profile with very high water-holding ca-
pacity) were kept constant across the whole study
area and their effect on the stresses from water and
nutrient availability did not considerably vary. Al-
though the water and nitrogen stress decreased the
yield, and the nitrogen availability significantly re-
duced silage maize yield (Figs. 6 & 7), the decreases
were similar across the study area. Thus, very little
extra heterogeneity was added to the simulated re-
sponse variables by adding water and N limitations to
the cropping systems. However, Doherty et al. (2003)
found that the effect of changing weather data resolu-
tion is stronger for water-limited yield of cotton than
for irrigated yields (comparable to potential yield).
This is in contrast to our results and may be due to the
predominantly summer dry subtropical climate (typi-
cal for the cotton belt in the US) and use of actual soil
data, which adds spatial heterogeneity when the
stress from water availability is strong.

The relative DAE (rAAD and rRMSE) values were
only slightly different between the 2 crops. This
may be explained by the fact that most of the mod-
els involved in this study are generic across crops
(Table S1). Typically, some of these models simulate
many crops by changing the relevant parameters.
When the absolute values of the variables were high,
the resultant absolute biases would be high too.
Therefore we also computed rAAD and rRMSE to
avoid the effect from an absolute yield level (Cham-
bers & Dunstan 1986). Using the AAD and RMSE
rather than the rAAD and rRMSE would conclude
that DAE for silage maize is higher than for winter
wheat (Fig. S7). This conclusion is in line with
Mearns et al. (1999) and Easterling et al. (1998).
Mearns et al. (1999) found that the uncertainties in
simulating yield of maize and wheat were not ignor-
able and the uncertainties differed for the 2 crops for
the models CERES and EPIC. Easterling et al. (1998)
found different DAEs on wheat and hay simulations.

The present study recognized the necessity to distin-
guish the absolute and relative change in quantifying
and comparing the DAE across different crops, which
could result in opposite conclusions.

For a specific model, the DAE on different response
variables ranked differently. This is in line with Mo et
al. (2009), who found that the DAE on gross primary
production (GPP) is more significant than that on ET.
The differences could result from the different algo-
rithms used to simulate different response variables.
For example, for the models in our study, the simula-
tion of yield formation involved more processes than
the growing season ET.

The rAAD and rRMSE for different models differed
notably from each other. This is caused by the vary-
ing spatial heterogeneity of the results simulated by
different crop models. The weather data had a con-
sistent spatial pattern which is closely related to the
topography of the study area, because the weather
data were corrected according to the altitude of the
grid cell. However, a certain number of the models
simulated fairly homogeneous results, while other
models simulated a considerable spatial hetero -
geneity comparable to the weather data (Figs. S4 &
S5) because of the different sensitivities to weather
variables. When the spatial heterogeneity of the re -
sponse variables was high, the rAAD and rRMSE
were correspondingly high, and vice versa (Figs. 10
& S8). Thus, diverse crop models added uncertainty
to the effect of changing the spatial resolution of
input data. Hence, identifying the required spatial
resolution for impact assessment cannot be made in -
dependent of models used, which agrees with Mearns
et al. (1999).

We found that the rAAD varied in the same direc-
tion but was generally lower than rRMSE. Extremely
high changes in only some grid cells resulted in a
high rRMSE and a relatively small rAAD. This justi-
fied the choice of using 2 indicators to quantify the
impacts of input data spatial resolution (Davis &
Dodd 2003). The differences between rAAD and
rRMSE indicated that the effect on the loss of hotspot
areas was much higher than on changing the aver-
age condition of the whole study area when using a
coarse spatial resolution (Willmott & Matsuura 2005).

4.4.  Implication of the results

Most environmental processes are scale-dependent
(Davis et al. 1991, Wu 2004). The spatial resolution
used for an impact assessment should be high enough
to represent the processes that are important for the
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objective (Atkinson & Tate 2000). Integrated assess-
ments at regional scales normally target 2 objectives.
One is how overall regional aggregates such as re-
gional productivity would be impacted by environ-
mental changes or human interventions. In such a
case, the mean or the median of the response variable
of the whole study area is of particular interest. This
was also investigated by Hoffmann et al. (2015) and
Angulo et al. (2013) by comparing the mean and me-
dian of the results simulated by weather data at differ-
ent spatial resolutions in central (Germany) and
northern (Finland) Europe. They found that spatial
resolution only caused moderate and non-significant
changes in response variables. The explanation was
that the weather data at coarse resolution would be
either higher or lower than the high-resolution values
over the same area. The simulated yields were corre-
spondingly higher or lower, because the non-linearity
relationships between the simulated yields and
weather data were not of sig nificant importance
(Hansen & Jones 2000). Similarly, in our study,
changes in resolution of the mean response variables
had only small effects, since the higher or lower yields
offset each other. Hence, if there is only interest in the
regional aggregates of response variables, coarse-
resolution input data may be sufficient for impact
studies in temperate, humid regions as also suggested
elsewhere (Easterling et al. 1998, de Wit et al. 2005,
Van Bussel et al. 2011, Eyshi Rezaei et al. 2015).

However, importantly, if the emphasis of the im -
pact study is on detecting local hotspot areas (such as
croplands which are potentially vulnerable to drought
or heat stress; Teixeira et al. 2013, Müller et al. 2014)
to support planning for conservation and environ-
mental management (Crossman & Bryan 2009, Ray-
mond et al. 2009) and climate change impact as sess -
ments (Mearns et al. 2004), then aggregation of the
input data or use of a coarse resolution could fail to
detect hotspot areas. This has been clearly illustrated
in the present study where the low-yielding areas
disappeared at the lower resolutions. Such DAE is
particularly evident in the regions with highly spatial
heterogeneity compared to homogeneous regions
(Figs. 6 & 7). Thus, in spatially heterogeneous re -
gions, using input data at a high spatial resolution is
desirable (Gimona et al. 2006, Zhao et al. 2015).

4.5.  Limitations of the study and future research
needs

When we created the weather data at different res-
olutions, varying regional boundaries of grid cells

were used. For example, the calculation of the grid
cell at 10 km resolution did not include the 1 km grid
cells in the Netherlands and Belgium, but included
the grid cells in other states of Germany. Therefore, a
certain magnitude of the response variable changes
across the boundary could result from the varying
regional boundary. An alternative strategy to con-
duct the aggregation across the boundary is sticking
to the boundary of 1 km resolution. This method
could guarantee the number of 1 km grid cells being
equal at different aggregation levels, but has the
 disadvantage that coarse-resolution grid cells are not
fully covered by the high-resolution grid cells. Cur-
rently, there is no agreement on how to cope with this
issue. For future studies, the uncertainties from
boundary effects should be considered more care-
fully. In addition to the boundary effects, increasing
the temporal resolution of the weather data from
monthly to daily may also add uncertainties when
interpolated between weather stations, thus affecting
the simulated results.

The averaging method was used to aggregate
the input weather data. Many other methods such as
majority, median, nearest neighbor, bilinear inter -
polation, central-pixel, and direct interpolation, are
frequently used. For example, Bian & Butler (1999)
found that the averaging and median methods could
retain the mean but significantly altered the standard
deviation, while the central-pixel method altered
both statistics on a moderate scale. Carter et al.
(1991) directly interpolated weather data of coarse
spatial resolution by direct interpolation using data
from weather stations that are relevant for crop pro-
duction according to their altitude. Aggregating
the weather data by different methods could change
the DAE on simulation of the cropping systems.
Although averaging is the most commonly used
method and was therefore considered here, the ef -
fect of using other methods should be explored more
systematically.

Only 1 soil profile was applied in this study. The
water holding capacity, initial soil carbon, and nitro-
gen of the soil profile were relatively high (Table 1).
Together with the predominantly temperate, humid
climate, this explains why drought was not evident in
most of the grid cells and years. Additional spatial
heterogeneity in model outputs would be expected
by considering soil variability. For example, Angulo
et al. (2014) found that the DAE of soil data on the
distribution of simulated yields is much higher in dry
years than in normal years in NRW, while Eyshi
Rezaei et al. (2015) showed that the variability in heat
and drought stress of winter wheat in Germany is
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more affected by the variability in soil than by vari-
ability in weather conditions. In addition, individual
crop models simulated the water and nitrogen cycles
differently, implying contrasting responses to soil in -
put variables. The rRMSE and rAAD may have been
enhanced with model complexity depending on how
the non-linearity of soil processes is handled by indi-
vidual models. The soil parameters also need to be
aggregated or disaggregated to the same resolution
as weather data, which also cause biases across the
aggregation levels. The response of the crop models
to such discrepancy should be considered in up-
 scaling practices. Recently, Zhang et al. (2014) found
that higher-resolution soil information could benefit
the simulation at the county level, while it made neg-
ligible differences in the state of Iowa (USA), an area
which is more than 4 times of the size of NRW.

5.  CONCLUSIONS

In up-scaling crop models from field to larger
areas, it is essential to understand the uncertainties
introduced due to aggregation of input data. An ideal
resolution would be one that is fine enough to pro-
vide accurate spatial variability for the specific pur-
pose of the study, while saving computing power and
efforts in data assembly and model execution. In this
study, we quantified the DAE by 5 metrics and com-
pared DAE across crop models, crops, response vari-
ables, and production conditions. The 5 metrics used
indicated that the DAE increased with coarsening of
the spatial resolution, especially from 1 to 50 km. The
DAE on diminishing hotspot areas of the results is
stronger than on the average conditions. The DAE
varies considerably across models, but only slightly
across crops, production conditions, and response
variables. The findings of this study can guide crop
modelers when choosing the spatial resolution for
regional crop modeling and climate change impact
assessment in temperate, humid regions with pro-
nounced elevation differences.
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