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Abstract

A seller of a divisible good faces several identical buyers. The quality of the good
may be low or high, and is the seller’s private information. The seller has strictly convex
preferences that satisfy a single-crossing property. Buyers compete by posting menus
of nonexclusive contracts, so that the seller can simultaneously and privately trade
with several buyers. We provide a necessary and sufficient condition for the existence
of a pure-strategy equilibrium. Aggregate equilibrium trades are unique. Any traded
contract must yield zero profit. If a quality is actually traded, then it is efficiently
traded. Depending on parameters, both qualities may be traded, or only one of them,
or the market may break down to a no-trade equilibrium.
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1 Introduction

The recent financial crisis has spectacularly recalled that the liquidity of financial markets

cannot be taken for granted, even for markets that usually attract many traders and on which

exchanged volumes tend to be very high. For instance, Adrian and Shin (2010) document

that the issuance of asset-backed securities declined from over three hundred billion dollars

in 2007 to only a few billion in 2009. Similarly, Brunnermeier (2009) emphasizes the severe

liquidity dry-up of the interbank market over the 2007–2009 period, when many banks chose

to keep their liquidity idle instead of lending it even at short maturities. It is tempting to

associate these difficulties with asymmetries in the allocation of information among traders.

Indeed, during the crisis, one of the banks’ main concern was the unknown exposure to

risk of their counterparties.1 Moreover, structured financial products such as mortgage-

backed securities, collateralized debt obligations, and credit default swaps often involve many

different underlying assets, and their designers are likely to hold private information about

their quality; this creates an adverse selection problem that reduces liquidity provision.2

Finally, most of these securities are traded outside of organized exchanges on over-the-

counter markets, with poor information on the trading volumes or on the net positions of

traders. Hence agents are able to interact secretly with multiple partners, at the expense

of information release. These two features, adverse selection and nonexclusivity, are at the

heart of the present paper.

Theoretical studies of adverse selection in competitive environments have mainly been

developed in the context of two alternative paradigms. Akerlof (1970) studies an economy

where privately informed sellers and uninformed buyers act as price takers. All trades are

assumed to take place at the same price. Competitive equilibria typically exist, but feature

a form of market failure: because the market-clearing price must be equal to the average

quality of the goods offered by the sellers, the highest qualities are generally not traded

in equilibrium. It seems therefore natural to investigate whether such a drastic outcome

can be avoided by allowing buyers to screen goods of different qualities. In this spirit,

Rothschild and Stiglitz (1976) consider a strategic model in which buyers offer to trade

different quantities at different unit prices, thereby allowing sellers to credibly communicate

their private information. They show that low-quality sellers trade efficiently, while high-

quality sellers end up trading a suboptimal, but nonzero quantity. For instance, on insurance

1See, among others, Taylor and Williams (2009), and Philippon and Skreta (2012).
2See Gorton (2009). There is also some evidence that lending standards and the intensity of screening

have been progressively deteriorating with the expansion of the securitization industry in the pre–2007 years.
See, for instance, Keys, Mukherjee, Seru, and Vig (2010), and Demyanyk and Van Hemert (2011).
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markets, high-risk agents are fully insured, while low-risk agents only obtain partial coverage;

no pure-strategy equilibrium exists if the proportion of low-risk agents is too high.

The present paper revisits these classical approaches by relaxing the assumption of

exclusive competition, which states that each seller is allowed to trade with at most one

buyer. This assumption plays a central role in Rothschild and Stiglitz’s (1976) model, and

is also satisfied in the simplest versions of Akerlof’s (1970) model, in which sellers can

only trade one or zero unit of an indivisible good. However, situations where sellers can

simultaneously and secretly trade with several buyers naturally arise on many markets—one

may even say that nonexclusivity is the rule rather than the exception. In addition to the

contexts we have already mentioned, well-known examples include the European banking

industry, the US credit card market, and the life insurance and annuity markets of several

OECD countries.3

Our aim is to study the impact of adverse selection in markets with such nonexclusive

trading relationships. To do so, we allow for nonexclusive trading in a generalized version of

Rothschild and Stiglitz’s (1976) model. This exercise is interesting per se: as we shall see, the

reasonings that lead to the characterization of equilibria are quite different from those put

forward by these authors. The results are also different: the equilibria we construct typically

feature linear pricing, possibly with a bid-ask spread, and trading is efficient whenever it

takes place. On the other hand, pure-strategy equilibria may fail to exist, as in Rothschild

and Stiglitz (1976), and some types may be excluded from trade, as in Akerlof (1970). It

might even be that the only equilibrium involves no trade.

Our analysis builds on the following simple model of trade. There is a finite number

of buyers, who compete for a divisible good offered by a seller.4 The seller is privately

informed of the quality of the good, which may be low or high. The seller’s preferences

are strictly convex, but otherwise arbitrary, provided they satisfy a single-crossing property.

Buyers compete by simultaneously posting menus of contracts, where a contract specifies

both a quantity and a transfer. After observing the menus offered, and taking into account

her private information, or type, the seller chooses which contracts to trade. Our model

3Detragiache, Garella, and Guiso (2000) and Ongena and Smith (2000) document that multiple banking
relationships have become very widespread in Europe. Rysman (2007) provides recent evidence of multi-
homing in the US credit card industry. Cawley and Philipson (1999) and Finkelstein and Poterba (2004)
report similar findings for the US life insurance market and the UK annuity market. The structure of annuity
markets is of particular interest because some legislations explicitly rule out the possibility of designing
exclusive contracts: for instance, on September 1, 2002, the UK Financial Services Authority ruled in favor
of the consumers’ right to purchase annuities from suppliers other than their current pension provider (Open
Market Option).

4We argue in Section 5 that our results extend to the case of multiple sellers, provided contracting is
bilateral and private.
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encompasses pure-trade, insurance, and credit environments as special cases.5

In this context, we fully characterize the seller’s aggregate trades in any pure-strategy

equilibrium. The contribution of the paper is twofold. First, we provide a necessary and

sufficient condition for such an equilibrium to exist. This condition can be stated as follows:

let v be the average quality of the good. Then a pure-strategy equilibrium exists if and only

if, at the no-trade point, the low-quality type would be willing to sell a small quantity of

the good at price v, whereas the high-quality type would be willing to buy a small quantity

of the good at price v. Second, we show that there exists a unique aggregate equilibrium

allocation. Each buyer earns zero profit in equilibrium. If the willingness to trade at the

no-trade point varies enough across types, equilibria are first-best efficient: the low-quality

type sells the efficient quantity, while the high-quality type buys the efficient quantity. By

contrast, if the two types have similar willingness to trade at the no-trade point, there is no

trade in equilibrium. Finally, in intermediate cases, one type of the seller trades efficiently,

while the other type does not trade at all.

These results suggest that under nonexclusivity, the seller may only signal her type

through the sign of the quantity she proposes to trade with a buyer. This is however a very

rough signalling device, which is only effective when one type acts as a seller, while the other

one acts as a buyer. As a consequence, there is no equilibrium in which both types trade

nonzero quantities on the same side of the market. In the context of insurance markets, for

instance, this rules out situations in which both the low-risk and the high-risk agents would

purchase a basic policy at a medium price, with the high-risk agent purchasing on top of

this a supplementary policy at a higher price. The general message is thus that nonexclusive

competition exacerbates the adverse selection problem: if the first-best outcome cannot be

achieved, a nonzero level of trade for one type can be sustained in equilibrium only if the

other type is left out of the market. In particular, no cross-subsidization between types

takes place in equilibrium. That is, each buyer earns zero profit on any contract he trades in

equilibrium. To establish this result, we exhibit a class of deviations which make it possible

for at least one buyer to keep trading with the type with which he would hypothetically

make profit, while minimizing the loss he would make with the other type by exploiting the

equilibrium offers of his rivals. Overall, our analysis shows that a partial or complete market

breakdown may arise under nonexclusive competition when buyers compete in arbitrary

menu offers, with very few restrictions on the set of instruments available to them.

5The labels seller and buyers are only used for expositional purposes. On financial markets, one may sell
as well as buy assets. This translates in our model into allowing for negative as well as positive quantities.
We argue in Section 5 that our results extend to the case where only nonnegative quantities can be traded.
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Related Literature The implications of nonexclusive competition have been extensively

studied in moral-hazard contexts. Following the seminal contributions of Hellwig (1983)

and Arnott and Stiglitz (1993), many recent works emphasize that in financial markets

where agents can take noncontractible effort decisions, the impossibility of enforcing exclusive

contracts can induce positive profits for financial intermediaries and a reduction in trades.

Positive profits arise in equilibrium because none of the intermediaries can profitably deviate

without inducing the agents to trade several contracts and select inefficient levels of effort.6

The present paper rules out moral-hazard effects and argues that nonexclusive competition

under adverse selection drives intermediaries’ profits to zero.

Pauly (1974), Jaynes (1978), and Hellwig (1988) pioneered the analysis of nonexclusive

competition under adverse selection. Pauly (1974) suggests that Akerlof-like outcomes can

be supported in equilibrium when buyers are restricted to offer linear price schedules. Jaynes

(1978) points out that the separating equilibrium characterized by Rothschild and Stiglitz

(1976) is vulnerable to entry by an insurance company proposing additional trades that

can be concealed from its competitors. He further argues that the nonexistence problem

identified by Rothschild and Stiglitz (1976) can be overcome if insurance companies can

share the information they have about the agents’ trades. Hellwig (1988) discusses the

relevant extensive form for the inter-firm communication game.

Biais, Martimort, and Rochet (2000) study a model of nonexclusive competition among

uninformed market-makers who supply liquidity to an informed insider whose preferences

are quasilinear, and quadratic in the quantities she trades. Although our model encompasses

this specification of preferences, we develop our analysis in a two-type framework, whereas

Biais, Martimort, and Rochet (2000) consider a continuum of types. Despite the similarities

between the two setups, their results stand in stark contrast with ours. Indeed, restricting

attention to equilibria where market-makers post convex menus of contracts, they argue that

nonexclusivity leads to a Cournot-like equilibrium outcome, in which each market-maker

earns a positive profit. This is very different from our Bertrand-like equilibrium outcome, in

which each traded contract yields zero profit. We postpone until Section 5.3 a more detailed

comparison between these contrasting sets of results.

Attar, Mariotti, and Salanié (2011) consider a situation where a seller is endowed with

one unit of a good, the quality of which she privately knows. The good is divisible, so that

the seller may trade any quantity of it with any of the buyers, as long as she does not trade

more than her endowment in the aggregate. Both the buyers’ and the seller’s preferences are

6See, for instance, Parlour and Rajan (2001), Bisin and Guaitoli (2004), and Attar and Chassagnon
(2009) for applications to credit and insurance markets.
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linear in quantities and transfers. It is shown that pure-strategy equilibria always exist, and

that the corresponding aggregate allocations are generically unique. Depending on whether

quality is low or high, and on the probability with which quality is high, the seller may either

trade her whole endowment, or abstain from trading altogether. Buyers earn zero profit in

any equilibrium. These results offer a fully strategic foundation for Akerlof’s (1970) classic

study of the market for lemons, based on nonexclusive competition. Besides equilibrium

existence, a key difference with our setting is that equilibria in Attar, Mariotti, and Salanié

(2011) may exhibit nontrivial pooling and hence cross-subsidies across types. This reflects

that trades are subject to an aggregate capacity constraint. By contrast, the present paper

considers a situation where the seller’s trades are unrestricted, as in a financial market where

agents can take arbitrary positions. Another feature of our model is that we consider general

preferences for the seller, provided that they are strictly convex and satisfy a single-crossing

property. Thus the range of applications of the present paper is different than in Attar,

Mariotti, and Salanié (2011).

In contemporaneous work, Ales and Maziero (2011) study nonexclusive competition in

an insurance context similar to the one analyzed by Rothschild and Stiglitz (1976). Relying

on free-entry arguments, they argue that only the high-risk agent can obtain a positive

coverage in equilibrium. This is consistent with the results derived in the present paper;

however, a distinguishing feature of our analysis is that it is fully strategic and avoids free-

entry arguments. Our results are also more general in that we do not rely on a particular

parametric representation of the seller’s preferences, which allows us to uncover the common

logical structure of a broad class of models.7

This paper also contributes to the common-agency literature that analyzes situations

where several principals compete through mechanisms to influence the decisions of a common

agent. In our bilateral-contracting setting, the trades between the seller and the buyers are

not public, and the seller may choose to trade with any subset of buyers. Moreover, in

line with our focus on competitive environments, the profit of each buyer only depends on

the trade he makes with the seller, and not on the other trades his competitors may make

with her. In the terminology of common agency, our model is thus a private and delegated

common-agency game with no direct externalities between principals.8 In contrast with

7For instance, a special feature of the insurance model is that efficiency requires that both types of agents
be fully insured, whereas our analysis covers situations where efficiency requires that different types of sellers
trade different quantities.

8The distinction between delegated common-agency games, in which the agent can trade with any subset
of principals, and intrinsic common-agency games, in which the agent must either trade with all principals
or with none of them, has been introduced by Bernheim and Whinston (1986). Martimort (2006) formulates
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most of the common-agency literature, our analysis yields a unique prediction for aggregate

equilibrium trades and equilibrium payoffs. In our view, this uniqueness result is tied to three

key ingredients of our model. First, there are no direct externalities between principals.9

Second, each buyer’s profit is linear in the contract he trades; whereas if some convexity

were introduced in the buyers’ preferences, then multiple equilibrium outcomes would arise

even in a complete-information version of our model.10 Finally, each type of the seller only

cares about the aggregate quantity she sells to the buyers and the aggregate transfer she

receives in return; whereas if the buyers’ offers were not perfectly substitutable from the

seller’s viewpoint, then one would again expect multiple equilibrium outcomes to arise even

under complete information.11 Observe that these three assumptions are natural in a broad

range of situations, including financial and insurance markets.

Finally, it should be stressed that our uniqueness result obtains despite the fact that

very few restrictions are imposed on the set of instruments available to the buyers, who are

basically free to propose arbitrary menus of contracts. In this respect, our results contrast

with the literature on supply-function equilibria, which considers oligopolistic industries

where firms compete in supply schedules instead of simple price or quantity offers. Wilson

(1979) and Grossman (1981) were the first to observe that this additional degree of freedom

may significantly expand the set of equilibrium outcomes. Klemperer and Meyer (1989)

and Kyle (1989) suggest that the introduction of some uncertainty, either in the form of

imperfect information over market demand or in the form of noise traders, may limit the

multiplicity of equilibria. Vives (2011) develops these intuitions in a general setting where

rational traders interact in the presence of idiosyncratic shocks; he shows that there exists a

unique symmetric equilibrium in which supply functions are linear.

The paper is organized as follows. Section 2 describes the model. Section 3 characterizes

pure-strategy equilibria. Section 4 derives necessary and sufficient conditions under which

such equilibria exist. Section 5 discusses extensions of our analysis, imposing nonnegative

the distinction between public-agency settings, in which each principal’s transfer can be made contingent on
all the agent’s decisions, and private-agency settings, in which the transfer made by each principal is only
contingent on the trades that the agent makes with him. Finally, the role of direct externalities between
principals has been emphasized by Martimort and Stole (2003) and Peters (2003).

9Direct externalities between principals typically lead to multiple equilibrium outcomes even in complete-
information environments, as shown by Martimort and Stole (2003) and Segal and Whinston (2003).

10This setting is analyzed by Chiesa and De Nicolò (2009), who show that although the aggregate quantity
traded in equilibrium always coincides with the first-best quantity, equilibrium transfers and payoffs are not
uniquely determined.

11Examples in this direction are provided by d’Aspremont and Dos Santos Ferreira (2010), who provide
a strategic analysis of competition between firms selling differentiated goods to a representative consumer
under complete information, both in the cases of intrinsic and delegated agency.
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trades, or allowing for multiple sellers and more than two types. Section 6 concludes.

2 The Model

Our model features a seller who can simultaneously trade with several identical buyers. To

simplify the general description and the analysis of the model, in most of the paper, and

unless otherwise mentioned, we impose no restriction on the sign of the quantities traded by

the seller, nor, for that matter, on the sign of the transfers she receives in return. The labels

seller and buyers, although useful, are therefore to a large extent conventional. In some of the

applications presented in Section 2.4, however, it is more natural to impose that quantities

traded be nonnegative. As explained in Section 5.1, our analysis and results extend to these

cases as well, with minor modifications. Which assumption is more appropriate should be

clear from the context.

2.1 The Seller

The seller is privately informed of her preferences. She may be of two types, L or H, with

positive probabilities mL and mH such that mL + mH = 1. Subscripts i and j are used to

index these types, with the convention that i 6= j. Each type only cares about the aggregate

quantity Q she sells to the buyers and the aggregate transfer T she receives in return. Type

i’s preferences over aggregate quantity-transfer bundles (Q, T ) are represented by a utility

function ui defined over R2. For each i, we assume that ui is continuously differentiable,

with ∂ui/∂T > 0, and that ui is strictly quasiconcave. Hence type i’s marginal rate of

substitution of the good for money

τi ≡ − ∂ui/∂Q

∂ui/∂T

is everywhere well defined and strictly increasing along her indifference curves. Note that

τi(Q, T ) can be interpreted as type i’s marginal cost of supplying a higher quantity, given

that she already trades (Q, T ). We impose no restriction on the sign of τi(Q, T ). The

following assumption is key to our results.

Assumption SC For each (Q, T ), τH(Q, T ) > τL(Q, T ).

Assumption SC expresses a strict single-crossing property: type H is less eager to sell a

higher quantity than type L is. As a result, in the (Q, T ) plane, a type-H indifference curve

crosses a type-L indifference curve only once, from below.
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2.2 The Buyers

There are n ≥ 2 identical buyers. There are no direct externalities between them: each

buyer only cares about the quantity q he purchases from the seller and the transfer t he

makes in return. Each buyer’s preferences over individual quantity-transfer bundles (q, t)

are represented by a linear profit function: if a buyer receives from type i a quantity q and

makes a transfer t in return, he earns a profit viq − t. We impose no restriction on the sign

of vi. The following assumption will be maintained throughout the analysis.

Assumption CV vH > vL.

We let v ≡ mLvL + mHvH be the average quality of the good, so that vH > v > vL.

Assumption CV reflects common values: the seller’s type has a direct impact on the buyers’

profits. Together with Assumption SC, Assumption CV captures a fundamental tradeoff

of our model: type H provides a more valuable good to the buyers than type L, but at a

higher marginal cost. These assumptions are natural if we interpret the seller’s type as the

quality of the good she offers. Together, they create a tension that will be exploited later

on: Assumption SC leads type H to offer less of the good, but Assumption CV would induce

buyers to demand more of the good offered by type H, if only they could observe quality.

2.3 The Nonexclusive Trading Game

Trading is nonexclusive in that no buyer can control, and a fortiori contract on the trades

that the seller makes with other buyers. The timing of events is as follows. First, buyers

compete in menus of contracts for the good offered by the seller.12 Next, the seller can

simultaneously trade with several buyers. Formally:

1. Each buyer k proposes a menu of contracts, that is, a set Ck ⊂ R2 of quantity-transfer

bundles that contains at least the no-trade contract (0, 0).13

2. After privately learning her type, the seller selects one contract from each of the menus

Ck offered by the buyers.

A pure strategy for type i is a function that maps each menu profile (C1, . . . , Cn) into a

vector of contracts ((q1, t1), . . . , (qn, tn)) ∈ C1 × . . . × Cn. To ensure that type i’s utility-

12As shown by Peters (2001) and Martimort and Stole (2002), there is no need to consider more general
mechanisms in this multiple-principal single-agent setting.

13This requirement allows one to deal with participation in a simple way. It reflects the fact that the seller
cannot be forced to trade with any particular buyer.
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maximization problem

max

{
ui

(∑

k

qk,
∑

k

tk

)
: (qk, tk) ∈ Ck for each k

}

always has a solution, we require the buyers’ menus Ck to be compact sets. This allows us

to use perfect Bayesian equilibrium as our equilibrium concept. Throughout the paper, we

focus on pure-strategy equilibria.

2.4 Applications

The following examples illustrate the range of our model.

Pure Trade In the pure-trade model, the seller has quasilinear preferences,

ui(Q, T ) = T − ci(Q),

where the cost function ci is continuously differentiable and strictly convex. Then τi(Q, T ) =

c′i(Q). Assumption SC requires that c′H(Q) > c′L(Q) for all Q. For instance, in line with

Biais, Martimort, and Rochet (2000), one may consider a quadratic cost function ci(Q) =

θiQ + γQ2, for some positive constant γ. Assumption SC then reduces to θH > θL. Note

that Biais, Martimort, and Rochet (2000) moreover assume that the first-best quantities

are implementable, a situation sometimes called responsiveness in the literature (Caillaud,

Guesnerie, Rey, and Tirole (1988)). In our two-type specification, this would amount to

assuming that vH − θH < vL− θL. Our analysis does not rely on this assumption. Finally, in

the financial market-microstructure interpretation of Biais, Martimort, and Rochet’s (2000)

model, it is natural to assume that the seller can take long or short positions in the financial

asset she trades with the buyers. By contrast, if the seller produces a physical good, it is

more natural to assume that only nonnegative quantities of it can be traded.

Insurance In the insurance model, an agent can sell a risk to several insurance companies.

As in Rothschild and Stiglitz (1976), the agent faces a binomial risk on her wealth, which

can take two values WG and WB, with probabilities πi and 1− πi that define her type. Here

WG −WB is the positive monetary loss that the agent incurs in the bad state. A contract

specifies a reimbursement r to be paid in the bad state, and an insurance premium p. Let

R be the sum of the reimbursements, and let P be the sum of the insurance premia. We

assume that the agent’s preferences have an expected utility representation

πiu(WG − P ) + (1− πi)u(WB − P + R),

9



for some von Neumann–Morgenstern utility function u which is assumed to be continuously

differentiable, strictly increasing, and strictly concave. An insurance company’s profit from

trading the contract (r, p) with type i is p − (1 − πi)r, which can be written as viq − t if

we set vi ≡ −(1 − πi), q ≡ r, and t ≡ −p, so that Q = R and T = −P . Hence the agent

purchases for a transfer −T a reimbursement Q in the bad state. Note that reimbursements

must remain nonnegative if negative insurance is ruled out. The agent’s expected utility

writes as

ui(Q, T ) = πiu(WG + T ) + (1− πi)u(WB + Q + T ).

Then

τi(Q, T ) = − (1− πi)u
′(WB + T + Q)

πiu′(WG + T ) + (1− πi)u′(WB + T + Q)
,

so that Assumption SC requires that type H has a lower probability of incurring a loss,

πH > πL. Given our parametrization, this implies that vH > vL, so that Assumption CV

is satisfied. Therefore, our model encompasses the nonexclusive version of Rothschild and

Stiglitz’s (1976) model considered by Ales and Maziero (2011). Note that we could also allow

for nonexpected utility in the modelling of the agent’s preferences. Thus, for instance, we

may consider state-dependent utilities, as in Cook and Graham (1977), or rank-dependent

utilities, as in Quiggin (1982).

Credit In the credit model, a borrower raises nonnegative amounts of capital from several

investors to fund a variable-size project. In the default state, the project generates a zero cash

flow and the borrower defaults. In the no-default state, the project generates a positive cash

flow and the borrower does not default. The type of the borrower affects both the probability

of the no-default state, πi, and the cash flow in that state, fi(B), given aggregate borrowed

capital B. We assume that for each i, the function fi is continuously differentiable, strictly

increasing, and strictly concave, with fi(0) = 0. As in Stiglitz and Weiss (1981), we restrict

our analysis to standard debt contracts. Thus a contract is a borrowed capital/promised

repayment pair (b, p). Let P be the aggregate promised repayment. We assume that the

borrower’s preferences are represented by

πi[fi(B)− P ].

An investor’s expected payoff from trading the contract (b, p) with type i is πip − b, which

can be written as viq− t if we set vi ≡ πi, q ≡ p, and t ≡ b, so that Q = P and T = B. Thus

the borrower raises T against a promise of repaying Q, and her expected utility writes as

ui(Q, T ) = πi[fi(T )−Q]
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Then τi(Q, T ) = 1/f ′i(T ). Assumptions SC and CV are satisfied if f ′H(T ) < f ′L(T ) for all T

and πH > πL. Intuitively, type H is less likely to default, but her investment project has

lower returns than type L’s, so that her marginal cost of repaying her debts in the no-default

state is higher than type L’s.

3 Equilibrium Characterization

An equilibrium allocation specifies individual trades (qk
i , t

k
i ) between each type i and each

buyer k, and corresponding aggregate trades (Qi, Ti) =
(∑

k qk
i ,

∑
k tki

)
. In this section, we

characterize these equilibrium trades, assuming that an equilibrium exists, and we provide

a simple necessary condition for the existence of an equilibrium.

3.1 Pivoting

In line with Rothschild and Stiglitz (1976), we shall examine well-chosen deviations by a

buyer, and use the fact that in equilibrium deviations cannot be profitable. A key difference,

however, is that in Rothschild and Stiglitz (1976) competition is exclusive, whereas in our

setting competition is nonexclusive.

Under exclusive competition, what matters from the viewpoint of any given buyer k is

simply the maximum utility level U−k
i that each type i can get by trading with some other

buyer. A deviation by buyer k targeted at type i is then a contract (qk
i , t

k
i ) that gives type i

a strictly higher utility, ui(q
k
i , t

k
i ) > U−k

i . Type j may be attracted or not by this contract;

in each case, one can compute the deviating buyer’s profit.

By contrast, under nonexclusive competition, all the contracts offered by the other buyers

matter from the viewpoint of buyer k. Suppose indeed that the seller can trade (Q−k, T−k)

with the buyers other than k. Then buyer k can use this as an opportunity to build more

attractive deviations. For instance, to attract type i, buyer k can propose the contract

(Qi − Q−k, Ti − T−k + ε), for some positive number ε: combined with (Q−k, T−k), this

contract gives type i a strictly higher utility than her aggregate equilibrium trade (Qi, Ti).

In that case, we say that buyer k pivots on (Q−k, T−k) to attract type i. Type j may be

attracted or not by this contract; in each case, one can provide a condition on profits that

ensures that the deviation is not profitable.

The key difference between exclusive and nonexclusive competition is thus that in the

latter case, each buyer k faces a single seller whose type is unknown, but whose preferences

are defined by an indirect utility function, rather than by the primitive utility function ui

as in the former case. Formally, type i’s indirect utility from trading a contract (q, t) with

11



buyer k is given by

z−k
i (q, t) = max

{
ui

(
q +

∑

l 6=k

ql, t +
∑

l 6=k

tl

)
: (ql, tl) ∈ C l for each l 6= k

}
,

so that in equilibrium Ui ≡ ui(Qi, Ti) = z−k
i (qk

i , t
k
i ) for all i and k. Notice that z−k

i (q, t) is

strictly increasing in t. Moreover, because ui is continuous and the menus C l, l 6= k, are

compact, it follows from Berge’s maximum theorem that z−k
i is continuous.14

What makes the analysis difficult is that the functions z−k
i are endogenous, because they

depend on the menus offered by the buyers other than k, on which we impose no restriction

besides compactness. As a result, there is no a priori guarantee that the functions z−k
i are

well behaved, which prevents us from using mechanism-design techniques to determine each

buyer’s best response to the other buyers’ menus. Instead, we only rely on pivoting arguments

to fully characterize aggregate equilibrium trades and individual equilibrium payoffs, as in

Attar, Mariotti, and Salanié (2011).

Remark. The idea of determining each principal’s equilibrium behavior by considering his

interaction with an agent endowed with an indirect utility function that incorporates the

optimal choices she makes with the other principals is a standard device in the common-

agency literature.15 In the context of private agency, this methodology has been applied

to games of complete information (Chiesa and De Nicolò (2009), d’Aspremont and Dos

Santos Ferreira (2010)), as well as to games of incomplete information (Biais, Martimort,

and Rochet (2000), Martimort and Stole (2003, 2009), Calzolari (2004), Laffont and Pouyet

(2004), or Khalil, Martimort, and Parigi (2007)). Although this approach has been used to

derive a full characterization of equilibrium payoffs under complete information, the analysis

of incomplete-information environments typically involves additional restrictions. Indeed,

attention is usually restricted to equilibria in which the screening problem faced by each

principal is regular enough, which amounts to considering well-behaved z−k
i functions that

are concave in quantities and satisfy a single-crossing property.16 A distinguishing feature

14This differs from Attar, Mariotti, and Salanié (2011), where the presence of a capacity constraint may
induce discontinuities in the seller’s indirect utility function. Note that the function z−k

i is independent of
buyer k’s menu offer. Thus saying that it is continuous does not commit us in any way to restricting buyer
k’s menu offer. Indeed, we will only use deviations consisting of at most two nontrivial contracts.

15A similar approach has been followed in the literature on supply-function equilibria, in which each
supplier’s equilibrium behavior is determined by taking into account the residual demand he faces given
the supply functions offered by his competitors (see Wilson (1979), Grossman (1981), Klemperer and Meyer
(1989), Kyle (1989), and Vives (2011)).

16See Martimort and Stole (2009) for a general exposition of this methodology, and for a detailed analysis
of the conditions that need to be imposed on the agent’s preferences and on the corresponding virtual surplus
function to guarantee the regularity of each principal’s program.
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of our analysis is that we provide a full characterization of aggregate equilibrium trades and

individual equilibrium payoffs by only exploiting the continuity of the z−k
i functions and the

fact that each of them is strictly increasing in transfers.

Denote type-by-type individual profits by bk
i ≡ viq

k
i − tki , and expected individual profits

by bk ≡ mLbk
L + mHbk

H . The following lemma encapsulates our pivoting technique.

Lemma 1 If in equilibrium, for some q and t, the seller can trade (Qi − q, Ti − t) with the

buyers other than k, then

viq − t > bk
i implies vq − t ≤ bk. (1)

The intuition for this result is as follows. If the seller can trade (Qi − q, Ti − t) with the

buyers other than k, then buyer k can pivot on this aggregate trade to attract type i, while

still offering the contract (qk
j , t

k
j ). If the contract (q, t) allows buyer k to increase the profit

he earns with type i, then it must be that type j also selects it instead of (qk
j , t

k
j ) following

buyer k’s deviation; moreover, this contract cannot increase buyer k’s average profit if traded

by both types, for, otherwise, we would have constructed a profitable deviation.

We are now ready to use our pivoting technique to gain insights into the structure of

aggregate equilibrium trades. Because each type only cares about her aggregate trade, and

buyers only care about their individual trades and have identical linear profit functions, in

equilibrium aggregate trades and aggregate profits can be computed as if both types were

trading (Qj, Tj), with type i trading in addition (Qi−Qj, Ti− Tj). What can be said about

this additional trade? A first information comes from Assumption SC, which, along with

∂ui/∂T > 0, implies that QL − QH is nonnegative. More interestingly, Lemma 1 allows us

to show that in the aggregate, buyers cannot make a profit by trading (Qi − Qj, Ti − Tj)

with type i. Formally, denote by Si ≡ vi(Qi −Qj)− (Ti − Tj) the corresponding aggregate

profit. Then the following result obtains.

Proposition 1 In any equilibrium, Si ≤ 0 for each i.

Proof. Choose i and k and set q ≡ qk
j + Qi −Qj and t ≡ tkj + Ti − Tj. Then the seller can

trade (Qi − q, Ti − t) = (
∑

l 6=k ql
j,

∑
l 6=k tlj) with the buyers other than k. One has

viq − t− bk
i = vi(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

i

= vi(Qi −Qj)− (Ti − Tj)− [vi(q
k
i − qk

j )− (tki − tkj )]

= Si − sk
i ,
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where sk
i ≡ vi(q

k
i − qk

j )− (tki − tkj ), and

vjq − t− bk
j = vj(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

j

= −[vj(Qj −Qi)− (Tj − Ti)]

= −Sj.

Therefore, according to (1),

Si > sk
i implies mi(Si − sk

i ) ≤ mjSj. (2)

Suppose by way of contradiction that Si > 0. Because Si =
∑

k sk
i by construction, one

must have Si > sk
i for some k. From (2), we obtain that Sj > 0, and thus that Si + Sj > 0.

As Si + Sj = (vi − vj)(Qi − Qj) and vH > vL, this implies that QL < QH , a contradiction.

Hence the result. Note for future reference that because Sj ≤ 0, it actually follows from (2)

that Si ≤ sk
i for all i and k. ¥

The intuition for Proposition 1 can easily be understood in the context of a free-entry

equilibrium. Indeed, under free entry, the seller can trade (Qj, Tj) with the existing buyers,

so that an entrant can pivot on (Qj, Tj) to attract type i. That is, an entrant could simply

propose to buy a quantity Qi − Qj in exchange for a transfer slightly above Ti − Tj. This

contract would certainly attract type i; besides, if it also attracted type j, this would be

good news for the entrant, because vj(Qi − Qj) ≥ vi(Qi − Qj) as vH > vL and QL ≥ QH .

In a free-entry equilibrium, it must therefore be that vi(Qi − Qj) ≤ Ti − Tj. Proposition 1

shows that the same result holds when the number of buyers is fixed, although the argument

is more involved. Indeed, it is then unclear that if Si were positive, then each buyer would

have a profitable deviation. For instance, if a buyer earning a positive profit with type j in

equilibrium decided to propose an attractive deviation to type i as in the above free-entry

deviation, he might incur a net loss with type j if she chose to trade a different contract

than in equilibrium. This loss might in turn offset the gains from attracting type i, making

the deviation unprofitable. Rather, the proof of Proposition 1 amounts to showing that in

these circumstances, at least one buyer must have a profitable deviation.

As simple as it is, this result is powerful enough to rule out equilibrium outcomes that have

been emphasized in the literature. Consider first the separating equilibrium of Rothschild

and Stiglitz’s (1976) exclusive-competition model of insurance provision. In this equilibrium,

insurance companies earn zero profit, and no cross-subsidization takes place. Using the

parametrization of Section 2.4, this means that the equilibrium contract (Qi, Ti) of each type

i lies on the line with negative slope vi = −(1− πi) going through the origin. Moreover, the
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high-risk agent, that is, in our parametrization, type L, is indifferent between the contracts

(QL, TL) and (QH , TH). Hence, as QL > QH > 0, the line connecting these two contracts has

a negative slope strictly lower than vL. That is, TL − TH < vL(QL − QH), in contradiction

with Proposition 1. Therefore, the Rothschild and Stiglitz’s (1976) equilibrium allocation is

not robust to nonexclusive competition.

Another class of candidate equilibria that has been considered in the literature, especially

in the case of insurance, are equilibria with linear prices in which different types trade nonzero

quantities on the same side of the market. For instance, Pauly (1974) explicitly restricts

insurance companies to post linear price schedules. Similarly, in the context of annuities,

Sheshinski (2008) makes the assumption that each type of annuity is traded at a common

price available to all potential agents, and equal to the average longevity of the buyers of this

type of annuity, weighted by the purchased equilibrium amounts. Finally, Chiappori (2000)

argues that under nonexclusivity, agents can linearize any nonlinear schedule by trading small

contracts with different insurance companies; as a result, standard linear pricing ensues.

This argument, however, presumes that such small contracts are offered, which need not

be the case as the supply of contracts is endogenous. More strikingly, we now show that

such equilibria are ruled out by Proposition 1. To see this, suppose that there exists an

equilibrium in which each buyer stands ready to buy any quantity at a unit price p, and that

in this equilibrium QL > QH > 0. Because the expected aggregate profit B ≡ ∑
k bk must be

nonnegative, one must have v > p. Moreover, according to Proposition 1 and the definition of

SL, one must have p ≥ vL. Hence buyers make profits when trading with type H, and cannot

make profits when trading with type L. Now, any buyer k can attempt to reap the aggregate

profit on type H: to do so, he may simply deviate by offering a contract (QH , TH + εH),

for some positive number εH . This contract certainly attracts type H. Because p ≥ vL, at

worst it also attracts type L, and therefore one must have bk ≥ (v − p)QH by letting εH go

to zero. Summing these inequalities over k yields

B ≥ n(v − p)QH . (3)

Because one can compute the aggregate profit as if both types were trading (QH , TH), with

type L trading in addition (QL −QH , TL − TH), one has

B = vQH − TH + mLSL = (v − p)QH + mLSL. (4)

Merging (3) and (4) yields mLSL ≥ (n− 1)(v− p)QH . Because n ≥ 2, v > p, and SL ≤ 0 by

Proposition 1, one must thus have QH ≤ 0, a contradiction. Hence there is no equilibrium

with linear prices in which both types actively trade on the same side of the market.

15



3.2 The Zero-Profit Result

In any Bertrand-like setting, the usual argument consists in making buyers compete for any

profit that may result from serving the whole demand. This also applies to our setting,

although the logic is different. Specifically, the following zero-profit result obtains.

Proposition 2 In any equilibrium, B = 0, so that bk = 0 for each k.

Proof. Denote type-by-type aggregate profits by Bi ≡
∑

k bk
i , and recall that the expected

aggregate profit is denoted by B. We first prove that for each j and k,

Bj > bk
j implies B − bk ≤ miSi. (5)

Indeed, if Bj > bk
j , buyer k can deviate by proposing a menu consisting of the no-trade

contract and of the contracts ck
i = (qk

i , t
k
i + εi) and ck

j = (Qj, Tj + εj), for some positive

numbers εi and εj. Because Uj ≥ z−k
j (qk

i , t
k
i ) and the function z−k

j is continuous, it is

possible, given the value of εj, to choose εi small enough so that type j trades ck
j following

buyer k’s deviation. Turning now to type i, observe that she must trade either ck
i or ck

j

following buyer k’s deviation: indeed, because εi is positive, type i strictly prefers ck
i to any

contract she could have traded with buyer k before the deviation. If type i selects ck
i , then

buyer k’s profit from this deviation is mi(b
k
i − εi) + mj(Bj − εj), which, because Bj > bk

j

by assumption, is strictly higher than bk when εi and εj are small enough, a contradiction.

Therefore, type i must select ck
j following buyer k’s deviation, and for this deviation not to

be profitable one must have vQj − Tj − εj ≤ bk. In line with (4), this may be rewritten as

B −miSi − εj ≤ bk, from which (5) follows by letting εj go to zero.

Now, if B > 0, then B > bk for some k. Because Si ≤ 0 and Sj ≤ 0 by Proposition 1, it

follows from (5) that Bi ≤ bk
i and Bj ≤ bk

j for each k. Averaging over types yields B ≤ bk

for each k, a contradiction. Hence the result. ¥

The intuition for Proposition 2 can easily be understood in the context of a free-entry

equilibrium. Indeed, suppose for instance that the aggregate profit from trading with type j

were positive, Bj > 0. Then an entrant could propose to buy Qj in exchange for a transfer

slightly above Tj. This contract would certainly attract type j, which would benefit the

entrant; in equilibrium, it must therefore be that this trade also attracts type i, and that

vQj −Tj ≤ 0. Now, recall that the aggregate profit may be written as B = vQj −Tj +miSi.

Our first result in Proposition 1 was that Si ≤ 0, and we have just argued that vQj−Tj ≤ 0

when Bj > 0. Hence the aggregate profit must be zero. Proposition 2 shows that the same
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result holds when the number of buyers is fixed, which is not a priori obvious. In line with

the proof of Proposition 1, the proof of Proposition 2 amounts to showing that if B were

positive, then at least one buyer must have a profitable deviation.

Remark An inspection of their proofs reveal that Propositions 1 and 2 only require weak

assumptions on feasible trades, namely that if the quantities q and q′ are tradable, then so

are the quantities q + q′ and q − q′. Hence we allow for negative and positive trades, but

we may for instance have integer constraints on quantities. Finally, we did use in Lemma

1 the fact that the functions ui, and thus the functions z−k
i are continuous with respect to

transfers, but, for instance, we did not use the fact that the seller’s preferences are convex.

3.3 Pooling versus Separating Equilibria

We say that an equilibrium is pooling if both types of the seller trade the same aggregate

quantity, QL = QH , and that it is separating if they trade different aggregate quantities,

QL > QH . We now investigate the basic price structure of these two kinds of candidate

equilibria.

Lemma 2 The following holds:

• In any pooling equilibrium, TL = vQL = TH = vQH .

• In any separating equilibrium,

(i) If QL > 0 > QH , then TL = vLQL and TH = vHQH .

(ii) If QL > QH ≥ 0, then TH = vQH and TL − TH = vL(QL −QH).

(iii) If 0 ≥ QL > QH , then TL = vQL and TH − TL = vH(QH −QL).

The first statement of Lemma 2 is an immediate consequence of the zero-profit result.

Otherwise, the equilibrium is separating, and three cases may in principle arise. In case (i),

type L sells a positive quantity QL, while type H buys a positive quantity |QH |. There

are no cross-subsidies in equilibrium, as each type i trades at the fair price vi. In case

(ii), everything happens as if, in the aggregate, both types were selling a quantity QH at

the fair price v, with type L selling an additional quantity QL − QH at the fair price vL.

Two scenarios are conceivable. If QH > 0, there are cross-subsidies in equilibrium, with

BL < 0 < BH . In that case, the structure of aggregate equilibrium trades is similar to that

obtained by Jaynes (1978) and Hellwig (1988) in a nonexclusive version of Rothschild and

Stiglitz’s (1976) model where insurance companies can share information about their clients.
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It is also reminiscent of the equilibrium of the limit-order book analyzed by Glosten (1994).

Further results in Section 3.4 will rule out this scenario, and more generally any equilibrium

in which both types trade nonzero quantities on the same side of the market. Alternatively,

if QH = 0, the structure of aggregate equilibrium trades is similar to that which prevails in

a two-type version of Akerlof’s (1970) model when adverse selection is severe. Finally, case

(iii) is the mirror image of case (ii).

3.4 The No-Cross-Subsidization Result

In this section, we prove that our nonexclusive competition game has no equilibrium with

cross-subsidies. We first establish that the aggregate profit earned on each type must be zero

in equilibrium. As discussed below, this drastically reduces the set of candidate equilibria.

We then refine this result by showing that any traded contract must actually yield zero profit

in equilibrium.

The first step of the analysis consists in showing that if buyers make profits in the

aggregate when trading with type j, then type j must trade inefficiently in equilibrium.

Specifically, her marginal rate of substitution at her aggregate equilibrium trade is not equal

to the quality of the good she sells, but rather to the average quality of the good.

Lemma 3 If in equilibrium Bj > 0, then τj(Qj, Tj) = v.

The intuition for Lemma 3 is as follows. If τj(Qj, Tj) were different from v, then any

buyer could propose a contract in the neighborhood of (Qj, Tj) that would attract type j,

thereby generating a positive profit close to Bj, and that would generate a small positive

profit even if it were traded by both types. This, however, is impossible according to the

zero-profit result.

Remark Consider a candidate equilibrium in which Bj > 0, and let k be such that bk
j > 0.

Then, for any such buyer k, type i could get her equilibrium utility Ui = z−k
i (qk

i , t
k
i ) by

trading (qk
j , t

k
j ) instead of (qk

i , t
k
i ) with buyer k. That is,

Ui = z−k
i (qk

i , t
k
i ) = z−k

i (qk
j , t

k
j ), (6)

which can be interpreted as a binding incentive compatibility constraint, taking into account

the nonexclusivity of trades. (Note the difference with the exclusive competition case, in

which incentive constraints only bear on aggregate quantities, Ui = ui(Qi, Ti) ≥ ui(Qj, Tj).)

The argument goes as follows. Suppose that z−k
i (qk

i , t
k
i ) > z−k

i (qk
j , t

k
j ). Then buyer k could

deviate by proposing a menu consisting of the no-trade contract and of the contracts ck
i =
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(qk
i , t

k
i −εi) and ck

j = (qk
j , t

k
j +εj), for some positive numbers εi and εj such that miεi > mjεj.

Clearly, type j selects ck
j following buyer k’s deviation. Turning now to type i, observe that

because z−k
i (qk

i , t
k
i ) > z−k

i (qk
j , t

k
j ) and the function z−k

i is continuous, she is better off selecting

ck
i rather than ck

j following buyer k’s deviation as long as εi and εj are small enough. If she

decides to trade ck
i , then buyer k makes a positive profit miεi−mjεj. Thus type i must not

trade with buyer k following his deviation, and for this deviation not to be profitable one

must have vjq
k
j − tkj − εj ≤ 0. Letting εj go to zero, we get bk

j ≤ 0. By contraposition, (6)

must hold as soon as bk
j > 0.

The second step of the analysis consists in showing that if buyers make profits in the

aggregate when trading with type j, then the aggregate trade made by type j in equilibrium

must remain available if any buyer withdraws his menu offer. In our oligopsony model, this

rules out Cournot-like outcomes in which the buyers would share the market in such a way

that each of them would be needed to provide type j with her aggregate equilibrium trade,

as is the case in the equilibrium described in Biais, Martimort, and Rochet (2000). This is

more in the spirit of Bertrand competition, where cross-subsidies are harder to sustain.

Lemma 4 If in equilibrium Bj > 0, then, for each k, the seller can trade (Qj, Tj) with the

buyers other than k.

The proof of Lemma 4 proceeds as follows. First, we show that if Bj is positive, then

the equilibrium utility of type j must remain available following any buyer’s deviation; the

reason for this is that otherwise, a buyer could deviate and reap the aggregate profit on

type j. As a result, for any buyer k, there exists an aggregate trade (Q−k, T−k) with the

buyers other than k that allows buyer j to achieve the same level of utility as in equilibrium,

uj(Q
−k, T−k) = Uj. From the strict quasiconcavity of ui and Lemma 3, we obtain that if

Q−k 6= Qj, then T−k > vQ−k. We finally show that this would allow buyer k to profitably

deviate by pivoting on (Q−k, T−k).

We are now ready to state and prove the main result of this section.

Proposition 3 In any equilibrium, Bj = 0 for each j.

Proof. Suppose by way of contradiction that Bj > 0 for some j. Then any buyer k such

that bk
j > 0 can deviate by proposing a menu consisting of the no-trade contract and of the

contracts ck
i = (Qi − Qj + δi, vi(Qi − Qj) + εi) and ck

j = (qk
j , t

k
j + εj), for some numbers

δi, εi, and εj. Choose δi and εi such that τi(Qi, Ti)δi < εi. This ensures that when δi and

εi are small enough, type i can strictly increase her utility by trading ck
i with buyer k and
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(Qj, Tj) with the buyers other than k, thereby trading (Qi + δi, Ti + εi) in the aggregate;

according to Lemma 4, this is feasible as Bj > 0. Because Ui ≥ z−k
i (qk

j , t
k
j ) and the function

z−k
i is continuous, it is possible, given the values of δi and εi, to choose εj positive and

small enough so that type i trades ck
i following buyer k’s deviation. Turning now to type j,

observe that she must trade either ck
i or ck

j following buyer k’s deviation: indeed, because

εj is positive, type j strictly prefers ck
j to any contract she could have traded with buyer

k before the deviation. If type j selects ck
j , then buyer k’s profit from this deviation is

mi(viδi − εi) + mj(vjq
k
j − tkj − εj), which, because vjq

k
j − tkj = bk

j > 0 by assumption, is

positive when δi, εi, and εj are small enough, in contradiction with the zero-profit result.

Therefore, type j must select ck
i following buyer k’s deviation, and for this deviation not to

be profitable one must have

v(Qi −Qj + δi)− vi(Qi −Qj)− εi ≤ 0. (7)

Now, recall that as a consequence of Assumption SC, (v − vi)(Qi − Qj) ≥ 0. Therefore,

letting δi and εi go to zero in (7), we get Qi = Qj, and hence the equilibrium must be

pooling. Replacing in (7), what we have shown is that for any small enough δi and εi such

that τi(Qi, Ti)δi < εi, one has vδi ≤ εi. As δi can be positive or negative, it follows that

τi(Qi, Ti) = v. However, according to Lemma 3, one also has τj(Qj, Tj) = v as Bj > 0.

Because (Qi, Ti) = (Qj, Tj), this contradicts Assumption SC. Hence the result. ¥

Along with Lemma 2, this no-cross-subsidization result leads to the conclusion that one

must have QH ≤ 0 ≤ QL in any equilibrium. This excludes two types of equilibrium

outcomes that have been emphasized in the literature: first, pooling outcomes such as the

one described in Attar, Mariotti, and Salanié (2011), in which both types would trade the

same nonzero quantity at a price equal to the average quality of the good; second, separating

outcomes such as the one described by Jaynes (1978), Hellwig (1988), and Glosten (1994),

and illustrated on Figure 1 below. If one leaves aside the case in which both types trade

nonzero quantities on opposite sides of the market, the remaining possibilities for equilibrium

outcomes are either that there is no trade in the aggregate, or that only one type actively

trades at a fair price in the aggregate.

To illustrate the logic of the no-cross-subsidization result, consider a candidate separating

equilibrium with positive quantities QL > QH > 0, as illustrated on Figure 1. The basic

price structure of such an equilibrium is delineated in Lemma 2(ii).

—Insert Figure 1 Here—
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Let k be a buyer whose profit bk
H from trading with type H is positive. According to

Lemma 4, the aggregate trade (QH , TH) remains available if buyer k removes his menu offer.

He can thus attempt to pivot on (QH , TH) to attract type L, which amounts to offer a

contract ck
L = (QL − QH , TL − TH + εL), for some positive number εL. When εL is small

enough, the loss for buyer k from trading ck
L with type L is negligible, as the slope of the

line segment connecting (QH , TH) and (QL, TL) is the fair price vL. For buyer k’s deviation

to be profitable, he must make a profit when trading with type H. To do so, he can offer an

additional contract ck
H = (qk

H , tkH + εH), for some positive number εH . Because (qk
H , tkH) was

available for trade in equilibrium, ck
L is more attractive than ck

H for type L as long as εL is

large enough relative to εH . Now, if type H trades ck
H , the deviation is profitable, because,

when εH is small enough, ck
H yields a profit close to bk

H > 0 when traded by type H, whereas

the loss from trading ck
L with type L is negligible. If type H trades ck

L instead, the deviation

is still profitable, because ck
L yields a positive profit when traded by both types. This shows

that there exists no separating equilibrium with positive quantities. The reasoning for a

pooling equilibrium is slightly more involved, but reaches the same conclusion.

Remark. The proof of Proposition 3 shows that cross-subsidies are not sustainable in

equilibrium because it would otherwise be possible for some buyer to neutralize the type on

which he makes a loss by proposing her to mimic the behavior of the other type when facing

the other buyers. A key feature of this deviation is that it is performed by a buyer who is

actively and profitably trading with one type in equilibrium.17 Moreover, it is crucial for the

argument that this buyer deviates to a menu including two nontrivial contracts targeted at

the two types of the seller. Observe that this class of deviations was not considered in the

early contributions of Jaynes (1978) and Glosten (1994). Jaynes (1978), who studies strategic

competition between insurance providers under nonexclusivity, indeed restricts firms to use

simple insurance policies. That is, each firm can propose at most one contract different from

the no-trade contract.18 As a consequence, an incumbent firm cannot profitably deviate

by simultaneously making a loss when trading with the high-risk agent and compensating

this loss when trading with the low-risk agent. Glosten (1994) characterizes an aggregate

17It is unclear that an entrant would be able to upset the above candidate equilibrium. One might think
that an entrant could successfully attempt to nearly reap the aggregate profit on type H, say by proposing
a contract of the form (QH , TH + εH), while making limited losses on type L by proposing a contract of
the form (QL − QH , TL − TH + εL) as above. Yet this would overlook the fact that by proposing such a
contract to type H, the entrant would globally modify the structure of available trades, unlike the local
deviation (qk

H , tkH + εH) we used in the proof of Proposition 3. As a result, type L might well be attracted
by the contract (QH , TH + εH) that she may find it profitable to trade along some contracts offered by the
incumbents, thereby upsetting the attempt at a successful entry.

18This assumption is maintained in the reformulation of Jaynes (1978) proposed by Hellwig (1988).
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price-quantity schedule that is robust to entry. In our setting, this schedule would be as

depicted on Figure 1. By contrast, we do not take the aggregate price-quantity schedule as

given, but we derive it from the individual menus offered by the buyers.

So far, we have focused on the aggregate equilibrium implications of our model. We now

briefly sketch a few implications for individual equilibrium trades. The following result shows

that each traded contract yields zero profit, and that aggregate and individual equilibrium

trades have the same sign.

Proposition 4 In any equilibrium, bk
j = 0 and qk

L ≥ 0 ≥ qk
H for all j and k.

Proposition 4 reinforces the basic insight of our model, according to which, in equilibrium,

the seller can signal her type only through the sign of the quantities she trades. It follows

that if a type does not trade in the aggregate, then she does not trade at all. Hence a pooling

equilibrium, when it exists, is actually a no-trade equilibrium.

3.5 Aggregate Equilibrium Trades

In this section, we fully characterize the candidate aggregate equilibrium trades, and we

provide necessary conditions for the existence of an equilibrium. Given the price structure

of equilibria delineated in Section 3.3 and the no-cross-subsidization result established in

Section 3.4, all that remains to be done is to give restrictions on each type’s equilibrium

marginal rate of substitution. Two cases need to be distinguished, according to whether or

not a type’s aggregate trade is zero in equilibrium.

Our first result is that if type j does not trade in the aggregate, then her equilibrium

marginal rate of substitution must lie between v and vj. This is why an equilibrium may fail

to exist for some parameter values.

Lemma 5 If in equilibrium Qj = 0, then vj − τj(0, 0) and τj(0, 0)− v have the same sign.

The intuition for Lemma 5 is as follows. Suppose for instance that QH = 0. If vH >

τH(0, 0), then any buyer could attract type H by proposing a contract offering to buy a small

positive quantity at a unit price lower than vH . For this deviation not to be profitable, type

L must also trade this contract, and one must have τH(0, 0) ≥ v, so that the deviator makes

a loss when both types trade this contract. The same reasoning applies if vH < τH(0, 0), by

considering a contract offering to sell a small positive quantity at a unit price higher than

vH . The case QL = 0 can be handled in a symmetric way.
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Our second result is that if type i trades a nonzero quantity in the aggregate, then she

must trade efficiently in equilibrium.

Lemma 6 If in equilibrium Qi 6= 0, then τi(Qi, Ti) = vi.

The intuition for Lemma 6 is as follows. Suppose for instance that QL > 0. As cross-

subsidization cannot occur in equilibrium, TL = vLQL. If type L were trading inefficiently in

equilibrium, that is, if τL(QL, TL) 6= vL, then there would exist a contract offering to buy a

positive quantity at a unit price lower than vL, and that would give type L a strictly higher

utility than (QL, TL). Any of the buyers could profitably attract type L by proposing this

contract, which would be even more profitable for the deviating buyer if traded by type H.

Hence type L must trade efficiently in equilibrium. The case QH < 0 can be handled in a

symmetric way.

To state our characterization result, it is necessary to define first-best quantities. The

following assumption ensures that these quantities are well defined.

Assumption FB For each i, there exists Q∗
i such that τi(Q

∗
i , viQ

∗
i ) = vi.

Assumption FB states that Q∗
i is the efficient quantity for type i to trade at a unit price

vi that gives an aggregate zero profit for the buyers. An important consequence of the strict

quasiconcavity of ui is that Q∗
i ≥ 0 if and only if τi(0, 0) ≤ vi, and that Q∗

i = 0 if and only

if τi(0, 0) = vi. In the pure-trade model, Q∗
i is defined by c′i(Q

∗
i ) = vi. In the insurance

model, because of the agent’s risk aversion, efficiency requires full insurance for each agent

i, so that Q∗
i = WG−WB. The credit model is special in that the constraint that quantities

must remain nonnegative may be binding. Efficiency requires that the net present value of

the project, πifi(T )− T , be maximized; if this leads to a positive and finite investment, the

promised repayment Q∗
i that makes the investors just break even satisfies πif

′
i(πiQ

∗
i ) = 1.

By contrast, if πif
′
i(0) ≤ 1, borrower i’s investment project has a nonpositive net present

value, and it is efficient not to invest in her project.

We can now state our main characterization result.

Theorem 1 If an equilibrium exists, then τL(0, 0) ≤ v ≤ τH(0, 0). Moreover,

• If vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH , all equilibria are pooling, with QL = QH = 0.

• Otherwise, all equilibria are separating, and

(i) If τL(0, 0) < vL < v < vH < τH(0, 0), then QL = Q∗
L > 0 and QH = Q∗

H < 0.
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(ii) If τL(0, 0) < vL < v ≤ τH(0, 0) ≤ vH , then QL = Q∗
L > 0 and QH = 0.

(iii) If vL ≤ τL(0, 0) ≤ v < vH < τH(0, 0), then QL = 0 and QH = Q∗
H < 0.

The first message of Theorem 1 is a negative one: the nonexclusive competition game

need not have an equilibrium. A necessary condition for an equilibrium to exist is that at

a price equal to the average quality v, type L would like to sell some of the good, whereas

type H would like to buy some of it. In the pure-trade model, no equilibrium exists if

c′L(0) > v or c′H(0) < v, that is, if the low-cost seller L is not eager enough to sell, or if

the high-cost seller H is too eager to sell. In the insurance model, no equilibrium exists

if [πH/(1 − πH)]u′(WG)/u′(WB) < π/(1 − π), where π ≡ mLπL + mHπH , that is, if the

low-risk agent H is too eager to buy insurance.19 In the credit model, no equilibrium exists

if πf ′H(0) > 1, where again π ≡ mLπL +mHπH , that is, if the low-default-risk borrower H is

too eager to invest.20 Overall, Theorem 1 reinforces the insight of the no-cross-subsidization

result: an equilibrium exists only if the adverse selection problem is severe enough, so that

both types’ incentives to trade are not too closely aligned. On a more positive note, we

show in Theorem 2 that the necessary condition τL(0, 0) ≤ v ≤ τH(0, 0) also turns out

to be sufficient for the existence of an equilibrium. Thus Theorem 1 provides a complete

description of the structure of possible aggregate equilibrium outcomes, which is summarized

on Figure 2.

—Insert Figure 2 Here—

Second, Theorem 1 shows that pooling additionally requires vL ≤ τL(0, 0) and vH ≥
τH(0, 0); by the no-cross-subsidization result, we already know that a pooling equilibrium

involves no trade for both types. The conditions vL ≤ τL(0, 0) and vH ≥ τH(0, 0) together

imply that Q∗
L ≤ 0 ≤ Q∗

H . When one of these inequalities is strict, the first-best quantities

are not implementable. Thus pooling requires a strong form of nonresponsiveness: namely,

in the first-best scenario, type L would like to buy, and type H to sell. This cannot arise in

the insurance model, for in that case Q∗
L = Q∗

H = WG−WB. Therefore, the insurance model

admits no pooling equilibrium. In the pure-trade model, a pooling equilibrium requires that

c′L(0) ≥ vL and c′H(0) ≤ vH .21 In the credit model, a pooling equilibrium requires that

19This result is also obtained in Ales and Maziero (2011) assuming free entry. The second existence
condition τL(0, 0) ≤ v, or, equivalently, [πL/(1− πL)]u′(WG)/u′(WB) ≤ π/(1− π), is automatically satisfied
in the insurance model as π > πL and u′(WB) > u′(WG).

20The second existence condition τL(0, 0) ≤ v, or, equivalently, πf ′L(0) ≥ 1, is irrelevant in the credit
model because the borrower cannot raise negative amounts of capital, see Section 5.1 and the appendix.

21This is for instance the case in the Biais, Martimort, and Rochet (2000) setting if θL ≥ vL and θH ≤ vH .
It should however be noted that they explicitly rule out this parameter configuration.
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πLf ′L(0) ≤ 1 or, equivalently, that the investment project of the high-default-risk borrower

L has nonpositive net present value.22

Third, Theorem 1 states that in a separating equilibrium, at least one of the types trades

efficiently. In case (i), types L and H’s preferences are sufficiently far apart from each other,

in the sense that Q∗
L > 0 > Q∗

H : in the first-best scenario, type L would like to sell, and

type H to buy, a strong form of responsiveness. In that case, both types end up trading

their first-best quantities in equilibrium. Clearly, neither the insurance model nor the credit

model admit an equilibrium of this kind. In the pure-trade model, a first-best equilibrium

exists if c′L(0) < vL and c′H(0) > vH . In case (ii), both Q∗
L and Q∗

H are nonnegative: in

the first-best scenario, both types would like to sell. The seller’s preferences may or may

not satisfy responsiveness. The unique candidate equilibrium outcome is then that seller L

trades efficiently, while seller H does not trade at all. This is the situation that prevails in the

insurance model when an equilibrium exists: in that case, the high-risk agent L obtains full

insurance at an actuarially fair price, while the low-risk agent H purchases no insurance. In

the pure-trade model, this type of equilibrium exists only if c′L(0) < vL and c′H(0) ≤ vH . In

the credit model, this type of equilibrium exists only if πLf ′L(0) > 1, that is, if the investment

project of the high-default-risk borrower L has positive net present value.23 Finally, case

(iii) is symmetric to case (ii), exchanging the roles of types L and H. Note that in any

separating equilibrium, each type strictly prefers her aggregate equilibrium trade to that of

the other type. This contrasts with the predictions of models of exclusive competition under

adverse selection, such as Rothschild and Stiglitz’s (1976), in which the high-risk agent L is

indifferent between her equilibrium contract and that of the low-risk agent H.

Remark It is interesting to compare the conclusions of Theorem 1 with those reached by

Attar, Mariotti, and Salanié (2011) in a nonexclusive version of Akerlof’s (1970) market

for lemons. Compared to the present setup, the two distinguishing features of their model

is that the seller has linear preferences, ui(Q, T ) = T − θiQ, and makes choices under an

aggregate capacity constraint, Q ≤ 1. Observe that in this context, type i’s marginal rate of

substitution is constant and equal to θi up to capacity. In a two-type version of their model

in which there are potential gains from trade for each type, that is, vL > θL and vH > θH ,

Attar, Mariotti, and Salanié (2011) show that the nonexclusive competition game always

admits an equilibrium, that the buyers earn zero profits, and that the aggregate equilibrium

allocation is generically unique. If θH > v, the equilibrium is similar to the separating

22The second pooling condition τH(0, 0) ≤ vH , or, equivalently, πHf ′H(0) ≥ 1, is irrelevant in the credit
model because the borrower cannot raise negative amounts of capital, see Section 5.1 and the appendix.

23Again, the condition τH(0, 0) ≤ vH is irrelevant in the credit model.
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equilibrium found in case (ii) of Theorem 1: type L trades efficiently, QL = 1 and TL = vL,

while type H does not trade at all, QH = TH = 0. By contrast, if θH < v, the situation is

markedly different from that described in Theorem 1. First, an equilibrium exists, whereas,

in the analogous situation where τH(0, 0) < v, no equilibrium exists in our model. Second,

any equilibrium is pooling and efficient, that is, QL = QH = 1 and TL = TH = v, whereas

cross-subsidies and therefore nontrivial pooling equilibria are ruled out in our model. The

key difference between the two setups that explains these discrepancies is that in the present

paper, we do not require the seller’s choices to satisfy an aggregate capacity constraint. This

implies that some deviations that are crucial for our characterization result are not available

in Attar, Mariotti, and Salanié (2011). A case in point is the no cross-subsidization result:

key to the proof of Proposition 3 is the possibility for a deviator who makes profit when

trading with type j to pivot on (Qj, Tj) to attract type i, while preserving the profit he

makes with type j. However, for the argument to go through, there must be no restrictions

on the quantities traded in such deviations; in particular, it is crucial that the deviator be

able to induce type i to consume more than Qi in the aggregate.24 This, however, is precisely

what is impossible to do in the presence of a capacity constraint when both types trade up

to capacity, as in the pooling equilibrium described in Attar, Mariotti, and Salanié (2011).

4 Equilibrium Existence

To establish the existence of an equilibrium, we impose the following technical assumption

on preferences.

Assumption T There exist QH and QL such that

τH(Q, T ) < vH if Q < QH , and τL(Q, T ) > vL if Q > QL,

uniformly in T .

Assumption T ensures that equilibrium menus can be constructed as compact sets of

contracts, and does not affect in any way our previous results. It should be emphasized that

the restrictions it imposes on preferences are rather mild. In the pure-trade model, because

24Formally, it follows from the proof of Proposition 3 that if BH > 0 in a pooling equilibrium where each
type trades a positive aggregate quantity Q, then, for any small enough additional trade (δL, εL) such that
τL(Q, T )δL < εL, and that would thus attract type L, one must have vδL ≤ εL. If there are no restrictions
on δL, this implies that τL(Q,T ) = v, from which a contradiction can be derived using Lemma 3. Yet if, for
some reason, only nonpositive δL were admissible, say, because the seller could not trade more than Q in
the aggregate, then one could only conclude that τL(Q,T ) ≤ v, from which no contradiction would follow.
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of the quasilinearity of preferences, Assumption T follows from Assumption FB, and one

can take QH = Q∗
H and QL = Q∗

L. In the insurance model, Assumption T follows from

the agent’s risk aversion, and one can take QH = QL = WG − WB = Q∗
H = Q∗

L. In the

credit model, Assumption T needs to be slightly modified, because quantities traded remain

nonnegative and, more importantly, because τi(Q, T ) = 1/f ′i(T ) only depends on T . It is

however easy to check from the proof of Theorem 2 that on this side of the market, we need

only require Assumption T to hold for aggregate trades (Q, T ) such that T ≥ vLQ. In the

credit model, this amounts to assuming that 1 > πLf ′L(πLQ) for Q large enough, which is

automatically satisfied if Assumption FB holds for i = L.

We can now state our existence result.

Theorem 2 An equilibrium exists if and only if τL(0, 0) ≤ v ≤ τH(0, 0). Moreover, there

exists Q > 0 > Q such that any equilibrium can be supported by at least two buyers posting

the same tariff

t(q) ≡ min{vLq, vHq}, Q ≤ q ≤ Q,

while the other buyers stay inactive.

Theorem 2 shows that the necessary condition for the existence of an equilibrium given in

Theorem 1 is also sufficient. These two results together provide a complete description of the

aggregate equilibrium outcomes of our game. As for individual strategies, the tariffs chosen

here to support equilibria entail linear pricing for both positive and negative quantities, with

a kink at zero that one may interpret as a bid-ask spread. Another noteworthy feature of

these strategies is that in no case can a buyer make a loss. Hence, even if these strategies

involve contracts that are not traded in equilibrium, these latent contracts cannot turn out

to be costly for the buyers. The number of active buyers is indifferent.

The lower and upper bounds Q and Q were only introduced to make sure that the

corresponding menus of contracts are compact, to be consistent with the assumptions of

our main characterization result. Yet the intuition of our existence result is easier to grasp

when one eliminates these bounds. Suppose that some buyer were to deviate, for instance

in the hope of making profits from trading with type H. Because his competitors cannot

make losses, this implies that following the deviation, the aggregate trade (Q̂H , T̂H) chosen

by type H should verify vHQ̂H > T̂H . As the trade (Q̂H , t(Q̂H)) is available anyway, we get

T̂H ≥ t(Q̂H), which implies Q̂H > 0. Because we have τH(0, 0) ≥ v by assumption, we also

get that the final transfer T̂H cannot be less than vQ̂H .
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Similarly define (Q̂L, T̂L) as the aggregate trade of type L following the deviation. Type

L could trade as type H does, and sell in addition a quantity Q̂L − Q̂H in exchange for a

transfer t(Q̂L − Q̂H). By the single-crossing property, Q̂L ≥ Q̂H . Hence type L can end

up selling an aggregate quantity Q̂L in exchange for a transfer T̂H + vL(Q̂L − Q̂H). As she

chooses to trade (Q̂L, T̂L) instead, this shows that T̂L ≥ T̂H + vL(Q̂L− Q̂H). But we already

know that T̂H ≥ vQ̂H . In line with (4), we obtain that aggregate profits cannot be positive.

As the deviator’s competitors cannot make losses, the deviation cannot be profitable.

The fact that buyers cannot make losses should not be interpreted as an extreme aversion

to the hazard of trading under adverse selection. Recall indeed from Proposition 4 that in

equilibrium, the seller credibly signals her information by the sign of the trade she proposes

to make with each buyer. The buyers then become perfectly informed of the seller’s type,

and Bertrand competition pushes prices down to their willingness-to-pay. Hence buyers

cannot make losses, but they do not make any profits neither. The fact that only two active

buyers are needed to sustain an equilibrium confirms the Bertrand-like nature of nonexclusive

competition in our setting.

Finally, we made no attempt at minimizing the size of equilibrium menus. The proof

of Theorem 2 provides such an implementation in the efficient case (i) of Theorem 1, for

which it is sufficient that at least two buyers propose the efficient trades (Q∗
L, vLQ∗

L) and

(Q∗
H , vHQ∗

H); but for the other more complex cases, we only got partial results. The question

of minimum implementation thus remains open.

5 Extensions

5.1 Nonnegative Trades

In some situations, a natural constraint on feasible trades is that quantities traded remain

nonnegative: think, for example, of a producer selling a product of unknown quality, of a

household buying insurance coverage when negative insurance is ruled out, or of a borrower

seeking credit. It turns out that our results directly extend to this case, with obvious

modifications, and the appendix lists the minor changes that are needed in the proofs. In

words, an equilibrium exists if and only if τH(0, 0) ≥ v. Indeed, the condition τL(0, 0) ≤ v

becomes irrelevant, because if QL = 0 and τL(0, 0) > v, the option of offering type L to trade

a negative quantity is no longer available. The characterization of aggregate equilibrium

trades is then as follows. If τL(0, 0) < vL then, in any equilibrium, type L trades the efficient

quantity Q∗
L, while type H does not trade at all. By contrast, if τL(0, 0) ≥ vL then, in any
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equilibrium, neither type L nor H trade. Note that in this case, it is efficient for type L

not to trade, but not necessarily so for type H, as, for instance, in the credit model when

πLf ′L(0) ≤ 1 but πHf ′H(0) > 1. Finally, any equilibrium outcome may be implemented by

having all buyers ready to buy any quantity up to a large upper bound at a constant unit

price vL.

5.2 Multiple Sellers

Another noteworthy extension to be considered is the case of multiple sellers. So suppose

that n buyers now face m sellers indexed by l = 1, . . . , m. Our results extend to this new

game, under the following assumptions. First, each buyer is able to identify each seller.

Second, communication remains private and bilateral: a buyer cannot observe what other

buyers propose, and what transactions each seller concludes with other buyers. Consequently

a buyer k can only propose to each seller l to choose a contract in a menu Ck
l , a contract

being as above a quantity-transfer bundle.25 Third, the profit of a buyer remains additive,

and equal to the sum of the profits he obtains with each seller. Under these assumptions,

it is easily understood that each interaction between a given seller and the buyers can be

studied in isolation.26

Hence choose a seller l, and consider the collection of menus (C1
l , . . . , C

n
l ) that are offered

to her. Suppose there exists a buyer k for which a profitable deviation Ĉk
l 6= Ck

l exists in

the single-seller game associated with seller l. In the multiple-seller game, this means that

buyer k could deviate by offering the menus (Ck
1 , . . . , Ĉk

l , . . . , Ck
m) instead of the menus

(Ck
1 , . . . , Ck

l , . . . , Ck
m). As other sellers and buyers cannot notice nor react to this deviation,

this would only alter the interaction with seller l, and thus would constitute a profitable

deviation for buyer k in the multiple-seller game. Conversely, consider the multiple-seller

game, and choose a buyer k offering menus (Ck
1 , . . . , Ck

m). If there is a profitable deviation

(Ĉk
1 , . . . , Ĉk

m) for buyer k, then there must exist a seller l for which offering Ĉk
l instead of

Ck
l increases buyer k’s profit. Therefore, such a change constitutes a profitable deviation for

buyer k in the single-seller game played with seller l.

Together, these two arguments show that an equilibrium exists in the multiple-seller

game if and only if an equilibrium exists in each of the m single-seller games; and that any

25Indeed, Han (2006, Theorem 1) has established that when attention is restricted to pure-strategy perfect
Bayesian equilibria, any profile of equilibrium payoffs that can be more generally supported by arbitrary
private bilateral communication mechanisms can also be supported by letting each principal independently
offer a menu of contracts to each agent.

26The argument presented here parallels the one exposed more formally in Attar, Mariotti, and Salanié
(2011, Lemma 2).
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aggregate equilibrium outcome in the multiple-seller game must be such that each seller ends

up with the unique aggregate equilibrium allocation characterized in Theorem 1. Thus our

results extend to the case of multiple sellers. Note finally that these arguments also hold for

heterogeneous sellers, whose types may be correlated, as is plausibly the case on financial

markets.

5.3 Beyond Two Types

In our model, the seller’s type can only take two values. The crucial simplification this

assumption affords us is the ability to fully control the behavior of each type following some

buyer’s deviation. This property notably simplifies our pivoting technique, as developed in

Lemma 1, and then used in Proposition 1, Lemma 4, and Proposition 4. Indeed, we often

use two-contract deviations for buyer k such that one of these contracts attracts type j and

increases the profit buyer k makes with her, whereas the other contract is close to the contract

buyer k would trade with type i in equilibrium. Then we reason as follows: if type i were

to trade the latter contract, buyer k would have a profitable deviation; hence type i must

trade the same contract as type j. This, in turn, allows us to infer some information about

the structure of equilibrium trades. Observe that because there are only two alternatives to

consider, this kind of argument does not require the seller’s indirect utility functions z−k
i to

be well behaved.

Beyond two types, it becomes hard, if not untractable, to control the behavior of each

type following such a deviation. A first attempt at addressing this problem, and therefore at

extending our analysis to an arbitrary number of types, consists in focusing on equilibria in

which the seller’s indirect utility functions z−k
i satisfy some additional properties. In related

work, we extend our model to an arbitrary but finite number of types, concentrating on pure-

strategy equilibria in which buyers offer concave quantity-transfer schedules or, equivalently,

convex menus (Attar, Mariotti, and Salanié (2012)). It should be noted that the same

restriction is made by Biais, Martimort, and Rochet (2000), which allows us to draw a clear

comparison between our results and theirs.

A key implication of the assumption that buyers offer convex menus in equilibrium is

that the indirect utility functions z−k
i now satisfy a single-crossing property. This remarkably

simplifies the analysis of buyers’ deviations, as a given contract may only attract an “interval”

of types. The results in Attar, Mariotti, and Salanié (2012) then partially generalize the

insights of the present paper. First, equilibria in convex menus when they exist involve large

inefficiencies: the only type who may actually trade in equilibrium is the one who is the
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most eager to sell.27 Next, this type when she trades does so at a fair price, involving zero

profits for the buyers. Finally, equilibrium existence conditions are increasingly difficult to

meet when the number of types becomes large.

This Bertrand-like outcome contrasts with the Cournot-like outcome highlighted by Biais,

Martimort, and Rochet (2000) in a version of the same model in which there is a continuum

of types. As noted in Attar, Mariotti, and Salanié (2011), a general insight of our analysis

thus seems to be that the properties of equilibria crucially depend on the cardinality of the

set of seller’s types. A possible explanation for this discrepancy can be provided along the

following lines. When the number of types is finite, any equilibrium in convex menus has the

property that for any buyer k, at least one type is indifferent between two contracts in the

menu she offers. If buyer k deviates to an alternative menu that entails a slight perturbation

of these two contracts, he can effectively induce a significant change in the seller’s behavior,

as well as a discontinuity in his own profit. Hence the Bertrand-like outcome. By contrast,

when the seller’s type varies continuously, it might well be that the seller is never indifferent

between two contracts offered by any buyer k. Indeed, in the equilibrium constructed by

Biais, Martimort, and Rochet (2000), the seller has a unique best response given the menus

offered by the buyers. This implies in particular that the contract traded by type θ with any

buyer k varies continuously with θ. Then consider again a slight perturbation of the contracts

traded by buyer k with types in some small interval (θ0, θ1). Such an alternative offer may

induce each type in (θ0, θ1) to trade contracts different from her equilibrium contract. By

the single-crossing property, though, each of these types will choose to trade a contract close

to her equilibrium contract. Given the continuity of his profit function, the corresponding

change in buyer k’s profit will be marginal. Hence the Cournot-like outcome.

To the best of our knowledge, this discontinuity between models with discrete type sets

and models with continuous type sets is novel in the screening literature. It is hard to

think of an a priori argument that would rule in favor of either assumption. In the context

of our model, discrete type sets allow one to dispense with the regularity assumptions on

distributions and valuations which play an important role in Biais, Martimort, and Rochet’s

(2000) model.

6 Conclusion

In this paper, we analyzed the impact of adverse selection on markets where competition

is nonexclusive. We fully characterized aggregate equilibrium trades, which are uniquely

27We restrict attention to the case where quantities sold must remain nonnegative.
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determined, and we provided a necessary and sufficient condition for the existence of a pure-

strategy equilibrium. Our results show that under nonexclusivity, market breakdown may

arise in a competitive environment where buyers compete through arbitrary menu offers:

specifically, whenever the first-best outcome cannot be achieved, equilibria when they exist

involve no trade for at least one type of the seller.

These predictions contrast with those that obtain under exclusive competition, namely,

that one type of the seller trades efficiently, while the other type signals the quality of

the good she offers by trading a suboptimal, but nonzero quantity of this good. When

competition is nonexclusive, each buyer’s inability to control the seller’s trades with his

opponents creates additional deviation opportunities. This makes screening more costly,

and implies that the seller either trades efficiently, or does not trade at all.

Our results may explain why some markets are underdeveloped. For instance, theory

predicts that individual should find it in their best interest to annuitize a large part of

their lifetime savings (Yaari (1965)), yet in practice the demand for annuities remains low.

Although several demand-side explanations, such as bequest motives, have been proposed

to solve this puzzle, our analysis points at an alternative supply-side explanation based on

nonexclusivity and adverse selection. As mentioned in the introduction, nonexclusivity is a

common feature of annuity markets. Adverse selection may arise because individuals have

private information about their survival prospects. In this context, our analysis predicts that

market participation should be limited to individuals with the best survival prospects, who

have more to gain from purchasing annuities. This severely limits the size of the market,

unless participation is made mandatory. A similar argument may be put forward to explain

the thinness of the long-term-care insurance market.

There has been so far few investigations of the welfare implications of adverse selection in

markets where competition is nonexclusive. A natural development of our analysis would be

to study the decision problem faced by a planner seeking to implement an efficient allocation,

subject to informational constraints and to the constraint that exclusivity be nonenforceable.

It is unclear that such a planner may improve on the market allocation characterized in this

paper. If he could, this would provide new theoretical insights in favor of welfare-based

regulatory interventions, in particular in the context of financial or insurance markets.
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Appendix

Proof of Lemma 1. Let i, k, q, and t be as in the assumption of the lemma, and suppose

that viq−t > bk
i . Buyer k can deviate by proposing a menu consisting of the no-trade contract

and of the contracts ck
i = (q, t + εi) and ck

j = (qk
j , t

k
j + εj), for some positive numbers εi and

εj. Given the assumption of the lemma, by trading ck
i with buyer k and (Qi− q, Ti− t) with

the buyers other than k, type i gets utility ui(Qi, Ti + εi) > Ui. In equilibrium one has Ui ≥
z−k

i (qk
j , t

k
j ), and the function z−k

i is continuous. Thus ui(Qi, Ti +εi) > z−k
i (qk

j , t
k
j +εj) for any

small enough εj, so that, for any such εj, type i must select ck
i following buyer k’s deviation.

Consider now type j’s behavior. By trading ck
j , type j can get utility uj(Qj, Tj +εj) > Uj, so

that she must select either ck
i or ck

j following buyer k’s deviation. If type j selects ck
j , then,

by deviating, buyer k earns a profit

mi(viq − t− εi) + mj(vjq
k
j − tkj − εj) = mi(viq − t) + mjb

k
j − (miεi + mjεj).

However, from the assumption that viq− t > bk
i , this is strictly higher than bk when εi and εj

are small enough, a contradiction. Hence type j must select ck
i following buyer k’s deviation.

In equilibrium this deviation cannot be profitable, so that vq − t− εi ≤ bk. Letting εi go to

zero yields the desired implication. The result follows. ¥

Proof of Lemma 2. In the case of a pooling equilibrium, the conclusion follows immediately

from the zero-profit result. Consider next a separating equilibrium, and let us start with

case (ii): QL > QH ≥ 0. We know from Proposition 1 that SL ≤ 0. Suppose that SL < 0.

From (5) and the zero-profit result, we get BH ≤ bk
H for each k, which implies that BH ≤ 0.

Now, notice from (4) that

B = vQH − TH + mLSL = BH + mL[SL − (vH − vL)QH ].

Because BH ≤ 0, SL < 0 and QH ≥ 0, we obtain that B < 0, a contradiction. Therefore, it

must be that SL = 0, so that TL − TH = vL(QL − QH). This implies that B = vQH − TH ,

so that TH = vQH as B = 0. The result follows. Case (iii) follows in a similar manner,

exchanging the roles of L and H. Consider finally case (i): QL > 0 > QH . As above,

B = BH + mL[SL − (vH − vL)QH ] = 0. Suppose that BH > 0 and thus BH > bk
H for some

k. Again, from (5), this implies that SL = 0 and thus that BH −mL(vH − vL)QH = B = 0.

Because vH > vL and BH > 0, one must have QH > 0, a contradiction. Hence BH ≤ 0.

Symmetrically, using that B = BL + mH [SH − (vL − vH)QL] = 0, we get BL ≤ 0. Thus

BL = BH = 0 as B = 0, and hence TL = vLQL and TH = vHQH . The result follows. ¥
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Proof of Lemma 3. If Bj > 0, then one must have Tj = vQj by Lemma 2. Any buyer

k can deviate by proposing a menu consisting of the no-trade contract and of the contract

ck
j = (Qj + δj, Tj + εj), for some numbers δj and εj. Suppose by way of contradiction that

τj(Qj, Tj) 6= v. Then one can choose δj and εj such that τj(Qj, Tj)δj < εj < vδj. When

δj and εj are small enough, the first inequality guarantees that type j can strictly increase

her utility by trading ck
j with buyer k. If type i trades ck

j , then buyer k’s profit from this

deviation is v(Qj + δj)− (Tj +εj) = vδj− εj > 0, in contradiction with the zero-profit result.

Therefore, type i must not trade with buyer k, and for this deviation not to be profitable

one must have mj[vj(Qj + δj)− (Tj + εj)] = mj(Bj + vjδj − εj) ≤ 0. Letting δj and εj go to

zero yields Bj ≤ 0, a contradiction. The result follows. ¥

Proof of Lemma 4. Suppose first that Uj > z−k
j (0, 0) for some k. Then buyer k can deviate

by proposing a menu consisting of the no-trade contract and of the contract ck
j = (Qj, Tj−εj),

for some positive number εj. When εj is small enough, one has uj(Qj, Tj − εj) > z−k
j (0, 0),

so that type j trades the contract ck
j following buyer k’s deviation. If type i does not trade

the contract ck
j , buyer k’s profit from this deviation is mj(vjQj−Tj + εj) = mj(Bj +εj) > 0,

in contradiction with the zero-profit result. If type i trades the contract ck
j , then, because

Tj = vQj by Lemma 2, buyer k’s profit from this deviation is vQj − Tj + εj = εj > 0, again

in contradiction with the zero-profit result. As in any case Uj ≥ z−k
j (0, 0), it must be that

Uj = z−k
j (0, 0) for each k. It follows that for any buyer k, there exists an aggregate trade

(Q−k, T−k) with the buyers other than k such that uj(Q
−k, T−k) = Uj.

Suppose now that Q−k 6= Qj. Then, from the strict quasiconcavity of ui and Lemma

3, one must have T−k > vQ−k. We now examine two deviations for buyer k that pivot on

(Q−k, T−k). First, define (q1, t1) such that (q1, t1) + (Q−k, T−k) = (Qj, Tj). Then the seller

can trade (Qj − q1, Tj − t1) with the buyers other than k. Moreover, using the fact that

Tj = vQj by Lemma 2, and that T−k > vQ−k, we get

vq1 − t1 = v(Qj −Q−k)− (Tj − T−k) = T−k − vQ−k > 0.

Therefore, by Lemma 1, one must have vjq1 − t1 ≤ bk
j , that is, using again Tj = vQj,

T−k − vjQ
−k + (vj − v)Qj ≤ bk

j . As T−k > vQ−k, this implies that

(vj − v)(Qj −Q−k) < bk
j . (8)

Second, define (q2, t2) such that (q2, t2) + (Q−k, T−k) = (Qi, Ti). Then the seller can trade

(Qi − q2, Ti − t2) with the buyers other than k. Moreover, using the fact that Si = 0 and
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Tj = vQj by Lemma 2, that T−k > vQ−k, and that (v − vi)(Qi − Qj) ≥ 0 by Assumption

SC, we get

vq2 − t2 = v(Qi −Q−k)− (Ti − T−k)

= T−k − vQ−k + vQi − [Tj + vi(Qi −Qj)− Si]

= T−k − vQ−k + (v − vi)(Qi −Qj)

> 0.

Therefore, by Lemma 1, one must have viq2 − t2 ≤ bk
i , that is, using again Si = 0 and

Tj = vQj, T−k − viQ
−k + (vi − v)Qj ≤ bk

i . As T−k > vQ−k, this implies that

(vi − v)(Qj −Q−k) < bk
i . (9)

Because v = mivi + mjvj, and mib
k
i + mjb

k
j = 0 by the zero-profit result, averaging (8) and

(9) yields 0 < 0, a contradiction. Therefore, one must have Q−k = Qj, and thus T−k = Tj

as uj(Q
−k, T−k) = Uj = uj(Qj, Tj). The result follows. ¥

Proof of Proposition 4. We first prove that bk
j = 0 for all j and k. Suppose by way of

contradiction that bk
j > 0 for some j and k. We first show that Si = Sj = 0. To prove that

Si = 0, observe that by the no-cross-subsidization result, one has bl
j < 0 = Bj for some l 6= k.

From (5), this implies that miSi ≥ B − bl. Because B − bl = 0 by the zero-profit result,

and because Si ≤ 0 by Proposition 1, it follows that Si = 0. To prove that Sj = 0, observe

that if bk
j > 0, then bk

i < 0 = Bi by the zero-profit result and the no cross-subsidization

result. Arguing as for Si, it follows that Sj = 0. Hence Si = Sj = 0, as claimed. As

Si + Sj = (vi − vj)(Qi − Qj), one must have Qi = Qj, and the equilibrium is pooling, with

(Qi, Ti) = (Qj, Tj) = (0, 0). Now, because bk
j > 0, and because (Qj, Tj) = (0, 0) can obviously

be traded with the buyers other than k, one can show as in the proof of Proposition 3 that

τi(0, 0) = v. Finally, consider buyer l as above. As bl
j < 0, one has bl

i > 0 by the zero-profit

result. Because (Qi, Ti) = (0, 0) can obviously be traded with the buyers other than l, it

follows along the same lines that τj(0, 0) = v as well, which contradicts Assumption SC.

Hence the result.

We next prove that qk
L ≥ 0 ≥ qk

H for each k. Because vH > vL and

sk
i = vi(q

k
i − qk

j )− (tki − tkj ) = bk
i − bk

j − (vi − vj)q
k
j = (vj − vi)q

k
j

as bk
i = bk

j = 0, we only need to show that sk
i ≤ 0 for all i and k. Choose i, k, and l 6= k,

and set q ≡ qk
i + ql

i − qk
j and t ≡ tki + tli − tkj . Then the seller can trade (Qi − q, Ti − t) =
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(qk
j +

∑
m6=k,l q

m
i , tkj +

∑
m6=k,l t

m
i ) with the buyers other than l. We can thus apply Lemma

1. One has

viq − t− bl
i = vi(q

k
i + ql

i − qk
j )− (tki + tli − tkj )− bl

i = sk
i

and

vjq − t− bl
j = vj(q

k
i + ql

i − qk
j )− (tki + tli − tkj )− bl

j = −(sk
j + sl

j).

Therefore, according to (1),

sk
i > 0 implies mis

k
i ≤ mj(s

k
j + sl

j). (10)

Now, suppose by way of contradiction that sk
i > 0 for some i and k. Then, by (10),

mis
k
i ≤ mj(s

k
j + sl

j) (11)

for each l 6= k. Summing on l 6= k yields

(n− 1)mis
k
i ≤ mj[Sj + (n− 2)sk

j ].

From Proposition 1, we know that Sj ≤ 0. Hence, if sk
i > 0, one must also have sk

j > 0.

Exchanging the roles of i and j in (10) yields

mjs
k
j ≤ mi(s

k
i + sl

i) (12)

for each l 6= k. Combining (11) and (12) leads to mis
k
i ≤ mjs

l
j +mi(s

k
i +sl

i), or, equivalently,

mis
l
i + mjs

l
j ≥ 0 for each l 6= k. Note that we also have mis

k
i + mjs

k
j > 0 as both sk

i and sk
j

are positive. Summing all these inequalities yields miSi + mjSj > 0, in contradiction with

Proposition 1. Hence the result. ¥

Proof of Lemma 5. Suppose that Qj = 0. If τj(0, 0) = vj, the result is immediate.

Suppose then that τj(0, 0) 6= vj. Any buyer k can deviate by proposing a menu consisting of

the no-trade contract and of the contract ck
j = (δj, εj), for some numbers δj and εj. Choose

δj and εj such that τj(0, 0)δj < εj < vjδj. This ensures that when δj and εj are small enough,

type j can strictly increase her utility by trading ck
j with buyer k, and that buyer k thereby

makes a positive profit with type j. Therefore, type i must also trade ck
j following buyer

k’s deviation, and for this deviation not to be profitable one must have εj ≥ vδj. Thus we

have shown that for any small enough δj and εj, τj(0, 0)δj < εj < vjδj implies that εj ≥ vδj,

which is equivalent to the statement of the lemma. The result follows. ¥
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Proof of Lemma 6. By the no-cross-subsidization result, if Qi 6= 0, the equilibrium must

be separating. Moreover, from Lemma 2, one must have Ti = viQi. Suppose by way of

contradiction that τi(Qi, Ti) 6= vi. Then any buyer k can deviate by proposing a menu

consisting of the no-trade contract and of the contract ck
i = (qi, ti), for some numbers qi and

ti. As τi(Qi, Ti) 6= vi, it follows from the strict quasiconcavity of ui that one can choose

(qi, ti) close to (Qi, Ti) such that Ui < ui(qi, ti) and ti < viqi, where qi is positive if i = L,

and negative if i = H. The first inequality guarantees that type i trades ck
i following buyer

k’s deviation. As viqi > ti, type j must also trade ck
i following buyer k’s deviation, and

one must have ti ≥ vqi, for, otherwise, this deviation would be profitable. Overall, we have

shown that viqi > vqi. Because qi is positive if i = L and negative if i = H, and because

vH > v > vL, we obtain a contradiction in both cases. The result follows. ¥

Proof of Theorem 1. Suppose first that a pooling equilibrium exists. Then, according to

the no-cross-subsidization result, QL = QH = 0. Lemma 5 then implies that

vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH . (13)

Suppose next that a separating equilibrium exists. Then, according again to the no-cross-

subsidization result, only three scenarios are possible.

(i) In the first case, QH < 0 < QL. Then, by Lemma 2, TL = vLQL and TH = vHQH .

Moreover, by Lemma 6, τL(QL, TL) = vL and τL(QH , TH) = vH . As a result, QL = Q∗
L and

QH = Q∗
H , so that Q∗

H < 0 < Q∗
L. The strict quasiconcavity of ui then implies that

τL(0, 0) < vL and τH(0, 0) > vH . (14)

(ii) In the second case, QH = 0 < QL. Then, by Lemma 5, v ≤ τH(0, 0) ≤ vH . Moreover,

by Lemma 2, TL = vLQL. Finally, by Lemma 6, τL(QL, TL) = vL. As a result, QL = Q∗
L, so

that Q∗
L > 0. The strict quasiconcavity of ui then implies that

τL(0, 0) < vL and v ≤ τH(0, 0) ≤ vH . (15)

(iii) In the third case, QH < 0 = QL. Then, by Lemma 5, vL ≤ τL(0, 0) ≤ v. Moreover,

by Lemma 2, TH = vHQH . Finally, by Lemma 6, τH(QH , TH) = vH . As a result, QH = Q∗
H ,

so that Q∗
H < 0. The strict quasiconcavity of ui then implies that

vL ≤ τL(0, 0) ≤ v and τH(0, 0) > vH . (16)

To conclude the proof, observe that from (13) to (16), an equilibrium exists only if τL(0, 0) ≤
v ≤ τH(0, 0). As conditions (13) to (16) are mutually exclusive, the characterization of the

candidate aggregate equilibrium trades is complete. Hence the result. ¥
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Proof of Theorem 2. Choose an integer m, 2 ≤ m ≤ n, and fix Q and Q such that

Q < min{0, QH}/(m− 1) and Q > max{0, QL}/(m− 1). Suppose that m buyers post the

tariff t defined as in the theorem, while the other buyers stay inactive and only propose the

no-trade contract. Consider any buyer. In the aggregate his competitors post the tariff

T−(Q−) ≡ min{vLQ−, vHQ−}, Q1 ≤ Q− ≤ Q1,

where Q− refers to the aggregate quantity they trade. Here Q1 is either mQ or (m − 1)Q,

and thus is no greater than QH ; and similarly for Q1, which cannot be smaller than QL.

Note also that if the efficient trade Q∗
H is negative, then Q1 ≤ Q∗

H ≤ Q1; and symmetrically

for Q∗
L.

Suppose that our buyer deviates, and ends up trading (qL, tL) with type L and (qH , tH)

with type H. For his deviation to be profitable, he must make a positive profit with at

least one type, say type H (the proof for type L is symmetrical). Hence vHqH > tH . Define

Q−
i ∈ [Q1, Q1] as the quantity traded by type i with the deviator’s competitors following his

deviation. Define also Q̂i as the total quantity traded by type i, so that Q̂i = qi + Q−
i , and

T̂i as the total transfer obtained by type i, so that T̂i = ti + T−(Q−
i ). The tariff T− is such

that the deviator’s competitors cannot make losses following the deviation. Therefore, as

vHqH > tH , one must have vHQ̂H > T̂H . Because the no-trade contract is available, we get

uH(Q̂H , vHQ̂H) > uH(Q̂H , T̂H) ≥ uH(0, 0). (17)

If Q̂H < 0, then (17) implies that τH(0, 0) > vH , so that Q∗
H < 0. By construction of the tariff

T−, type H can then trade (Q∗
H , vHQ∗

H) with the deviator’s competitors, thereby getting

utility uH(Q∗
H , vHQ∗

H) = maxQ {uH(Q, vHQ)} > uH(Q̂H , T̂H) by (17), a contradiction. As

the case Q̂H = 0 is trivially ruled out by (17), it must be that Q̂H > 0. From (17), we

now get τH(0, 0) < vH , for, otherwise, type H would be strictly better off not trading

at all than trading (Q̂H , vHQ̂H).28 Because τH(0, 0) ≥ v by assumption, from (17) again

we get T̂H ≥ vQ̂H , for, otherwise, type H would be strictly better off not trading at all

than trading (Q̂H , T̂H). Finally, notice that T−(Q−) ≤ vQ− for all Q− ∈ [Q1, Q1]. Thus

vQ̂H = vqH + vQ−
H ≤ T̂H = tH + T−(Q−

H) < vHqH + vQ−
H , and hence qH > 0.

Type L may also choose to trade (qH , tH) with the deviator. He would then have to

choose some Q− to maximize uL(qH + Q−, tH + T−(Q−)), subject to Q1 ≤ Q− ≤ Q1. Notice

28Note that the condition τH(0, 0) < vH excludes the efficient case (i) of Theorem 1. In that simple case,
an inspection of the above lines reveals that we have only used the fact that (Q∗H , vHQ∗H) is offered by the
deviator’s competitors. We have thus shown that in the efficient case (i) of Theorem 1, any equilibrium can
be sustained by having at least two buyers posting the two trades (Q∗H , vHQ∗H) and (Q∗L, vLQ∗L).
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first from the definition of QL that the constraint Q− ≤ Q1 does not play any role: indeed

qH > 0, so that, when Q− reaches its upper bound Q1, the total quantity traded qH + Q−

is higher than QL, and therefore type L’s marginal rate of substitution is higher than vL by

Assumption T. We can thus eliminate the constraint Q− ≤ Q1, taking care of extending the

tariff T− beyond Q1 by setting T−(Q−) ≡ vLQ− for all Q− > Q1. Now, Q̂L − qH satisfies

the remaining constraint Q1 ≤ Q−; indeed, thanks to Assumption SC, we have Q̂L ≥ Q̂H ,

so that Q̂L − qH ≥ Q−
H ≥ Q1. We thus have shown that type L can get at least utility

uL(Q̂L, tH + T−(Q̂L − qH)). Observe that the transfer in this expression can be rewritten

as T̂H + T−(Q̂L − qH)− T−(Q−
H), which is no less than T̂H + vL(Q̂L − Q̂H) by concavity of

T−. Because type L is supposed to end up with utility uL(Q̂L, T̂L) following the deviation, it

follows that T̂L ≥ T̂H +vL(Q̂L− Q̂H). Moreover, as shown above, T̂H ≥ vQ̂H . Therefore, the

aggregate profit, which may as usual be written as vQ̂H−T̂H +mL[vL(Q̂L−Q̂H)−(T̂L−T̂H)],

is at most zero. Because the tariff T− is such that the deviator’s competitors cannot make

losses, the deviation cannot be profitable. Hence the result. ¥.

When only Nonnegative Quantities Can Be Sold. A careful re-reading of the proofs

leads to the following changes.

Lemma 1 is still valid, but only when q is nonnegative. Proposition 1 now only allows to

conclude that SL ≤ 0. Because SL = BL −BH + (vH − vL)QH , and QH ≥ 0 by assumption,

a useful consequence of Proposition 1 is that BH ≥ BL.

Proposition 2 still holds. Indeed (5) still holds, as its derivation only involves nonnegative

trades. Once (5) is proven, one has to include the following argument. Suppose B > 0.

From the above remark that BH ≥ BL, it must be that BH > 0, and there exists k such that

BH > bk
H . From (5) applied to k at (i, j) = (L,H), we get mLSL ≥ B − bk =

∑
l 6=k bl ≥ 0.

As SL ≤ 0 by Proposition 1, we get SL = 0. But by the single-crossing property, SL + SH =

(vL − vH)(QL − QH) ≤ 0, so we now know that both SL and SH are nonpositive. One can

then use the last lines of the proof of Proposition 2 to conclude that profits must be zero.

Lemma 2 still holds. Only the pooling case and case (ii) remain.

Lemma 3 and its proof are unchanged. Indeed, notice that if Bj > 0, then one must have

Qj > 0, so that deviations involving a small change in this quantity are feasible.

Lemma 4 still holds, but the proof has to be adapted somewhat. Suppose Bj > 0. From

the zero-profit result and the above remark that BH ≥ BL, it must be that j = H. As

BH > 0, there exists k such that BH > bk
H , and thus we can apply (5) to k at (i, j) = (L,H)

to get SL = 0. The first step of the proof shows without changes that there exists an

aggregate trade (Q−k, T−k) with the buyers other than k such that uH(Q−k, T−k) = UH . If

39



Q−k < QH , then the two deviations used in the rest of the proof are feasible, as both q1 and

q2 are positive. If QH < Q−k < QL, then only deviation (q2, t2) is feasible (recall that j = H),

so that (9) holds. Therefore, bk
L > 0. Because BL ≤ 0, this implies that there exists l 6= k

such that BL > bl
L. We can then apply (5) to l at (i, j) = (H,L) to get SH = 0. Because

SL = SH = 0 and SL + SH = (vL − vH)(QL −QH), we get QL = QH , in contradiction with

our assumption that QH < Q−k < QL. Finally, it cannot be that Q−k ≥ QL, for, otherwise,

type L would strictly prefer (Q−k, T−k) to (QL, TL) by the single-crossing property.

Proposition 3 still holds. Recall that the assumption Bj > 0 implies that j = H, and

thus the proof of Proposition 3 needs no change.

At this point, we know from Lemma 2 and Proposition 3 that QH = TH = 0 in any

equilibrium, so that necessarily qk
H = tkH = 0 for each k, and that TL = vLQL. Deriving

the other results is then easy, and only requires minor adaptations to the proofs. The only

important difference concerns Lemma 5 and, as a result, the statement of the necessary

condition for the existence of an equilibrium in Theorem 1. Indeed, although the reasoning

in Lemma 5 remains correct, we must take into account the restriction δj ≥ 0. When j = L,

we get that τL(0, 0)δL < εL < vLδL implies that εL ≥ vδL and thus vLδL > εL ≥ vδL, which

is impossible if δL ≥ 0. By contraposition, we can thus only conclude that τL(0, 0) ≥ vL if

QL = 0. As a result, τL(0, 0) ≤ v is no longer a necessary condition for the existence of an

equilibrium. Indeed, one may have QL = 0 and yet τL(0, 0) > v > vL. When j = H, by

contrast, the conclusion of Lemma 5 remains correct, from which it follows that τH(0, 0) ≥ v

is a necessary, and indeed sufficient condition for the existence of an equilibrium. ¥
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Figure 1 This figure depicts a candidate Jaynes–Hellwig–Glosten equilibrium with QL >
QH > 0.
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Figure 2 This figure depicts the structure of equilibrium aggregate trades as a function of
τL(0, 0) and τH(0, 0) > τL(0, 0), for fixed parameters vL, vH , and v.
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