
HAL Id: hal-02636278
https://hal.inrae.fr/hal-02636278v1

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NADPH oxidases in the arbuscular mycorrhizal
symbiosis

Simone Belmondo, Cristina Calcagno, Andrea Genre, Alain Puppo, Nicolas
Pauly, Luisa Lanfranco

To cite this version:
Simone Belmondo, Cristina Calcagno, Andrea Genre, Alain Puppo, Nicolas Pauly, et al.. NADPH
oxidases in the arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 2016, 11 (4),
�10.1080/15592324.2016.1165379�. �hal-02636278�

https://hal.inrae.fr/hal-02636278v1
https://hal.archives-ouvertes.fr


SHORT COMMUNICATION

NADPH oxidases in the arbuscular mycorrhizal symbiosis

Simone Belmondoa, Cristina Calcagnoa, Andrea Genrea, Alain Puppob, Nicolas Paulyb, and Luisa Lanfrancoa

aDipartimento di Scienze della Vita e Biologia dei Sistemi, Universit�a degli Studi di Torino, Via Accademia Albertina 13, Torino, Italy; bINRA, Universit�e
de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France

ARTICLE HISTORY
Received 12 February 2016
Accepted 8 March 2016

ABSTRACT
Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both
signal and stressor in several plant processes, including defense responses against pathogens. ROS
accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in
understanding how ROS-mediated defense programs are modulated during the establishment of this
mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called
RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically
upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a
strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On
this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular
accommodation of arbuscules.
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Roots of »80% of plant species in natural and agricultural
systems are colonized by arbuscular mycorrhizal (AM) fungi, a
crucial component of the plant microbiota.1 In this mutualistic
symbiosis the fungus delivers to the plant mineral nutrients,
mainly phosphorus and nitrogen, in exchange for carbon.2

Besides promoting plant growth, AM fungi sustain other
important functions such as soil aggregation and water reten-
tion, tolerance to biotic and abiotic stresses and increase in
plant biodiversity.3 The clear ecological and economic impor-
tance of this symbiosis has strongly boosted the interest of the
scientific community.

This very ancient and intimate plant-fungus association is
thought to rely on a rigorous colonization program that leads
the plant cell to accommodate intracellular fungal structures,
including hyphae and highly branched arbuscules.4 Root colo-
nization is associated with massive rewiring of nutrient fluxes
that guarantee reciprocal benefits to both the host plant and
the fungus.5 Important advances have been achieved in the last
years on the molecular mechanisms governing the symbiosis;
however, the way this mutualistic interaction overtakes plant
defense remains largely obscure. In this frame, a key role is
emerging for fungal effector proteins as communication factors,
in analogy to several plant pathogenic interactions.6,7 The SP7
secreted protein from Rhizophagus irregularis was indeed
shown to interfere with the expression of plant defense genes.6

On the plants side, a conserved defense response to patho-
gens is the production of Reactive Oxygen Species (ROS) which
play a pivotal role in regulating numerous responses to biotic
and abiotic stresses in plants. The complexity in ROS responses
to diverse stimuli has been proposed to rely on the multiple
regulatory mechanisms of ROS production via NADPH oxi-
dases, one of the primary sources of ROS.8 NADPH oxidases,

known in plants as RBOH (respiratory burst oxidase homolog)
catalyze the production of superoxide by transferring electrons
from NADPH to molecular oxygen, with secondary generation
of H2O2. They are encoded by a multigene family, with up to
10 different members in the model plant Arabidopsis thali-
ana.9,10 Complex mechanisms of RBOH regulation, from tran-
scriptional to post-translational level, occur and contribute to
RBOH expression and function in an array of tissue
types and developmental stages under various environmental
conditions. 8,11

The activation of specific RBOH isoforms is responsible for
ROS accumulation in several plant-pathogen interactions12,13

and in the symbiotic interaction between legumes and
nitrogen-fixing rhizobia.14,15,16

H2O2 has been detected in root cells colonized by AM
fungi.17,18,19 Interestingly, the up-regulation of fungal genes
implicated in oxidative stress defense has also been reported in
mature mycorrhizas19,20 suggesting that protection against
localized ROS-based host defense responses may be involved in
arbuscule formation and/or maintenance. Starting from the
hypothesis that plant RBOH could be good candidates for
H2O2 production in arbuscular mycorrhizas, we have analyzed
in a recent publication the spatio-temporal expression profiles
of 5 Rboh genes from the model legume Medicago truncatula
(MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) during
the establishment of the AM symbiosis.21 MtRboh transcript
levels did not drastically change in total RNA extractions from
whole mycorrhizal and non mycorrhizal roots in a time course
experiment of root colonization (7, 14, 28 and 60 d post-inocu-
lation), with the highest expression level always observed for
MtRbohG. This is not surprising, because AM colonization is
an asyncronous process and plant responses often develop on a
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small local scale in mycorrhizal roots. To achieve a more
detailed view of gene expression pattern we used a complemen-
tary cellular and molecular approach that allowed transcript
localization in different cell types. The analysis of Agrobacte-
rium rhizogenes-transformed roots expressing a GUS transcrip-
tional fusion construct with MtRboh promoters showed that all
genes are expressed in the central cylinder (in both mycorrhizal
and non mycorrhizal conditions), underlying the importance
of RBOH and ROS in cell wall metabolism.22 This approach
also highlighted the expression of MtRbohE in cells containing
arbuscules.

The laser microdissection technique clearly showed the
expression of 2 genes, MtRbohG and MtRbohE, in cortical cells,
whether or not they were colonized by fungal hyphae. Thus,
this technique turned out to be more sensitive than the GUS
histochemical assay since the MtRbohG promoter activity was
never observed in cortical cells. Remarkably, MtRbohE tran-
scripts appeared more abundant in arbuscule-containing cells
compared to adjacent non colonized cells, supporting the
results obtained with the GUS assay. A summary of the expres-
sion pattern of the 5 analyzed MtRboh genes in a mycorrhizal
root is shown in Fig. 1.

To further clarify the role of MtRbohE, we generated
RNAi lines. While RbohE-silenced plants showed a normal
nodulation phenotype, an altered AM colonization pattern
was observed in the root cortex, with fewer arbuscules and
more abundant intercellular hyphae, compared to control
roots (Fig. 2). Altogether our data indicate the transient
upregulation of MtRbohE expression in arbusculated cells
and suggest a role for MtRbohE in arbuscule accommodation
within cortical cells.

Our results integrate those from Arthikala and colleagues
who recently characterized RBOH in arbuscular mycorrhizas of

another legume plant: the PvRbohB gene from Phaseolus vulga-
ris (homolog of MtRbohG) turned out to act as a negative regu-
lator of the AM symbiosis while it is required for root infection
by rhizobia.23,24

Although only 2 Rboh genes from 2 different legumes
have been characterized so far 10,14,23,24 these findings sug-
gest that different gene members of the RBOH family play
distinct functions in the AM symbiosis; moreover, some of
them may even have opposite functions (promotion versus
inhibition) in the 2 types of root symbioses. Interestingly,
in the case of MtRbohE silencing, no phenotype has been
observed during rhizobial symbiosis.21 The temporal and
spatial fine tuning of RBOH-derived ROS, seems therefore
to contribute to the establishment of fully functional inter-
actions in these plant-microbe associations. The AM symbi-
ont may also participate to ROS production by specific
fungal NADPH oxidases (also known as Nox). Nox, which
also belong to a gene family with up to 3 (A, B and C) clas-
ses, play a key role in fungal cellular differentiation and
development.25 Interestingly, a NoxA gene was shown to be
critical for maintaining a mutualistic symbiosis between the
fungal endophyte Epichlo€e festucae and its host plant
Lolium perenne.26,27 Molecular and in silico analyses
revealed that the AM fungus Rhizophagus irregularis possess
Nox genes, belonging to class A and B, which are expressed
in arbuscule-containing cells (Fiorilli and Lanfranco, unpub-
lished results). A fungal contribution to NADPH-oxidases-
related processes in the in planta phase can thus be
envisaged.

Future challenges will be to decipher how the NADPH-oxi-
dases activities not only from the plant but also from the fungal
partner exert their control over the AM colonization process
eventually interacting with other signals.

Figure 1. Scheme of the expression profiles of the investigated MtRboh genes in a mycorrhizal root. Based on histochemical GUS assays MtRbohA, B, E, F and G are
expressed in the vascular cylinder while MtRbohE is also expressed in arbuscule-containing cells. Ep: epidermis; Co: cortex; Vc: vascular cylinder.
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