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Introduction

Grey mould is a common disease on many economically important crops worldwide. It is caused by the fungus Botrytis cinerea Pers. Fr. (teleomorph Botryotinia fuckeliana), an ascomycete able to attack more than two hundred species. When conditions are favourable, the fungus produces lesions and sporulates abundantly on aerial parts of plants (Epton & Richmond, 1980;Nicot et al., 1996). Conidia are released by a twisting of the conidiophore during variation of air humidity or by other mechanic forces related to wind or splash, and are easily disseminated by air currents (Jarvis, 1962;Harrison & Lowe, 1987). Conidia are considered as short-lived propagules and their survival is highly dependent on temperature, moisture and exposure to sunlight (Holz et al., 2004). In the epidemiology of grey mould, airborne inoculum can serve as primary inoculum as it is present almost all the time in the air (Leyronas & Nicot, 2013). Conidia also play a major role in the rapid colonization of neighbouring plants when conditions are favourable (Holz et al., 2004). In studies dealing with B. cinerea epidemiology a lot of attention is paid to airborne inoculum and much effort has been dedicated to monitoring this type of inoculum in order to prevent grey mould outbreaks (Johnson & Powelson, 1983;Blanco et al., 2006;Rodríguez-Rajo et al., 2010).
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Besides its abundant airborne inoculum, B. cinerea can also be found in the soil. Conidia may become buried in the soil and survive under favourable conditions of temperature and humidity. Moyano & Melgarejo (2002) reported a survival period for conidia in soil of one month at 22°C but only a one-week at 40°C. The fungus can also form sclerotia which are considered as the most important structures involved in the survival of Botrytis species (Coley-Smith, 1980). When fertilized with microconidia they can form apothecia leading to the production of ascospores. Moreover conidiophores can be formed directly on sclerotial tissue, producing numerous conidia. Both types of spores produced by sclerotia can be wind dispersed and may induce grey mould epidemics in neighbouring crops. Sclerotia are considered as a common form of conservation of B. cinerea in European regions with cold winters (Strømeng et al., 2009) but not in southern countries (Raposo et al., 2001), where sclerotia and apothecia are never observed in nature. B. cinerea can also survive as mycelium in plant debris (Coley-Smith, 1980). The mycelium usually hidden and protected inside the plant tissue produces conidia once it is wet (Yunis & Elad, 1989)thus increasing the inoculum pressure. Strømeng et al. (2009) reported up to 137,200 conidiophores produced per square meter of plant debris and 2,000 conidiophores produced per square meter of soil, in which respectively 53 and 43% were produced by mycelium rather than by sclerotia. Furthermore, direct infection by hyphae can also occur (Verhoeff, 1980). It is recommended to remove plant debris between cropping periods (Dik & Wubben, 2004), but some may remain on the soil and eventually become buried, for example by cultivation. Despite its possible epidemiological importance, little is known about the abundance and the role of soilborne inoculum in the development of grey mould.

As B. cinerea is mostly considered as an airborne pathogen, practices to reduce grey mould incidence on major crops are largely based on fungicidal treatments applied on aerial parts of plants (Leroux, 2004) and little is done to reach and treat the inoculum located in the soil. 
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Nevertheless, soil sanitation measures have been described for the control of various soilborne diseases. The efficacy of solarisation, which consists in increasing soil temperature with the help of a polyethylene soil cover, has been shown against several soil fungi, weeds and nematodes (Stapleton & DeVay, 1986). Biofumigation with a cruciferous cover crop (mustard in general) ploughed under immediately after flowering has been shown to release biocidal compounds against fungi, bacteria and nematodes (Vig et al., 2009). No information is available on a possible effects against B. cinerea.

In the South of France many vegetable species cultivated in soil under non-heated greenhouses are affected by grey mould. Contaminated plant debris and sclerotia from one crop may be released in the soil and constitute a potentially harmful reservoir of inoculum for the next. To investigate this issue, we characterized soilborne inoculum of B. cinerea in two unheated greenhouses, in which successive crops of lettuce were grown. The specific objectives of this study were to i)-evaluate the abundance of B. cinerea inoculum in the soil over time, ii)-determine if there was a relationship between this abundance and the incidence of grey mould on lettuce, iii)-compare the genetic characteristics of soilborne inoculum and inoculum sampled from lettuce plants.

Material and methods

Experimental set up

The experimental work was conducted from 2008 to 2010 in two unheated polyethylene greenhouses (tunnels named T5 and T7) located at the Alenya- 
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The soil was covered with a micro-perforated polyethylene mulch and the plants were sprinkle-irrigated. At harvest, leaf trimming was carried out inside the tunnels and the plant residues were removed immediately, together with the polyethylene mulch. The root residues were rotovated and buried in the soil at a depth of 25 cm. No fungicide was ever applied to the soil. A new mulch was placed over the soil before each new lettuce planting. The plants were efficiently protected against downy mildew with fungicide treatments applied until the 18-leaf stage according to common practice in commercial production. Minimal control of the climate inside the tunnels was obtained by passive ventilation through temperature-based opening of lateral and top vents.

As a sanitation practice in tunnel T5, a mustard crop (Brassica juncea, cv 1420) was sown on 23 April 2009. It was grown until flowering and then comminuted and buried on 19 June. In tunnel T7 the soil was left bare (fallow) during that time. In both tunnels the soil was then watered and covered with polypropylene mulch, and subjected to solarisation between 19

June and 20 September 2009.

Soil sampling

Soil sampling was carried out a few days before lettuce planting, just after lettuce harvest and before and after sanitation practices in both tunnels (Table 1). Each tunnel was divided in 4 sectors of equal area and in each sector, four soil samples were taken randomly with a 2 cm diameter auger at a depth of 0-30 cm. The four samples from a given sector were bulked and then stored at -20°C until analysis. 
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Quantification of soilborne inoculum

In each soil sample, a 1 g subsample was taken, examined to detect eventual sclerotia or plant debris and then suspended in 10 mL of sterile water. 

Evaluation of grey mould incidence on the lettuce crops

Incidence of grey mould in a tunnel was assessed immediately at harvest on the basis of presence or absence of typical B. cinerea conidiation on 150 plants sampled in a regular fashion in each of four sectors. Thus, a total of 600 plants was examined per tunnel. Mean grey mould incidence and its associated standard error were calculated for each tunnel.

Collection of isolates for genotyping

Isolates were collected on lettuce plants of tunnel T7 during harvest by rubbing sterile cotton buds on sporulating lesions. Isolates were also taken from soil samples by rubbing dry sterile cotton buds on sporulating colonies obtained in the soilborne inoculum quantification process described above. The cotton buds were stored at -20°C until isolate purification. All isolates 
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were purified and single-spored in a classical way (Leyronas et al., 2012) prior to their genotypic characterization. Hereafter these characterized single spore isolates will be referred to as "lettuce strains" and "soil strains".

Isolate genotyping.

Isolates from 8 combinations of dates and origin were genotyped (Table 1). Genomic DNA (2014). To determine the size of the microsatellites, the PCR products were diluted and multiplexed prior to scanning with the help of a Megabace sequencer (Amersham Pharmacia). Genetic Profiler software (Amersham Biosciences) was then used for the microsatellite size analysis. Complete microsatellite size profiles (referred to as "haplotypes" hereafter) were obtained for 67 lettuce strains and 66 soil strains.

Genetic diversity of strains collected from soil and from lettuce

Several indices of genetic diversity were used to compare lettuce and soil strains. The software FSTAT version 2.9.3 (Goudet, 1995) was used to compute allelic richness (corrected for the smallest sample size) and unbiased gene diversity per locus. Unbiased gene diversity (Hnb) and allelic richness (average over the nine loci) were computed separately for the soil strains and for the lettuce strains with the Genetix software (Nei, 1978). The number 
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proportion of haplotypes present in a population and takes a value of 1 when a population is composed exclusively of unique haplotypes (Arnaud-Haond et al., 2007). We also used the evenness index, whose value tends to 1 when haplotypes have a similar abundance (equitable distribution of clones) (Arnaud-Haond et al., 2007).

The program Multilocus 1.3b (Agapow & Burt, 2001) was used to calculate the standardized version of the index of association r d . This index is a measure of the multilocus linkage disequilibrium, which varies between 0 (complete panmixia) and 1 (no recombination). The null hypothesis of complete panmixia was tested by permuting alleles (microsatellite sizes) among strains, independently for each microsatellite marker (1000 permutations).

Genetic differentiation between lettuce strains and soil strains

In order to assess the genetic differentiation between soilborne inoculum and lettuce inoculum, pairwise Weir and Cockerham's F ST values were calculated with Arlequin version 3.0 (Excoffier et al., 2005) between strains collected from soil before a lettuce cropplanting, from lettuce at harvest and from soil after lettuce harvest. ARLEQUIN was also used for a hierarchical analysis of molecular variance (AMOVA) among soil and lettuce strains. 
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of ancestry of a strain in a cluster was greater than the arbitrary threshold of 0.8, this strain was considered to be unambiguously assigned to this cluster.

Statistical analysis

Statistical analysis were performed with StatView (version 5, SAS Institute). Non-parametric tests were used to determine significant differences between soilborne inoculum abundance before and after soil disinfestation (Wilcoxon), between unbiased gene diversity and allelic richness of lettuce and soil strains (Mann-Whitney) and correlations between grey mould incidence on crops at harvest and abundance of soilborne inoculum (Spearman test).

Statistical inferences were made at the 5 % level of significance, unless otherwise indicated.

Results

Grey mould incidence on lettuce and abundance of B. cinerea soilborne inoculum.

In both tunnels, the second lettuce crop was more attacked than the first and the fourth crop was more attacked than the third (Fig. 1). The plants were typically attacked at the collar by B. cinerea and we hardly ever observed any infection from the top downward (two or three plants per tunnel per season). The presence of Rhizoctonia and Sclerotinia was occasionally observed at harvest and their incidence was recorded (data not shown). As it was minor and there was no significant correlation between the incidence of B. cinerea and either of these two pathogens we assumed that they did not affect the analyses for Botrytis. Collapsed

Botrytis-infected plants were occasionally observed but this was always linked to a coinfection with Sclerotinia sp.

Although detectable amounts of soilborne inoculum could be quantified in all but one sampling date, an increase in disease incidence could not systematically be linked to an increase in soilborne inoculum. The amount of soilborne inoculum before crop planting was 
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not highly correlated to subsequent disease incidence on the plants (Spearman's Rho = 0.80; P= 0.11).

The sanitation practices during summer 2009 did not seem to have a significant impact on soilborne inoculum abundance in tunnel T7 (test of Wilcoxon; P =0.06). In tunnel T5, the statistical test could not be realised because no inoculum was detected in most samples taken before soil disinfestation. However, in both tunnels, there was a sharp decrease in disease incidence after summer and thus after soil disinfestation.

Comparison of genetic diversity of lettuce strains and soil strains

Among the 67 genotyped lettuce strains and 66 soil strains, two lettuce strains carried the private allele at microsatellite locus BC6 associated with the cryptic species B. pseudocinerea Walker et al., 2011) and were removed from further analyses. We thus compared the indices of genetic diversity based on the haplotypes obtained for the 131 remaining strains considered to be B. cinerea (65 lettuce and 66 soil strains). The allelic richness and the gene diversity per locus were not significantly different (test of Mann-Whitney) between lettuce and soil strains (P =0.3518 and P =0.1840, respectively) (Table 2). However, the lettuce strains showed higher genetic diversity than soil strains when considering the unbiased gene diversity within the 9 loci, the mean number of alleles per locus and the haplotypic diversity (Table 3). The evenness index was similar in lettuce strains and in soil strains indicating a similar distribution of haplotypes in both groups of strains. Seven MLH were shared by lettuce strains and soil strains, representing a total of 30 strains. Four MLH were found both in lettuce and in soil sampled just after lettuce harvest. Others were shared by lettuce and soil strains sampled several months apart (Table 4). The r d values estimating linkage disequilibrium were highly significant both for lettuce and soil strains (Table 3) thus rejecting the null hypothesis of random mating in both groups of strains. 

(
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Genetic differentiation between lettuce strains and soil strains.

The global degree of genetic differentiation between lettuce and soil strains was significant but very low (F ST =0.03, P<0.01). This result is consistent with the result of AMOVA analysis showing that only 2.75% (P< 0.001) of genetic variation occurred between lettuce and soil strains. The greatest variation (93.47%, P=0.10) occurred within sampling dates inside each group (Table 5).

In order to determine a possible relationship between the strains present on diseased lettuce and soilborne inoculum, pairwise F ST were calculated between strains sampled from soil before crop planting, from lettuce at harvest, and from soil after harvest (Table 6). In spring 2009, moderate and highly significant F ST were encountered between strains sampled from lettuce and strains sampled from soil before and after the crop. In winter 2009, a significant F ST value was also encountered between strains collected on lettuce and strains collected in soil before lettuce planting but its value was low (Table 6). In spring 2010 there was no genetic differentiation between strains collected on lettuce and those collected in soil before or after the crop. The genetic differentiation between the soilborne inoculum and the inoculum sampled from lettuce plants seemed to decrease progressively over the three successive lettuce crops.

Comparison of the genetic structure of lettuce strains and soil strains

Bayesian clustering was carried out using 98 MLH (clones were removed from each date for the analysis) in order to assess the genetic structure of B. cinerea strains sampled from lettuce and from soil (only in tunnel 7). The highest probability given by the maximum likehood distribution was obtained for K=4. The percentage of strains assigned to the 4 genetic clusters and of strains not assigned (P<0.80) at each date is shown in 
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cluster (cluster 2). The lettuce strains (April 2009) were distributed among the four clusters, but few were assigned to cluster 2 (Table 7). After one month of fallow and two months of solarisation, a quarter of the soil strains were not clearly assigned to a cluster. The strains collected from the lettuce in December 2009 were also partly not assigned to a cluster (13%) whereas those collected from soil just after harvest were again mostly assigned to cluster 2, as in the previous year. Finally, strains collected from the third lettuce crop in 2010 and those from soil just after that harvest were assigned to the same 3 clusters, with comparable proportions for lettuce and for soil strains.

Discussion

This study is the first attempt to characterize the inoculum of B. cinerea and to investigate its genetic diversity in soil. Based on the genetic structure and differentiation of 66 strains collected from the soil and 65 strains collected from diseased plants, it provided evidence for flows of inoculum between the crop and the soil where it is grown.

The first key result of the present study is the nearly consistent presence of viable propagules of B. cinerea in the soil of two greenhouses studied during four consecutive lettuce crops.

Based on dilution plating of soil samples, inoculum levels from 0 to 1177 propagules per gram were found in the first 30 cm of soil. These results raise the question of the nature of this inoculum, provided that sclerotia were never observed despite careful examination of the soil samples. Considering that large pieces of plant debris were not present in our soil samples, our hypothesis is that conidia or minute pieces of mycelium-carrying plant debris may have been present in the soil. The operations related to harvest, including the handling of lettuce heads and removal of senescent and diseased leaves, are likely to have released both conidia (abundantly present on some of the plants) and contaminated plant debris on the soil.

As the mulch was removed immediately after harvest and discarded, the soil surface may thus 
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have been contaminated by the deposition of conidia and pieces of colonized plant debris.

Subsequent soil cultivation would then have buried this inoculum, which could have possibly survived until the next soil sampling date, provided that temperatures remained favourable (Moyano & Melgarejo, 2002). This hypothesis is consistent with the previous observation of non-sclerotial inoculum in soil samples taken from strawberry fields in Norway (Strømeng et al., 2009). These soilborne propagules can potentially serve as primary inoculum for grey mould epidemics on either subsequent lettuce or other susceptible crops grown in rotation with lettuce, such as tomato (Leyronas et al., 2014). The inoculum present near the surface of the soil could infect directly the aerial parts of susceptible plants in contact with the soil.

The inoculum buried more deeply in the soil could possibly also play a role in disease 
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the two greenhouses. Air is one likely additional source of inoculum as it has been shown that exchange of inoculum can occur between the inside and the outside of a greenhouse through vents (Korolev et al., 2006;Leyronas et al., 2011;Bardin et al., 2014). The airborne conidia that deposited in the tunnels may have been collected by the mulch covering the soil and carried by sprinkler irrigation water to zones that retain humidity, such as the collar area of the plants and the underside of the basal leaves. The hypothesis of a contribution of airborne inoculum to disease development in our study is further supported by the generally higher genetic diversity observed for strains collected from lettuce than for those from soil (Table 3)

and by the significant genetic variation among dates (Table 5)... Formal assessment of such a hypothesis would be possible in further work by setting up concomitant quantification and genetic characterization of airborne and soilborne inoculum. Such studies could also help to assess a possible role of airborne inoculum abundance in the higher incidence of disease observed in spring than in winter on both years of our study (Fig. 1). Other hypotheses to explain these consistent differences could be the occurrence of more favourable environmental conditions for Botrytis development in spring than in winter, as the development of the fungus is known to be strongly reduced for temperatures below 10°C (see for example Sosa-Alvarez et al., 1995). Temperature differences may explain in part our 2009 results, as the mean temperatures in February and April were 8.8°C and 13.4°C, respectively (platform CLIMINRA, US1116, AGROCLIM, F-84000 Avignon). Differences in temperatures were not as contrasted between December 2009 (8.1°C) and March 2010 (9.4°C) and point to another possible source of variability, as two different lettuce varieties were used (Table 1).

The lack of efficiency of soil solarisation to reduce soilborne inoculum of B. cinerea in tunnel 7 came as a surprise. In south-eastern Spain, solarisation has been reported as an efficient method to reduce soilborne inoculum in the summer (Lopez-Herrera et al., 1994;Moyano & Comment citer ce document : 
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This article is protected by copyright. All rights reserved. Melgarejo, 2002). In our study, soil temperature (not recorded) may not have been sufficiently increased within the 30 cm layer that was sampled. Although the sanitation practices did not reduce soilborne inoculum, they appeared to induce substantial changes in the genetic structure of soilborne strains, affecting their distribution among genetic clusters.

This was supported by the significant genetic differentiation (F ST = 0.07; P<0.01) measured among soilborne strains before and after the sanitation measures. As far as we know, there is no literature dealing with the effect of soil sanitation practices on the genetic structure of soilborne fungal strains. However, Gelsomino & Cacco (2006) reported evidence for an influence of soil solarisation on the diversity of soilborne bacteria by promoting changes in species composition and in species richness. We hypothesize that in our study, the fungal strains showing higher resistance to heat may have been selected by solarisation, thus changing the genetic structure of soilborne inoculum. If those selected strains had overall lower aggressiveness on lettuce than the initial population, the reduction in observed disease despite the lack of reduction in inoculum abundance could thus be explained. Future work should focus on a phenotypic characterization of strains to test these hypotheses. 
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  development, when moved to the surface by soil cultivation. Although not much is known about the possible epidemiological relevance of root colonization of susceptible plants by B. cinerea, it could be hypothesized that it may play a role in its endophytic development reported for a variety of plants, including lettuce(Sowley et al., 2010).The second key result of the present study is evidence for flows of B. cinerea inoculum between the lettuce crops and the soil. Direct evidence of inoculum flow was provided by the observation of seven haplotypes shared between soil and lettuce, amounting to 23% of the total number of strains. Moreover the genetic differentiation between soilborne inoculum and the inoculum sampled from lettuce plants (assessed by F ST values) decreased with the four consecutive lettuce crops over the course of the study. This was paralleled by an increasing similarity of the genetic structure of the two groups of stains. Based on our data it may also be possible to propose a hypothesis on the general direction of these flows of inoculum, mainly from diseased plants to the soil. The absence of correlation between the abundance of soilborne inoculum before the planting of the lettuce crop and the incidence of grey mould at harvest suggests that other sources of inoculum may also have contributed to the epidemics in Comment citer ce document : Leyronas, C. (Auteur de correspondance), Duffaud, M., Pares, L., Jeannequin, B., Nicot, P. C. (2015). Flow of Botrytis cinerea inoculum between lettuce crop and soil. Plant Pathology, 64 (3), 701-708. , DOI : 10.1111/ppa.12284
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 1 Figure 1: Incidence of grey mould (green bars, left axis) and abundance of soilborne B.
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Table 2 :

 2 Allelic richness based on a minimum sample size of 39 strains (AR) and unbiased gene diversity (Hnb) for each microsatellite locus in B. cinerea strains sampled from lettuce and from soil.

Table 3 :

 3 Genetic diversity and linkage disequilibrium of strains sampled from lettuce and from soil.

Table 4 :

 4 Occurrence of haplotypes of B. cinerea shared by the samples taken from lettuce and soil over the duration of the study.

Table 5 :

 5 Hierarchical analysis of molecular variance (AMOVA) with strains' origin (lettuce

	vs soil) as grouping factor.

Table 6 :

 6 Assessment of genetic differentiation among B. cinerea strains according to sampling date.
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Table 7 :

 7 Distribution of lettuce and soil strains collected in tunnel T7 among the four genetic clusters determined by Bayesian computation.

Table 3

 3 

					Mean				
						Number of			
	Strains		Number		number of		Haplotypic		
				Hnb a,f		distinct		Evenness r d	c,d,e
	origin		of		alleles per		diversity		
						MLH b			
			isolates		locus				
				0.77					0.15
		total	65	(0.16)	10.8	52	0.80	0.84	**
		April		0.75					0.23
	lettuce	2009	24	(0.13)	7.3	21	0.56	0.46	**
		Dec.		0.72					0.08
		2009	27	(0.20)	6.7	22	0.80	0.67	**
		March		0.73					0.29
		2010	14	(0.23)	6.1	12	0.84	0.54	**
				0.68					0.10
		total	66	(0.25)	8.5	39	0.58	0.85	**
		Feb.		0.35					0.16
		2009	8	(0.23)	2.0	5	0.57	0	NS
		April		0.56					0.25
	soil								
		2009	13	(0.24)	4.0	11	0.83	0.55	HS
		Sept.		0.72					0.04 *
		2009	24	(0.20)	6.3	15	0.60	0.52	
		Dec.							

Table 5

 5 

	Sources of	d.f	Sum of	Variance	Percentage of	P value
	variation		squares	components	variation	
	Between lettuce	1	9.58	0.09	2.75	<0.0001
	and soil strains					
	Between dates	6	27.98	0.12	3.78	0.0008
	Within dates	90	287.53	3.19	93.47	0.1084
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