R. S. Goswami and H. C. Kistler, Heading for disaster: Fusarium graminearum on cereal crops, Mol. Plant Pathol, vol.5, pp.515-525, 2004.

A. Bottalico and G. Perrone, Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in europe, Eur. J. Plant Pathol, vol.108, pp.611-624, 2002.

A. E. Desjardins, Fusarium Mycotoxins Chemistry, Genetics and Biology, 2006.

C. M. Hazel and S. Patel, Influence of processing on trichothecene levels, Toxicol. Lett, vol.153, pp.51-59, 2004.

S. R. Pirgozliev, S. G. Edwards, M. C. Hare, and P. Jenkinson, Strategies for the control of Fusarium head blight in cereals, Eur. J. Plant Pathol, vol.109, pp.731-742, 2003.

M. Blandino, M. Haidukowski, M. Pascale, L. Plizzari, D. Scudellari et al., Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat, Field Crop. Res, vol.133, pp.139-149, 2012.

V. Terzi, G. Tumino, A. M. Stanca, and C. Morcia, Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species, J. Cereal Sci, vol.59, pp.284-293, 2014.

G. Bai and G. Shaner, Management and resistance in wheat and barley to Fusarium head blight, Annu. Rev. Phytopathol, vol.42, pp.135-161, 2004.

H. Schroeder and J. Christensen, Factors affecting resistance of wheat to scab caused by Gibberella zeae, Phytopathology, vol.53, pp.831-838, 1963.

A. Mesterhazy, Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight, Eur. J. Plant Pathol, vol.108, pp.675-684, 2002.

J. D. Miller, J. C. Young, and D. R. Sampson, Deoxynivalenol and Fusarium head blight resistance in spring cereals, J. Phytopathol, vol.113, pp.359-367, 1985.

H. Buerstmayr, T. Ban, and J. A. Anderson, QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review, vol.128, pp.1-26, 2009.

R. C. De-la-pena, K. P. Smith, F. Capettini, G. J. Muehlbauer, M. Gallo-meagher et al., Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley, Theor. Appl. Genet, vol.99, pp.561-569, 1999.

Z. Q. Ma, B. J. Steffenson, L. K. Prom, and N. L. Lapitan, Mapping of quantitative trait loci for Fusarium head blight resistance in barley, Phytopathology, vol.90, pp.1079-1088, 2000.

A. Mesfin, K. P. Smith, R. Dill-macky, C. K. Evans, R. Waugh et al., Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population, Crop Sci, vol.43, pp.307-318, 2003.

M. Martin, T. Miedaner, B. S. Dhillon, U. Ufermann, B. Kessel et al., Colocalization of qtl for gibberella ear rot resistance and low mycotoxin contamination in early European maize, Crop Sci, vol.51, pp.1935-1945, 2011.

P. Karlovsky, Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives, Appl. Microbiol. Biotechnol, vol.91, pp.491-504, 2011.

B. Kluger, C. Bueschl, M. Lemmens, H. Michlmayr, A. Malachova et al., Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines, PLoS ONE, 2015.

D. Balmer, V. Flors, G. Glauser, and B. Mauch-mani, Metabolomics of cereals under biotic stress: Current knowledge and techniques, Front. Plant Sci, vol.4, pp.1-12, 2013.

V. Bollina, G. K. Kumaraswamy, A. C. Kushalappa, T. M. Choo, Y. Dion et al., Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight, Mol. Plant Pathol, vol.11, pp.769-781, 2010.

V. Bollina, A. C. Kushalappa, T. M. Choo, Y. Dion, and S. Rioux, Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry, Plant Mol. Biol, vol.77, pp.355-370, 2011.

R. A. Browne and K. M. Brindle, NMR-based metabolite profiling as a potential selection tool for breeding passive resistance against Fusarium head blight (FHB) in wheat, Mol. Plant Pathol, vol.8, pp.401-410, 2007.

T. Cajka, M. Vaclavikova, Z. Dzuman, L. Vaclavik, J. Ovesna et al., Rapid metabolomics method based on liquid chromatography with mass spectrometry to study the Fusarium infection of barley, J. Sep. Sci, vol.37, pp.912-919, 2014.

S. K. Chamarthi, K. Kumar, R. Gunnaiah, A. C. Kushalappa, Y. Dion et al., Identification of Fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley, Eur. J. Plant Pathol, vol.138, pp.67-78, 2014.

R. Gunnaiah and A. C. Kushalappa, Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum, Plant Physiol. Biochem, vol.83, pp.40-50, 2014.

R. Gunnaiah, A. C. Kushalappa, R. Duggavathi, S. Fox, and D. J. Somers, Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (FHB1) contributes to resistance against Fusarium graminearum, PLoS ONE, 2012.

H. Hamzehzarghani, A. C. Kushalappa, Y. Dion, S. Rioux, A. Comeau et al., Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against Fusarium head blight, Physiol. Mol. Plant Pathol, vol.66, pp.119-133, 2005.

H. Hamzehzarghani, V. Paranidharan, Y. Abu-nada, A. C. Kushalappa, Y. Dion et al., Metabolite profiling coupled with statistical analyses for potential high-throughput screening of quantitative resistance to Fusarium head blight in wheat, Can. J. Plant Pathol, vol.30, pp.24-36, 2008.

G. K. Kumaraswamy, Differential metabolic response of barley genotypes, varying in resistance, to trichothecene-producing and -nonproducing (tri5-) isolates of Fusarium graminearum, Plant Pathol, vol.61, pp.509-521, 2012.

G. K. Kumaraswamy, V. Bollina, A. C. Kushalappa, T. M. Choo, Y. Dion et al., Metabolomics technology to phenotype resistance in barley against gibberella zeae, Eur. J. Plant Pathol, vol.130, pp.29-43, 2011.

K. G. Kumaraswamy, A. C. Kushalappa, T. M. Choo, Y. Dion, and S. Rioux, Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against Fusarium head blight (Fusarium graminearum), J. Chem. Ecol, vol.37, pp.846-856, 2011.

V. Paranidharan, Y. Abu-nada, H. Hamzehzarghani, A. C. Kushalappa, O. Mamer et al., Resistance-related metabolites in wheat against Fusarium graminearum and the virulence factor deoxynivalenol (DON), vol.86, pp.1168-1179, 2008.

A. L. Heuberger, F. M. Robison, S. M. Lyons, C. D. Broeckling, and J. E. Prenni, Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front, Plant Sci, vol.5, pp.1-11, 2014.

R. J. Bino, R. D. Hall, O. Fiehn, J. Kopka, K. Saito et al., Potential of metabolomics as a functional genomics tool, Trends Plant Sci, vol.9, pp.418-425, 2004.

O. Fiehn, J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey et al., Metabolite profiling for plant functional genomics, Nat. Biotechnol, vol.18, pp.1157-1161, 2000.

R. Hall, M. Beale, O. Fiehn, N. Hardy, L. Sumner et al., Plant metabolomics: The missing link in functional genomics strategies, Plant Cell, vol.14, pp.1437-1440, 2002.

L. W. Sumner, P. Mendes, and R. A. Dixon, Plant metabolomics: Large-scale phytochemistry in the functional genomics era, Phytochemistry, vol.62, pp.817-836, 2003.

C. Castro and C. Manetti, A multiway approach to analyze metabonomic data: A study of maize seeds development, Anal. Biochem, vol.371, pp.194-200, 2007.

J. K. Nicholson, J. Connelly, J. C. Lindon, and E. Holmes, Metabonomics: A platform for studying drug toxicity and gene function, Nat. Rev. Drug Discov, vol.1, pp.153-161, 2002.

J. L. Ward, C. Harris, J. Lewis, and M. H. Beale, Assessment of 1h nmr spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana, Phytochemistry, vol.62, pp.949-957, 2003.

B. Warth, A. Parich, C. Bueschl, D. Schoefbeck, N. K. Neumann et al., GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment, Metabolomics, vol.11, pp.722-738, 2015.

S. Ahmad, N. Veyrat, R. Gordon-weeks, Y. H. Zhang, J. Martin et al., Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize, Plant Physiol, vol.157, pp.317-327, 2011.

H. M. Niemeyer, Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: Key defense chemicals of cereals, J. Agric. Food Chem, vol.57, pp.1677-1696, 2009.

J. C. Zadoks and T. Chang,

C. F. Konzac, A decimal code for the growth stages of cereals, Weed Res, vol.14, pp.415-421, 1974.

F. Lattanzio, Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects, Phytochemistry: Advances in Research, pp.23-67, 2006.

R. A. Dixon, L. Achnine, P. Kota, C. Liu, M. S. Reddy et al., The phenylpropanoid pathway and plant defence-A genomics perspective, Mol. Plant Pathol, vol.3, pp.371-390, 2002.

M. Ravensdale, H. Rocheleau, L. Wang, C. Nasmith, T. Ouellet et al., Components of priming-induced resistance to Fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum, Mol. Plant Pathol, vol.15, pp.948-956, 2014.

M. Bu?ko, T. Góral, A. Ostrowska, A. Matysiak, D. Walentyn-góral et al., The effect of Fusarium inoculation and fungicide application on concentrations of flavonoids (apigenin, kaempferol, luteolin, naringenin, quercetin, rutin, vitexin) in winter wheat cultivars, Am. J. Plant Sci, vol.5, pp.3727-3736, 2014.

G. Agati, E. Azzarello, S. Pollastri, and M. Tattini, Flavonoids as antioxidants in plants: Location and functional significance, Plant Sci, vol.196, pp.67-76, 2012.

I. Hernandez, L. Alegre, F. Van-breusegem, and S. Munne-bosch, How relevant are flavonoids as antioxidants in plants?, Trends Plant Sci, vol.14, pp.125-132, 2009.

M. J. Jung, S. Heo, and M. Wang, HPLC analysis and antioxidant activity of Ulmus davidiana and some flavonoids, Food Chem, vol.120, pp.313-318, 2010.

D. Treutter, Significance of flavonoids in plant resistance: A review, Environ. Chem. Lett, vol.4, pp.147-157, 2006.

G. Venturini, S. L. Toffolatti, G. Assante, L. Babazadeh, P. Campia et al., The influence of flavonoids in maize pericarp on Fusarium ear rot symptoms and fumonisin accumulation under field conditions, Plant Pathol, vol.64, pp.671-679, 2015.

D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol, vol.7, pp.581-591, 2005.

J. Mierziak, K. Kostyn, and A. Kulma, Flavonoids as important molecules of plant interactions with the environment, Molecules, vol.19, pp.16240-16265, 2014.

K. Eggert, J. Hollmann, B. Hiller, H. P. Kruse, H. M. Rawel et al., Effects of Fusarium infection on the phenolics in emmer and naked barley, J. Agric. Food Chem, vol.58, pp.3043-3049, 2010.

G. Chitarrini, C. Nobili, F. Pinzari, A. Antonini, P. De-rossi et al., Buckwheat achenes antioxidant profile modulates Aspergillus flavu growth and aflatoxin production, Int. J. Food Microbiol, vol.189, pp.1-10, 2014.

R. A. Norton, Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavu by anthocyanidins and related flavonoids, J. Agric. Food Chem, vol.47, pp.1230-1235, 1999.

M. P. Salas, C. M. Reynoso, G. Céliz, M. Daz, and S. L. Resnik, Efficacy of flavanones obtained from citrus residues to prevent patulin contamination, Food Res. Int, vol.48, pp.930-934, 2012.

A. E. Desjardins, R. D. Plattner, and G. F. Spencer, Inhibition of trichothecene toxin biosynthesis by naturally-occurring shikimate aromatics, Phytochemistry, vol.27, pp.767-771, 1988.

R. Fernandez-orozco, L. Li, C. Harflett, P. R. Shewry, and J. L. Ward, Effects of environment and genotype on phenolic acids in wheat in the healthgrain diversity screen, J. Agric. Food Chem, vol.58, pp.9341-9352, 2010.

R. A. Assabgui, L. M. Reid, R. I. Hamilton, and J. T. Arnason, Correlation of kernel (E)-ferulic acid content maize with resistance to Fusarium graminearum, Phytopathology, vol.83, pp.949-953, 1993.

A. C. Bily, L. M. Reid, and J. H. Taylor, Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum, Phytopathology, vol.93, pp.712-719, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01557883

S. Samapundo, B. De-meulenaer, D. Osei-nimoh, Y. Lamboni, J. Debevere et al., Can phenolic compounds be used for the protection of corn from fungal invasion and mycotoxin contamination during storage? Food Microbiol, vol.24, pp.465-473, 2007.

J. D. Mckeehen, R. H. Busch, and R. G. Fulcher, Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance, J. Agric. Food Chem, vol.47, pp.1476-1482, 1999.

E. Siranidou, Z. Kang, and H. Buchenauer, Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium head blight, J. Phytopathol, vol.150, pp.200-208, 2002.

R. L. Nicholson and R. Hammerschmidt, Phenolic compounds and their role in disease resistance, Annu. Rev. Phytopathol, vol.30, pp.369-389, 1992.

A. Boutigny, F. Richard-forget, and C. Barreau, Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes, Eur. J. Plant Pathol, vol.121, pp.411-423, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02661614

A. L. Boutigny, C. Barreau, V. Atanasova-penichon, M. N. Verdal-bonnin, L. Pinson-gadais et al., Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures, Mycol. Res, vol.113, pp.746-753, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663752

N. Ponts, L. Pinson-gadais, A. L. Boutigny, C. Barreau, and F. Richard-forget, Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes, Phytopathology, vol.101, pp.929-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02645468

B. Bakan, A. Bily, D. Melcion, B. Cahagnier, C. Regnault-roger et al., Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels, J. Agric. Food Chem, vol.51, pp.2826-2831, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01557882

S. Beekrum, R. Govinden, T. Padayachee, and B. Odhav, Naturally occurring phenols: A detoxification strategy for fumonisin B1, Food. Addit. Contam, vol.20, pp.490-493, 2003.

K. Kostyn, M. Czemplik, A. Kulma, M. Bortniczuk, J. Skala et al., Genes of phenylpropanoid pathway are activated in early response to Fusarium attack in flax plants, Plant Sci, vol.190, pp.103-115, 2012.

A. Boutigny, Analyse de facteurs biochimiques interagissant dans le processus de biosynthèse des TCTB, Proceedings of Colloque Fusariotoxines des Céréale, pp.11-13, 2007.

N. Ponts, L. Pinson-gadais, C. Barreau, F. Richard-forget, and T. Ouellet, Exogenous H2O2 and catalase treatments interfere with tri genes expression in liquid cultures of Fusarium graminearum, FEBS Lett, vol.581, pp.443-447, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02661728

M. A. Passone, M. Ruffino, V. Ponzio, S. Resnik, and M. G. Etcheverry, Postharvest control of peanut Aspergillus section Flavi populations by a formulation of food-grade antioxidants, Int. J. Food Microbiol, vol.131, pp.211-217, 2009.

V. Lionetti, A. Giancaspro, E. Fabri, S. L. Giove, N. Reem et al., Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum, BMC Plant Biol, 2015.

M. A. Naoumkina, Q. Zhao, L. Gallego-giraldo, X. Dai, P. X. Zhao et al., Genome-wide analysis of phenylpropanoid defence pathways, Mol. Plant Pathol, vol.11, pp.829-846, 2010.

S. E. Sattler and D. L. Funnell-harris, Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Front, Plant Sci, vol.4, pp.1-8, 2013.

J. Y. Cho, G. J. Choi, S. W. Son, K. S. Jang, H. K. Lim et al., Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi, Pest Manag. Sci, vol.63, pp.935-940, 2007.

A. Kachroo and P. Kachroo, Fatty acid-derived signals in plant defense, Annu. Rev. Phytopathol, vol.47, pp.153-176, 2009.

M. Ongena, F. Duby, F. Rossignol, M. Fauconnier, J. Dommes et al., Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain, Mol. Plant Microbe Interact, vol.17, pp.1009-1018, 2004.

D. Walters, L. Raynor, A. Mitchell, R. Walker, and K. Walker, Antifungal activities of four fatty acids against plant pathogenic fungi, Mycopathologia, vol.157, pp.87-90, 2004.

G. B. Burow, T. C. Nesbitt, J. Dunlap, and N. P. Keller, Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis, Mol. Plant Microbe Interact, vol.10, pp.380-387, 1997.

R. P. Tiwari, V. Mittal, G. Singh, T. C. Bhalla, S. S. Saini et al., Effect of fatty-acids on aflatoxin production by Aspergillus parasiticus, Folia Microbiol, vol.31, pp.120-123, 1986.

T. Yaeno, O. Matsuda, and K. Iba, Role of chloroplast trienoic fatty acids in plant disease defense responses, Plant J, vol.40, pp.931-941, 2004.

X. Q. Gao, W. B. Shim, C. Gobel, S. Kunze, I. Feussner et al., Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin, Mol. Plant Microbe Interact, vol.20, pp.922-933, 2007.

R. J. Morcillo, J. A. Ocampo, and J. M. Garrido, Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza, Plant Signal. Behav, vol.7, pp.1584-1588, 2012.

X. Gao, M. Brodhagen, T. Isakeit, S. H. Brown, C. Göbel et al., Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp, Mol. Plant Microbe Interact, vol.22, pp.222-231, 2009.

A. A. Fabbri, C. Fanelli, G. Panfili, S. Passi, and P. Fasella, Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A, Flavus. J. Gen. Microbiol, vol.129, pp.3447-3452, 1983.

C. Fanelli and A. A. Fabbri, Relationship between lipids and aflatoxin biosynthesis, Mycopathologia, vol.107, pp.115-120, 1989.

, Int. J. Mol. Sci, vol.2015, p.16

S. Passi, M. Nazzaroporro, C. Fanelli, A. A. Fabbri, and P. Fasella, Role of lipoperoxidation in aflatoxin production, Appl. Microbiol. Biotechnol, vol.19, pp.186-190, 1984.

M. Brodhagen and N. P. Keller, Signalling pathways connecting mycotoxin production and sporulation, Mol. Plant Pathol, vol.7, pp.285-301, 2006.

C. Nobili, S. D'angeli, M. M. Altamura, V. Scala, A. A. Fabbri et al., ROS and 9-oxylipins are correlated with deoxynivalenol accumulation in the germinating caryopses of Triticum aestivum after Fusarium graminearum infection, Eur. J. Plant Pathol, vol.139, pp.429-444, 2014.

G. Li and Y. Yen, Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat, Crop Sci, vol.48, pp.1888-1996, 2008.

L. Zhang and D. Xing, Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death, Plant Cell Physiol, vol.49, pp.1092-1110, 2008.

K. Kazan and J. M. Manners, Jasmonate signaling: Toward an integrated view, Plant Physiol, vol.146, pp.1459-1468, 2008.

R. Bari and J. D. Jones, Role of plant hormones in plant defence responses, Plant Mol. Biol, vol.69, pp.473-488, 2009.

J. Glazebrook, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu. Rev. Phytopathol, vol.43, pp.205-227, 2005.

R. Makandar, V. J. Nalam, H. Lee, H. N. Trick, Y. Dong et al., Salicylic acid regulates basal resistance to Fusarium head blight in wheat, Mol. Plant Microbe Interact, vol.25, pp.431-439, 2012.

B. Poppenberger, F. Berthiller, D. Lucyshyn, T. Sieberer, R. Schuhmacher et al., Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana, J. Biol. Chem, vol.278, pp.47905-47914, 2003.

M. Goodrich-tanrikulu, N. E. Mahoney, and S. B. Rodriguez, The plant growth regulator methyl jasmonate inhibits aflatoxin production by Aspergillus flavu, Microbiology, vol.141, pp.2831-2837, 1995.

D. M. Meimaroglou, D. Galanopoulou, F. Flouri, and M. Panagiota, The plant growth regulator methyl jasmonate inhibits aflatoxin B1 production by Aspergillus parasiticus in caper, Int. J. Nutr. Food Sci, vol.2015, pp.10-17

S. Vergopoulou, D. Galanopoulou, and P. Markaki, Methyl jasmonate stimulates aflatoxin B1 biosynthesis by Aspergillus parasiticus, J. Agric. Food Chem, vol.49, pp.3494-3498, 2001.

C. Petti, K. Reiber, S. S. Ali, M. Berney, and F. M. Doohan, Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent, BMC Plant Biol, vol.12, pp.1-9, 2012.

B. Mauch-mani and F. Mauch, The role of abscisic acid in plant-pathogen interactions, Curr. Opin. Plant Biol, vol.8, pp.409-414, 2005.

V. Flors, J. Ton, G. Jakab, and B. Mauch-mani, Abscisic acid and callose: Team players in defence against pathogens?, J. Phytopathol, vol.153, pp.377-383, 2005.

Z. S. Kang and H. Buchenauer, Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum, Mycol. Res, vol.104, pp.1083-1093, 2000.

X. Chen, A. Steed, S. Travella, B. Keller, and P. Nicholson, Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants, New Phytol, vol.182, pp.975-983, 2009.

E. A. Schmelz, A. Huffaker, J. W. Sims, S. A. Christensen, X. Lu et al., Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins, Plant J, vol.79, pp.659-678, 2014.

D. Piesik, D. Panka, K. J. Delaney, A. Skoczek, R. Lamparski et al., Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.), J. Plant Physiol, vol.168, pp.878-886, 2011.

I. T. Baldwin, R. Halitschke, A. Paschold, C. C. Von-dahl, and C. A. Preston, Volatile signaling in plant-plant interactions: "Talking trees" in the genomics era, Science, vol.311, pp.812-815, 2006.

W. Zhou, F. Eudes, and A. Laroche, Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum, Proteomics, vol.6, pp.4599-4609, 2006.

V. Tzin and G. Galili, New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants, Mol. Plant, vol.3, pp.956-972, 2010.

N. J. Atkinson, C. J. Lilley, and P. E. Urwin, Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stesses, Plant Physiol, vol.162, pp.2028-2041, 2013.

M. Montesano, G. Brader, and E. T. Palva, Pathogen derived elicitors: Searching for receptors in plants, Mol. Plant Pathol, vol.4, pp.73-79, 2003.

D. Walters, Resistance to plant pathogens: Possible roles for free polyamines and polyamine catabolism, New Phytol, vol.159, pp.109-115, 2003.

V. A. Campos-bermudez, C. M. Fauguel, M. A. Tronconi, P. Casati, D. A. Presello et al., Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting Ear Rot resistance, PLoS ONE, vol.4, pp.1-10, 2013.

W. Wojtasik, A. Kulma, K. Namysl, M. Preisner, and J. Szopa, Polyamine metabolism in flax in response to treatment with pathogenic and non-pathogenic Fusarium strains, Front. Plant Sci, vol.6, pp.1-12, 2015.

J. F. Jimenez-bremont, M. Marina, M. D. Guerrero-gonzalez, F. R. Rossi, D. Sanchez-rangel et al., Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front, Plant Sci, vol.5, pp.1-14, 2014.

A. Stoessl, The antifungal factors in barley. IV. Isolation, structure and synthesis of the hordatines, Can. J. Chem, vol.45, pp.1745-1760, 1967.

D. M. Gardiner, K. Kazan, S. Praud, F. J. Torney, A. Rusu et al., Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production, BMC Plant Biol, vol.10, pp.1471-2229, 2010.

A. Crespo-sempere, N. Estiarte, S. Marin, V. Sanchis, and A. J. Ramos, Targeting Fusarium graminearum control via polyamine enzyme inhibitors and polyamine analogs, Food Microbiol, vol.49, pp.95-103, 2015.

G. E. Gillaspy, The cellular language of myo-inositol signaling, New Phytol, vol.192, pp.823-839, 2011.

F. A. Loewus, Inositol and Plant Cell Wall Polysaccharide Biogenesis, Subcellular Biochemistry

A. L. Majumder and B. B. Biswas, , vol.39, pp.21-45, 2006.

A. Lorence, B. I. Chevone, P. Mendes, and C. L. Nessler, myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis, Plant Physiol, vol.134, pp.1200-1205, 2004.

Z. Y. Li, L. L. Ding, J. M. Li, B. L. Xu, L. Yang et al., 1 H NMR and MS based metabolomics study of the intervention effect of curcumin on hyperlipidemia mice induced by high-fat diet, PLoS ONE, 2015.

A. C. Kushalappa and R. Gunnaiah, Metabolo-proteomics to discover plant biotic stress resistance genes, Trends Plant Sci, vol.18, pp.522-531, 2013.

T. Gartner, M. Steinfath, S. Andorf, J. Lisec, R. C. Meyer et al., Improved heterosis prediction by combining information on DNA-and metabolic markers, PLoS ONE, 2009.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license