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, the arguments for the lower bounds are based on the same technology, but are substantially more technical in the details; also, the methods we study are different: besides a variant of the scan statistic, we study other tests statistics such as the size of the largest connected component, the number of triangles, and the number of subtrees of a given size. Our detection bounds are sharp, except in the Poisson regime where we were not able to fully characterize the constant arising in the bound.

Introduction

Community detection refers to the problem of identifying communities in networks, e.g., circles of friends in social networks, or groups of genes in graphs of gene co-occurrences [START_REF] Bickel | A nonparametric view of network models and newmanäìgirvan and other modularities[END_REF][START_REF] Girvan | Community structure in social and biological networks[END_REF][START_REF] Lancichinetti | Community detection algorithms: A comparative analysis[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Newman | Finding and evaluating community structure in networks[END_REF][START_REF] Reichardt | Statistical mechanics of community detection[END_REF]. Although fueled by the increasing importance of graph models and network structures in applications, and the emergence of large-scale social networks on the Internet, the topic is much older in the social sciences, and the algorithmic aspect is very closely related to graph partitioning, a longstanding area in computer science. We refer the reader to the comprehensive survey paper of [START_REF] Fortunato | Community detection in graphs[END_REF] for more examples and references.

By community detection we mean, here, something slightly different. Indeed, instead of aiming at extracting the community (or communities) from within the network, we simply focus on deciding whether or not there is a community at all. Therefore, instead of considering a problem of graph partitioning, or clustering, we consider a problem of testing statistical hypotheses. We observe an undirected graph G = (E, V) with N := |V| nodes. Without loss of generality, we take V = [N ] := {1, . . . , N }. The corresponding adjacency matrix is denoted W = (W i,j ) ∈ {0, 1} N ×N , where W i,j = 1 if, and only if, (i, j) ∈ E, meaning there is an edge between nodes i, j ∈ V. Note that W is symmetric, and we assume that W ii = 0 for all i. Under the null hypothesis, the graph G is a realization of G(N, p 0 ), the Erdös-Rényi random graph on N nodes with probability of connection p 0 ∈ (0, 1); equivalently, the upper diagonal entries of W are independent and identically distributed with P(W i,j = 1) = p 0 for any i = j. Under the alternative, there is a subset of nodes indexed by S ⊂ V such that P(W i,j = 1) = p 1 for any i, j ∈ S with i = j, while P(W i,j = 1) = p 0 for any other pair of nodes i = j. We assume that p 1 > p 0 , implying that the connectivity is stronger between nodes in S, so that S is an assortative community. The subset S is not known, although in most of the paper we assume that its size n := |S| is known. Let H 0 denote the null hypothesis, which consists of G(N, p 0 ) and is therefore simple. And let H S denote the alternative where S is the anomalous subset of nodes. We are testing H 0 versus H 1 := |S|=n H S . We consider an asymptotic setting where

N → ∞, n = n(N ) → ∞, n/N → 0, n/ log N → ∞, (1) 
meaning the graph is large in size, and the subgraph is comparatively small, but not too small. Also, the probabilities of connection, p 0 = p 0 (N ) and p 1 = p 1 (N ), may change with N -in fact, they will tend to zero in most of the paper. Despite its potential relevance to applications, this problem has received considerably less attention. We mention the work of [START_REF] Wang | Spatial scan statistics for graph clustering[END_REF] who, in a somewhat different model, propose a test based on a statistic similar to the modularity of [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]; the test is evaluated via simulations. [START_REF] Sun | On the size and recovery of submatrices of ones in a random binary matrix[END_REF] consider the problem of detecting a clique, a problem that we addressed in detail in our previous paper [START_REF] Arias-Castro | Community detection in dense random networks[END_REF], and which is a direct extension of the 'planted clique problem' [START_REF] Alon | Finding a large hidden clique in a random graph[END_REF][START_REF] Dekel | Finding hidden cliques in linear time with high probability[END_REF][START_REF] Feige | Finding hidden cliques in linear time[END_REF]. [START_REF] Rukhin | On the limiting distribution of a graph scan statistic[END_REF] consider a test based on the maximum number of edges among the subgraphs induced by the neighborhoods of the vertices in the graph; they obtain the limiting distribution of this statistic in the same model we consider here, with p 0 and p 1 fixed, and n is a power of N , and in the process show that their test reduces to the test based on the maximum degree. Closer in spirit to our own work, [START_REF] Butucea | Detection of a sparse submatrix of a high-dimensional noisy matrix[END_REF] study this testing problem in the case where p 0 and p 1 are fixed. A dynamic setting is considered in [START_REF] Heard | Bayesian anomaly detection methods for social networks[END_REF][START_REF] Mongiovı | Netspot: Spotting significant anomalous regions on dynamic networks[END_REF][START_REF] Park | Anomaly detection in time series of graphs using fusion of graph invariants[END_REF] where the goal is to detect changes in the graph structure over time.

Hypothesis testing

We start with some concepts related to hypothesis testing. We refer the reader to [START_REF] Lehmann | Testing statistical hypotheses[END_REF] for a thorough introduction to the subject. A test φ is a function that takes W as input and returns φ = 1 to claim there is a community in the network, and φ = 0 otherwise. The (worst-case) risk of a test φ is defined as γ N (φ) = P 0 (φ = 1) + max |S|=n P S (φ = 0) ,

where P 0 is the distribution under the null H 0 and P S is the distribution under H S , the alternative where S is anomalous. We say that a sequence of tests (φ N ) for a sequence of problems (W N ) is asymptotically powerful (resp. powerless) if γ N (φ N ) → 0 (resp. → 1). We will often speak of a test being powerful or powerless when in fact referring to a sequence of tests and its asymptotic power properties. Then, practically speaking, a test is asymptotically powerless if it does not perform substantially better than any method that ignores the adjacency matrix W, i.e., guessing. We say that the hypotheses merge asymptotically if

γ * N := inf φ γ N (φ) → 1 ,
and that the hypotheses separate completely asymptotically if γ * N → 0, which is equivalent to saying that there exists a sequence of asymptotically powerful tests. Note that if lim inf γ * N > 0,

Comment citer ce document : Verzelen, N., Arias-Castro, E. (2015). Community detection in sparse random networks. Annals of Applied Probability, 25 (6), 3465-3510. DOI : 10.1214/14-aap1080 3 no sequence of tests is asymptotically powerful, which includes the special case where the two hypotheses are contiguous. Our general objective is to derive the detection boundary for the problem of community detection. On the one hand, we want to characterize the range of parameters (n, N, p 0 , p 1 ) such that either all tests are asymptotically powerless (γ * N → 1) or no test is asymptotically powerful (lim inf γ * N > 0). On the other hand, we want to introduce asymptotically minimax optimal tests, that is tests φ satisfying γ N (φ) → 0 whenever γ N (φ) → 0 or lim sup γ * N < 1 whenever lim sup γ * N < 1.

Our previous work

We recently considered this testing problem in (Arias-Castro and Verzelen, 2012), focusing on the dense regime where log(1 ∨ (np 0 ) -1 ) = o(log(N/n)) or equivalently p 0 ≥ n -1 (n/N ) o( 1) . (For a, b ∈ R, a ∧ b denotes the minimum of a and b and a ∨ b denotes their maximum.) We obtained information theoretic lower bounds, and we proposed and analyzed a number of methods, both when p 0 is known and when it is unknown. (None of the methods we considered require knowledge of p 1 .) In particular, a combination of the total degree test based on

W := 1≤i<j≤N W i,j , (3) 
and the scan test based on

W * n := max |S|=n W S , W S := i,j∈S,i<j W i,j , (4) 
was found to be asymptotically minimax optimal when p 0 is known and when n is not too small, specifically n/ log N → ∞. This extends the results that [START_REF] Butucea | Detection of a sparse submatrix of a high-dimensional noisy matrix[END_REF] obtained for p 0 and p 1 fixed (and p 0 known). In that same paper, we also proposed and studied a convex relaxation of the scan test, based on the largest n-sparse eigenvalue of W 2 , inspired by related work of [START_REF] Berthet | Optimal detection of sparse principal components in high dimension[END_REF].

Contribution

Continuing our work, in the present paper we focus on the sparse regime where

p 0 ≤ 1 n n N c 0
for some constant c 0 > 0.

(5)

Obviously, (5) implies that np 0 ≤ 1. We define

λ 0 = N p 0 , λ 1 = np 1 , (6) 
and note that λ 0 and λ 1 may vary with N . Our results can be summarized as follows.

Regime 1: λ 0 = (N/n) α with fixed 0 < α < 1. Compared to the setting in our previous work [START_REF] Arias-Castro | Community detection in dense random networks[END_REF], the total degree test (3) remains a contender, scanning over subsets of size exactly n as in (4) does not seem to be optimal anymore, all the more so when p 0 is small. Instead, we scan over subsets of a wider range of sizes, using

W ‡ n = n sup k=n/u N W * k k , (7) 
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Table 1: Detection boundary and near-optimal algorithms in the regime λ 0 = (N/n) α with 0 < α < 1 and n = N κ with 0 < κ < 1. Here, 'undetectable' means that that the hypotheses merge asymptotically, while 'detectable' means that there exists an asymptotically powerful test.

κ κ < 1+α 2+α κ > 1+α 2+α
Undetectable λ 1 ≺ (1 -α) -1 ; Exact Eq. in (55) λ 1

N (1+α)/2 n 1+α
Detectable λ 1 (1 -α) -1 ; Exact Eq. in ( 14)

λ 1 N (1+α)/2 n 1+α
Optimal test Broad Scan test Total Degree test where u N = log log(N/n). We call this the broad scan test. In analogy with our previous results in ( [START_REF] Arias-Castro | Community detection in dense random networks[END_REF], we find that a combination of the total degree test (3) and the broad scan test based on ( 7) is asymptotically optimal when λ 0 → ∞, in the following sense.

Suppose n = N κ with 0 < κ < 1. When κ > 1+α 2+α , the total degree test is asymptotically powerful when λ 1

N (1+α)/2 n 1+α
and the two hypotheses merge asymptotically when λ 1 N (1+α)/2 n 1+α . (For two sequences of reals, (a N ) and (b N ), we write a N b N to mean that a N = o(b N ).) When κ < 1+α 2+α , that is for smaller n, there exists a sequence of increasing functions ψ n (defined in Theorem 1) such that the broad scan test is asymptotically powerful when lim inf(1 -α)ψ n (λ 1 ) > 1 and the hypotheses merge asymptotically when lim sup(1 -α)ψ n (λ 1 ) < 1. Furthermore, as n → ∞, ψ n (λ) λ when λ ≥ 1 remains fixed, while ψ n (1) → 1, and ψ n (λ) ∼ λ/2 for λ → ∞. As a consequence, the broad scan test is asymptotically powerful when λ 1 is larger than (up to a numerical) (1 -α) -1 . See Table 1 for 1) and n = N κ with 1/2 < κ < 1, the total degree test is optimal, in the sense that it is asymptotically powerful for λ 2 1 /λ 0 n 2 /N , while the hypotheses merge asymptotically for λ 2 1 /λ 0 n 2 /N . This is why we assume in the remainder of this discussion that n = N κ with 0 < κ < 1/2.

When N -o(1) ≤ λ 0 ≤ (N/n) o(
Regime 2: λ 0 → ∞ with log(λ 0 ) = o[log(N/n)]. When κ < 1
2 , the broad scan test is asymptotically powerful when lim inf λ 1 > 1 and the hypotheses merge asymptotically when lim sup λ 1 < 1. See the first line of Table 2 for a visual summary.

Regime 3: λ 0 > 0 and λ 1 > 0 are fixed. The Poissonian regime where λ 0 and λ 1 are assumed fixed is depicted on Figure 1. When λ 1 > 1, the broad scan test is asymptotically powerful. When λ 0 > e and λ 1 < 1, no test is able to fully separate the hypotheses. In fact, for any fixed (λ 0 , λ 1 ) a test based on the number of triangles has some nontrivial power (depending on (λ 0 , λ 1 )), implying that the two hypotheses do not completely merge in this case. The case where λ 0 < e is not completely settled. No test is able to fully separate the hypotheses if λ 1 < λ 0 /e. The largest connected component test is optimal up to a constant when λ 0 < 1 and a test based on counting subtrees of a certain size bridges the gap in constants for 1 ≤ λ 0 < e, but not completely. When λ 0 is bounded from above and λ 1 = o(1), the two hypotheses merge asymptotically.

Regime 4:

λ 0 = o(1) with log(1/λ 0 ) = o[log(N )].
Finally, when λ 0 → 0, the largest connected component test is asymptotically optimal. See Table 2. Table 2: Detection boundary and near-optimal algorithms in the regimes λ 0 → ∞ and λ 0 → 0 and n = N κ with 0 < κ < 1/2. For 1/2 < κ < 1, the detection boundary accurs at λ 1 N 1/2 /n 2 and is achieved by the total degree test.

λ 0 1 λ 0 N n o(1) 1 N o(1) ≤ λ 0 = o(1) Undetectable lim sup λ 1 < 1 lim sup log(λ -1 1 ) log(λ -1 0 ) > κ Detectable lim inf λ 1 > 1 lim inf log(λ -1 1 ) log(λ -1 0 ) < κ

Optimal test Largest CC test Broad Scan test
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Methodology for the lower bounds

Compared to our previous work [START_REF] Arias-Castro | Community detection in dense random networks[END_REF], the derivation of the various lower bounds here rely on the same general approach. Let G(N, p 0 ; n, p 1 ) denote the random graph obtained by choosing S uniformly at random among subsets of nodes of size n, and then generating the graph under the alternative with S being the anomalous subset. When deriving a lower bound, we first reduce the composite alternative to a simple alternative, by testing H 0 : G(N, p 0 ) versus H1 := G(N, p 0 ; n, p 1 ). Let L denote the corresponding likelihood ratio, i.e., L = |S|=n L S / N n , where L S is the likelihood ratio for testing H 0 versus H S . Then these hypotheses merge in the asymptote if, and only if, L → 1 in probability under H 0 . A variant of the so-called 'truncated likelihood' method, introduced by [START_REF] Butucea | Detection of a sparse submatrix of a high-dimensional noisy matrix[END_REF], consists in proving that E 0 ( L) → 1 and E 0 ( L2 ) → 1, where L is a truncated likelihood of the form L = |S|=n L S 1 Γ S / N n , where Γ S is a carefully chosen event. (For a set or event A, 1 A denotes the indicator function of A.) An important difference with our previous work is the more delicate choice of Γ S , which here relies more directly on properties of the graph under consideration. We mention that we use a variant to show that H 0 and H1 do not separate in the limit. This could be shown by proving that the two graph models G(N, p 0 ) and G(N, p 0 ; n, p 1 ) are contiguous. The 'small subgraph conditioning' method of Robinson andWormald (1992, 1994) -see the more recent exposition in [START_REF] Wormald | Models of random regular graphs[END_REF] -was designed for that purpose. For example, this is the method that [START_REF] Mossel | Stochastic block models and reconstruction[END_REF] use to compare a Erdös-Rényi graph with a stochastic block model3 with two blocks of equal size. This method does not seem directly applicable in the situations that we consider here, in part because the second moment of the likelihood ratio, meaning E[L 2 ], tends to infinity at the limit of detection.

Content

The remaining of the paper is organized as follow. In Section 2 we introduce some notation and some concepts in probability and statistics, including concepts related to hypothesis testing and some basic results on the binomial distribution. In Section 3 we study some tests that are nearoptimal in different regimes. In Section 4 we state and prove information theoretic lower bounds on the difficulty of the detection problem. In Section 5 we discuss the situations where p 0 and/or n are unknown, as well as open problems. Section 6 contains some proofs and technical derivations.

Preliminaries

In this section, we first define some general assumptions and some notation, although more notation will be introduced as needed. We then list some general results that will be used multiple times throughout the paper.

Assumptions and notation

We recall that N → ∞ and the other parameters such as n, p 0 , p 1 may change with N , and this dependency is left implicit. Unless otherwise specified, all the limits are with respect to N → ∞. We assume that N 2 p 0 → ∞, for otherwise the graph (under the null hypothesis) is so sparse that number of edges remains bounded. Similarly, we assume that n 2 p 1 → ∞, for otherwise there is a non-vanishing chance that the community (under the alternative) does not contain any edges. Throughout the paper, we assume that n and p 0 are both known, and discuss the situation where they are unknown in Section 5.

Define

α = log λ 0 log(N/n) , (8) 
which varies with N , and notice that p 0 = λ 0 N with λ 0 = N n α . The dense regime considered in (Arias-Castro and Verzelen, 2012) corresponds to lim inf α ≥ 1. Here we focus on the sparse regime where lim sup α < 1. The case where α → 0 includes the Poisson regime where λ 0 is constant.

Recall that G = (V, E) is the (undirected, unweighted) graph that we observe, and for S ⊂ V, let G S denote the subgraph induced by S in G.

We use standard notation such as

a N ∼ b N when a N /b N → 1; a N = o(b N ) when a N /b N → 0; a N = O(b N ), or equivalently a N ≺ b N , when lim sup N |a N /b N | < ∞; a N b N when a N = O(b N ) and b N = O(a N ).
We extend this notation to random variables. For example, if A N and B N are random variables, then

A N ∼ B N if A N /B N → 1 in probability.
For x ∈ R, define x + = x ∨ 0 and x -= (-x) ∨ 0, which are the positive and negative parts of x. For an integer n, let

n (2) = n 2 = n(n -1) 2 . ( 9 
)
Because of its importance in describing the tails of the binomial distribution, the following function -which is the relative entropy or Kullback-Leibler divergence of Bern(q) to Bern(p)will appear in our results:

H p (q) = q log q p + (1 -q) log 1 -q 1 -p , p, q ∈ (0, 1). ( 10 
)
We let H(q) denote H p 0 (q).

Calibration of a test

We say that the test that rejects for large values of a (real-valued) statistic T = T N (W N ) is asymptotically powerful if there is a critical value t = t(N ) such that the test {T ≥ t} has risk (2) tending to 0. The choice of t that makes this possible may depend on p 1 . In practice, t is chosen to control the probability of type I error, which does not necessitate knowledge of p 1 as long as T itself does not depend on p 1 , which is the case of all the tests we consider here. Similarly, we say that the test is asymptotically powerless if, for any sequence of reals t = t(N ), the risk of the test {T ≥ t} is at least 1 in the limit. We prefer to leave the critical values implicit as their complicated expressions do not offer any insight into the theoretical difficulty or the practice of testing for the presence of a dense subgraph. Indeed, if a method can run efficiently, then most practitioners will want to calibrate it by simulation (permutation or parametric bootstrap, when p 0 is unknown). Besides, the interested reader will be able to obtain the (theoretical) critical values by a cursory examination of the proofs.

Some general results

Remember the definition of the entropy function in (10). The following is a simple concentration inequality for the binomial distribution.
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Lemma 1 (Chernoff's bound). For any positive integer n, any q, p ∈ (0, 1), we have

P (Bin(n, p) ≥ qn) ≤ exp (-nH p (q)) . (11) 
Here are some asymptotics for the entropy function.

Lemma 2. Define h(x) = x log x -x + 1. For 0 < p ≤ q < 1, we have 0 ≤ H p (q) -p h(q/p) ≤ O q 2 1 -q .

The following are standard bounds on the binomial coefficients. Recall that e = exp(1).

Lemma 3. For any integers

1 ≤ k ≤ n, n k k ≤ n k ≤ en k k . ( 12 
)
Let Hyp(N, m, n) denotes the hypergeometric distribution counting the number of red balls in n draws from an urn containing m red balls out of N . 3 Some near-optimal tests

In this section we consider several tests and establish their performances. We start by recalling the result we obtained for the total degree test, based on (3), in our previous work [START_REF] Arias-Castro | Community detection in dense random networks[END_REF]. Recalling the definition of λ 0 and λ 1 in (6), define

ζ := (p 1 -p 0 ) 2 p 0 n 4 N 2 = (λ 1 -λ 0 n/N ) 2 λ 0 n 2 N . ( 13 
)
Proposition 1 (Total degree test). The total degree test is asymptotically powerful if ζ → ∞, and asymptotically powerless if ζ → 0.

In view of Proposition 1, the setting becomes truly interesting when ζ → 0, which ensures that the naive total degree test is indeed powerless.

The broad scan test

In the denser regimes that we considered in (Arias-Castro and Verzelen, 2012), the (standard) scan test based on W * n defined in (4) played a major role. In the sparser regimes we consider here, the broad scan test based on W ‡ n defined in (7) has more power. Assume that lim inf λ 1 > 1, so that G S is supercritical under H S . Then it is preferable to scan over the largest connected component in G S rather than scan G S itself.

Lemma 5. For any λ > 1, let η λ denote the smallest solution of the equation η = exp(λ(η -1)). Let C m denote a largest connected component in G(m, λ/m) and assume that λ > 1 is fixed. Then, in probability,

|C m | ∼ (1 -η λ )m and W Cm ∼ λ 2 (1 -η 2 λ )m. Proof.
The bounds on the number of vertices in the giant component is well-known ( Van der Hofstad, 2012, Th. 4.8), while the lower bound on the number of edges comes from (Pittel and Wormald, 2005, Note 5).
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By Lemma 5, most of the edges of G S lie in its giant component, which is of size roughly (1 -η λ 1 )n. This informally explains why a test based on W * n(1-η λ 1 ) is more promising that the standard scan test based on W * n . In the details, the exact dependency of the optimal subset size to scan over seems rather intricate. This is why in W ‡ n we scan over subsets of size n/u N ≤ k ≤ n. (Recall that u N = log log(N/n), although the exact form of u N is not important.) For any subset S ⊂ V, let

W * k,S = max T ⊂S,|T |=k W T .
Note that W * k,V = W * k defined in (4). Recall the definition of the exponent α in (8).

Theorem 1 (Broad scan test). The scan test based on W ‡ n is asymptotically powerful if

lim sup α ≤ 1 and lim inf (1 -α) n sup k=n/u N E S [W * k,S ] k > 1 ; ( 14 
)
or α → 0 and lim inf λ 1 > 1 . ( 15 
)
Note that the quantity sup n k=n/u N E S [W * k,S ]/k does not depend on p 0 or α. We shall prove in the next section that the power of the broad scan test is essentially optimal: if lim sup α < 1 and lim sup (1 -α)

n sup k=n/u N E S [W * k,S ]/k < 1,
or α → 0 and lim sup λ 1 < 1, then no test is asymptotically powerful (at least when n 2 = o(N ), so that the total degree test is powerless). Regarding (14), we could not get a closed-form expression of this supremum. Nevertheless, we show in the proof that lim inf

n sup k=n/u N E S [W * k,S ] k ≥ lim inf λ 1 2 (1 + η λ 1 ) , (16) 
where η λ is defined in Lemma 5. Moreover, we show in Section 6 the following upper bound.

Lemma 6.

lim inf n sup k=n/u N E S [W * k,S ] k ≤ lim inf λ 1 2 + 1 + 1 + λ 1 . (17) If λ 1 → ∞, then n sup k=n/u N E S [W * k,S ] k ∼ λ 1 /2 .
Hence, assuming α and λ 1 are fixed and positive , the broad scan test is asymptotically powerful when (1 -α) λ 1 2 (1 + η λ 1 ) > 1. In contrast, the scan test was proved to be asymptotically powerful when (1 -α) λ 1 2 > 1 (Arias-Castro and Verzelen, 2012, Prop. 3), so that we have improved the bound by a factor larger than 1 + η λ 1 and smaller than 1 + 2λ -1 1 (1 + √ 1 + λ 1 ). When α converges to one, it was proved in (Arias-Castro and Verzelen, 2012) that the minimax detection boundary corresponds to (1 -α)λ 1 /2 ∼ 1 (at least when n 2 = o(N )). Thus, for α going to one, both the broad scan test and the scan test have comparable power and are essentially optimal. In the dense case, the broad scan test and the scan test have also comparable powers as shown by the next result which is the counterpart of (Arias-Castro and Verzelen, 2012, Prop. 3).

Proposition 2. Assume that p 0 is bounded away from one. The broad scan test is powerful if

lim inf nH(p 1 ) 2 log(N/n) > 1 .
The proof is essentially the same as the corresponding result for the scan test itself. See (Arias-Castro and Verzelen, 2012).

Proof of Theorem 1. First, we control W ‡ n under the null hypothesis. For any positive constant c 0 > 0, we shall prove that

P 0 (1 -α)W ‡ n ≥ 1 + c 0 = o(1) . ( 18 
)
Under Conditions ( 14) and ( 15), α is smaller than for N large enough. Consider any integer k ∈ [n/u N , n], and let

q k = 2(1 + c 0 )/[(k -1)(1 -α)]. Recall that k (2) = k(k -1)/2.
Applying a union bound and Chernoff's bound (Lemma 1), we derive that

P 0 W * k ≥ 1 + c 0 1 -α k ≤ N k exp -k (2) H(q k ) ≤ exp k log(eN/k) - k -1 2 H(q k ) .
We apply Lemma 2 knowing that q k /p 0 → ∞, and use the definition of α in (8), to control the entropy as follows

k -1 2 H(q k ) ∼ k -1 2 q k log q k p 0 = 1 + c 0 1 -α log(N/n) -log λ 0 + O(log u N ) ∼ (1 + c 0 ) log(N/n) ,
since log(u N ) = o(log(N/n)). Consequently,

P 0 W * k ≥ 1 + c 0 1 -α k ≤ exp [-kc 0 log(N/n)(1 + o(1))] ,
where the o(1) is uniform with respect to k. Applying a union bound, we conclude that

P 0 (1 -α)W ‡ n ≥ 1 + c 0 ≤ n k=n/u N exp [-kc 0 log(N/n)(1 + o(1))] = o(1) .
We now lower bound W ‡ n under the alternative hypothesis. First, assume that (14) holds, so that there exists a positive constant c and a sequence of integers

k n ≥ n/u N such that E S [W * kn,S ] ≥ k n (1 + c)/(1 -α) eventually. In particular, E S [W * kn,S ] → ∞.
We then use (20) in the following concentration result for W * k,S . Lemma 7. For an integer 0

≤ k ≤ n, define µ * k,S = E S [W * k,S ].
We have the following deviation inequalities

P S W * k,S ≥ µ * k,S + t ≤ exp - log(2) 4 t ∧ t 2 8µ * k,S , ∀t > 8 1 ∨ µ * k,S ; (19) 
P S W * k,S ≤ µ * k,S -t ≤ exp -log(2) t 2 8µ * k,S , ∀t > 4 µ * k,S . (20) 
It follows from Lemma 7 that, with probability going to one under P S ,

W ‡ n ≥ W * kn k n ≥ W * kn,S k n ≥ 1 + c/2 1 -α .
Taking c 0 = c/4 in (18) allows us to conclude that the test based on W ‡ n with threshold 1+c/2 1-α is asymptotically powerful. Now, assume that (15) holds. Because W ‡ n is stochastically increasing in λ 1 under P S , we may assume that λ 1 > 1 is fixed. We use a different strategy which amounts to scanning the largest connected component of G S . Let C S max be a largest connected component of G S . For a small c > 0 to be chosen later, assume that (1

-c)n(1 -η λ 1 ) ≤ |C S max | ≤ (1 + c)n(1 -η λ 1 ) and W C S max ≥ (1 -c) nλ 1 2 (1 -η 2 λ 1
), which happens with high probability under P S by Lemma 5. Note that, because λ 1 > 1, we have η λ 1 < 1, and therefore |C S max | n. Consequently, when computing W ‡ n we scan C S max , implying that

W ‡ n ≥ W C S max |C S max | ≥ (1 -c) λ 1 2 (1 -η 2 λ 1 )n (1 + c)(1 -η λ 1 )n ≥ 1 -c 1 + c λ 1 2 (1 + η λ 1 ).
Since c above may be taken as small as we wish, and in view of (18), it suffices to show that λ 1 (1 + η λ 1 ) > 2 . Since η λ converges to one when λ goes to one, we have lim λ→1 λ(1

+ η λ ) = 2.
Consequently, it suffices to show that the function f :

λ → λ(1 + η λ ) is increasing on (1, ∞). By definition of η λ , we have η λ < 1/λ (since e -λ < 1/λ) and η (λ) = η λ (η λ -1)/(1-λη λ ). Consequently, f (λ) = 2 + η λ -1 1-λη λ . Hence, f (λ) is positive if η λ < (2λ -1) -1 := a λ .
Recall that η λ is the smallest solution of the equation x = exp[λ(x -1)], the largest solution being x = 1. Furthermore, we have x ≥ exp[λ(x -1)] for any x ∈ [η λ , 1]. To conclude, it suffices to prove a λ > e λ(a λ -1) . This last bound is equivalent to

λ - 1 2 - 1 2(2λ -1)
-log(2λ -1) > 0 .

The function on the LHS is null for λ = 1. Furthermore, its derivative 4(λ-1) 2 (2λ-1) 2 is positive for λ > 1, which allows us to conclude.

Proof of Lemma 7. The proof is based on moment bounds for functions of independent random variables due to [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF] that generalize the Efron-Stein inequality.

Recall that G S = (S, E S ) is the subgraph induced by S. Fix some integer k ∈ [0, n]. For any (i, j) ∈ E S , define the graph

G (i,j) S by removing (i, j) from the edge set of G S . Let W (i,j) T be defined as W T but computed on G (i,j) S , and then let W * (i,j) k,S = max T ⊂S,|T |=k W (i,j) T . Observe that 0 ≤ W * k,S -W * (i,j) k,S ≤ 1 and that W * (i,j) k,S is a measurable function of E (i,j) S
, the edges set of

G (i,j) S . Let T * ⊂ S be a subset of size k such that W * k,S = W T * . Then, we have (i,j)∈E S W * k,S -W * (i,j) k,S ≤ (i,j)∈E S W T * -W (i,j) T * = W T * = W * k,S ,
where the first equality comes from the fact that W T * -W (i,j) (Boucheron et al., 2005, Cor. 1), we derive that, for any real q ≥ 2,

T * = 1 {(i,j)∈E T } . Applying
E S W * k,S -E S [W * k,S ] q + 1/q ≤ 2q E S [W * k,S ] + q ; E S W * k,S -E S [W * k,S ] q - 1/q ≤ 2q E S [W * k,S ] .
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Take some t > 8(1 ∨ E S [W * k,S ]). For any q ≥ 2, we have by Markov's inequality

P S W * k,S ≥ E S [W * k,S ] + t ≤   2q E S [W * k,S ] + q t   q . The choice q = t 4 ∧ t 2 32 E S [W * k,S
] is larger than 2 and leads to (19). Similarly, if take some t > 4 E S [W * k,S ], and apply Markov's inequality, we get

P S W * k,S ≤ E S [W * k,S ] -t ≤   2q E S [W * k,S ] t   q . The choice q = t 2 8 E S [W * k,S ] ≥ 2 leads to (20).

The largest connected component

This test rejects for large values of the size (number of nodes) of the largest connected component in G, which we denoted C max .

Subcritical regime

We first study that test in the subcritical regime where lim sup λ 0 < 1. Define

I λ = λ -1 -log(λ) . ( 21 
)
Theorem 2 (Subcritical largest connected component test). Assume that log log(N ) = o(log n), lim sup λ 0 < 1, and I -1 λ 0 log(N ) → ∞. The largest connected component test is asymptotically powerful when lim inf λ 1 > 1 or λ 0 ≤ λ 1 e 1-λ 1 for n large enough and lim inf

I λ 0 λ 0 + I λ 1 -λ 0 e I λ 1 log(n) log(N ) > 1 . ( 22 
)
If we further assume that n 2 = o(N ), then the largest connected component test is asymptotically powerless when λ 1 < 1 for all n and λ 0 ≥ λ 1 e 1-λ 1 for n large enough or lim sup

I λ 0 λ 0 + I λ 1 -λ 0 e I λ 1 log(n) log(N ) < 1 . ( 23 
)
If we assume that both λ 0 and λ 1 go to zero, then Condition ( 22) is equivalent to

lim inf I λ 0 I λ 1 log(n) log(N ) > 1 , (24) 
which corresponds to the optimal detection boundary in this setting, as shown in Theorem 4. The technical hypothesis log log(N ) = o(log n) is only used for convenience when analyzing the critical behavior λ 1 → 1. The condition I -1 λ 0 log(N ) → ∞ implies that λ 0 can only converge to zero slower than any power of N . Although it is possible to analyze the test in the very sparse setting where λ 0 goes to zero polynomially fast, we did not do so to keep the exposition focused on the more interesting regimes.
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Proof of Theorem 2. That the test is powerful when lim inf λ 1 > 1 derives from the well-known phase transition phenomenon of Erdös-Rényi graphs. Let C m denote a largest connected component of G(m, λ/m) and assume that λ ∈ (0, ∞) is fixed. By (Van der Hofstad, 2012, Th. 4.8, Th. 4.4, Th. 4.5) in probability, we know that

|C m | ∼ I -1 λ log m, if λ < 1 ; (1 -η λ )m, if λ > 1 ,
where η λ is defined as in Lemma 5. When λ > 1, the result is actually contained in Lemma 5. Hence, under the null with lim sup λ 0 < 1, the largest connected component of G is of order log(N ) with probability going to one. Under the alternative H S with lim inf λ 1 > 1, the graph G S contains a giant connected component whose size of order n with probability going to one. Recalling that log(N ) = o(n) allows us to conclude. Now suppose that ( 22) holds. We assume that the sequence λ 1 is always smaller or equal to 1, that

I -1 λ 1 = O (log(n)/ log(N )
) and that log(I -1 λ 1 ∨ 1) = o(log n), meaning that λ 1 does not converge too fast to 1. We may do so while keeping Condition ( 22) true because the distribution of |C max | under P S is stochastically increasing with λ 1 , because lim sup

λ 0 < 1, I λ 1 +λ 0 -λ 0 e I λ 1 ∼ I λ 1 (1-λ 0 ) for λ 1 → 1, and because log log(N ) = o(log n).
By hypothesis ( 22), there exists a constant c > 0, such that

τ := lim inf I λ 0 log(n) (I λ 1 + λ 0 -λ 0 e I λ 1 ) log(N ) ≥ 1 + c .
To upper-bound the size of C max under P 0 , we use the following. we have

P(|C m | ≥ u m ) = o(1) .
Proof. This lemma is a slightly modified version of (Van der Hofstad, 2012, Th. 4.4), the main difference being that λ was fixed in the original statement. Details are omitted.

Define c = (c ∧ 1)/4. Applying Lemma 8, |C max | ≤ t 0 := I -1 λ 0 log(N )(1 + c),
with probability going to one under P 0 .

We now need to lower-bound the size of C max under P S . Define

k 0 = (1 -c) log(n) I λ 1 + λ 0 -λ 0 e I λ 1 -1 , k = k 0 , q 0 = (1 -c) log(n) 1 -λ 0 e I λ 1 I λ 1 + λ 0 -λ 0 e I λ 1 , q = q 0 .
The denominator of k 0 is positive since λ 0 e I λ 1 ≤ 1 and

I λ 1 + λ 0 -λ 0 e I λ 1 ≥ I λ 1 + e -I λ 1 1 -e I λ 1 = I e -I λ 1 > 0 . ( 25 
)
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We note that k = O(log n), unless the denominator of k 0 goes to zero, which is only possible when I λ 1 goes to zero (implying λ 1 → 1), in which case

k ∼ log(n)[I λ 1 (1 -λ 0 )] -1 = O I -1 λ 1 ∨ 1 log(n) = O [log(N )] , (26) 
since, in this case, ( 22) implies that I -1 λ 1 = O (log(n)/ log(N )), and lim sup λ 0 < 1 by assumption. So (26) holds in any case.

We shall prove that among the connected components of G S of size larger than q, there exists at least one component whose size in G is larger than k. By definition of c, we have lim inf k/t 0 ≥ τ (1-c)/(1+c) ≥ (1+c )(1-c)/(1+c) > 1, and the connected component test is therefore powerful. The main arguments rely on the second moment method and on the comparison between cluster sizes and branching processes. Before that, recall that t 0 → ∞, so that log(n)I -1

e -I λ 1 k 0 → ∞, which in turn implies I λ 1 = o (log(n)).
Lemma 9. Fix any c > 0. Consider the distribution G(m, λ/m) and assume that λ satisfies

lim sup λ ≤ 1, log I -1 λ ∨ 1 = o (log(m)) , I -1 λ log m → ∞ .
For any sequence q = a log(m) with a ≤ I -1 λ (1 -c), let Z ≥q denote the number of nodes belonging to a connected component whose size is larger than q. With probability going to one, we have

Z ≥q ≥ m 1-aI λ -o(1) . (27) 
Proof. This lemma is a simple extension of the second moment method argument (Equations (4.3.34) and (4.3.35)) in the proof of (Van der Hofstad, 2012, Th. 4.5), where λ is fixed, while here it may vary with m, and in particular, may converge to 1. We leave the details to the reader.

Observe that

q (1 -c)I -1 λ 1 log(n) ≤ I λ 1 -λ 0 I λ 1 e I λ 1 I λ 1 + λ 0 -λ 0 e I λ 1 ≤ 1 -λ 0 1 -e I λ 1 + I λ 1 e I λ 1 I λ 1 + λ 0 -λ 0 e I λ 1 ≤ 1 ,
using the fact that xe x -e x + 1 ≥ 0 for any x ≥ 0. Thus, we can apply Lemma 9 to G S . And by Lemma 8, the largest connected component of G S has size smaller than 2I -1 λ 1 log(n) with probability tending to one. Hence, G S contains more than

n 1+o(1) e -qI λ 1 2I -1 λ 1 log n = ne -qI λ 1 -o(log(n))
connected components of size larger than q. (We used the fact that log(I -1

λ 1 ∨ 1) = o(log n).) If k 0 -q 0 ≤
1, then applying Lemma 9 to q + 2 (instead of q) allows us to conclude that there exists a connected component of size at least k. This is why we assume in the following that lim inf k 0 -q 0 > 1. By definition of k 0 and q 0 , k 0 -

q 0 ≥ 1, implies that log(n)λ 0 ≥ 1 1 -c e -I λ 1 I λ 1 + λ 0 -λ 0 e I λ 1 ≥ 1 1 -c e -I λ 1 I e -I λ 1
by ( 25). Thus, lim inf k 0 -q 0 > 1 implies that for n large enough log(n)λ 0 ≥ λ 1 I λ 1 e and consequently

I λ 0 ≤ O(1) -log(λ 0 ) ≤ o (log(n)) + I λ 1 + log I -1 e -I λ 1 = o(log(n)) (28) 
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since

I λ 1 = o(log(n)), -log(I λ 1 ) ≤ o(log(n)) and I -1 e -I λ = O (e -I λ -1) -2 = O I -2 λ . Let {C (i)
S , i ∈ I} denote the collection of connected components of size larger than q in G S . For any such component C (i) S , we extract any subconnected component C(i) S of size q. Recall that, with probability going to one:

|I| ≥ n 1-o(1) e -qI λ 1 . ( 29 
)
For any node x, let C(x) denote the connected component of x in G, and let C -S (x) denote the connected component of x in the graph G -S where all the edges in G S have been removed. Then, let

U i := x∈ C(i) S C -S (x) , i ∈ I ; V = i∈I 1 {|U i |≥k} .
Since V ≥ 1 implies that the largest connected component of G is larger than k, it suffices to prove that V is larger than one with probability going to one. Observe that conditionally to |I|, the distribution of

(|U i |, i ∈ I) is independent of G S .
Again, we use a second moment method based on a stochastic comparison between connected components and binomial branching processes.

Lemma 10. The following bounds hold

P S [|U i | ≥ k] ≥ k k -q k-q e -λ 0 q-I λ 0 (k-q) n -o(1) , Var S [V |G S ] ≤ |I| P S [|U i | ≥ k] + |I| 2 q 2 N E S [|U i |1 {U i ≥k} ] , (30) 
P S [|U i | ≥ k] ≤ E S [|U i |1 {U i ≥k} ] ≤ k k -q k-q e -λ 0 q-I λ 0 (k-q) n o(1) . ( 31 
)
Before proceeding to the proof of Lemma 10, we finish proving that V ≥ 1 with probability going to one. Let define µ k := k k-q k-q e -λ 0 q-I λ 0 (k-q) . Applying Chebyshev inequality, we derive from Lemma 10

V ≥ |I|µ k n -o(1) -O P S (|I|µ k ) 1/2 n o(1) -O P S |I|(µ k /N ) 1/2 n o(1) .
In order to conclude, we only to need to prove that

|I|µ k ≥ n c-o(1) since (|I|µ k ) 1/2 /|I|(µ k /N ) 1/2 = N/|I| ≥ 1.
Relying on (29), we derive

|I|µ k ≥ n 1-o(1) k k -q k-q e -λ 0 q-qI λ 1 -I λ 0 (k-q) ≥ n 1-o(1) k 0 k 0 -q 0 k 0 -q 0 e -λ 0 q 0 -q 0 I λ 1 -I λ 0 (k 0 -q 0 )-2I λ 0 ≥ n 1-o(1) λ -(k 0 -q 0 ) 0 e -λ 0 q 0 -k 0 I λ 1 -I λ 0 (k 0 -q 0 ) ≥ n 1-o(1) e -k 0 λ 0 -k 0 I λ 1 e k 0 -q 0 ≥ n 1-o(1) exp -k 0 λ 0 + I λ 1 -λ 0 e I λ 1 = n c-o(1) ,
where we use (28) and k 0 k 0 -q 0 = λ -1 0 e -I λ 1 in the third line, the definition I λ 0 = λ 0 -log(λ 0 ) -1 in the fourth line, and the definitions of k 0 and q 0 in the last line.

Proof of Lemma 10. We shall need the two following lemmas.

Lemma 11 (Upper bound on the cluster sizes). Consider the distribution G(m, λ/m) and a collection J of nodes. For each k ≥ |J |,

P [| ∪ x∈J C(x)| ≥ k] ≤ P m,λ/m T 1 + . . . + T |J | ≥ k ,
where T 1 , T 2 , . . . denote the total progenies of i.i.d. binomial branching processes with parameters m and λ/m. For each

|J | ≤ k ≤ m, P [| ∪ x∈J C(x)| ≥ k] ≥ P m-k,λ/m T 1 + . . . + T |J | ≥ k ,
where T 1 , T 2 , . . . denote the total progenies of i.i.d. binomial branching processes with parameters m -k and λ/m.

Lemma 11 is a slightly modified version of (Van der Hofstad, 2012, Th. 4.2 and 4.3), the only difference being that |J | = 1 in the original statement. The proof is left to the reader. The following result is proved in (Van der Hofstad, 2012, Sec. 3.5).

Lemma 12 (Law of the total progeny). Let T 1 , . . . , T r denote the total progenies of r i.i.d. branching processes with offspring distribution X. Then,

P [T 1 + . . . + T r = k] = r k P [X 1 + . . . + X k = k -r] ,
where

(X i ), i = 1, . . . , k are i.i.d. copies of of X.
Consider any subset J of node of size q. The distribution

|U i | = | x∈ C(i) S C -S (x)| is stochasti- cally dominated by the distribution of Z := | x∈J C(x)
| under the null hypothesis. Let T q be sum of the total progenies of q independent binomial branching processes with parameters N -n + q -k and p 0 . By Lemma 11, we derive

P S [|U i | ≥ k] ≥ P 0 [Z ≥ k] ≥ P N -n+q-k,p 0 [T q ≥ k] ≥ P N -n+q-k,p 0 [T q = k] .
Let X 1 , X 2 , . . . denote independent binomial random variables with parameters N -n + q -k and p 0 . Relying on Lemma 12 and the lower bound s r ≥ (s-r) r r! ≥ (re) -1 (s-r)e r r , we derive 1) , where (26) with n log(N )/N = o(log(n)) in the last line.

P N -n+q-k,p 0 [T q = k] = q k P N -n+q-k,p 0 [X 1 + . . . + X k = k -q] = q k k(N -n + q -k) k -q p k-q 0 (1 -p 0 ) k(N -n+q-k)-k+q q k 2 ek(N -n -2(q -k)) k -q k-q λ 0 N k-q e -λ 0 k-kO(n/N ) q k 2 e -I λ 0 (k-q) e -λ 0 q k k -q k-q e -kO(n/N ) k k -q k-q e -λ 0 q-I λ 0 (k-q) n o(
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Let us now prove (31). The first inequality is Markov's. For the second, by Lemma 11, U i is stochastically dominated by Tq , the sum of the total progenies of q independent binomial branching processes with parameters N and p 0 , so that

E S |U i |1 {U i ≥k} = N r=k P S [U i ≥ r] ≤ ∞ r=k P N,p 0 [ Tq ≥ r] ≤ ∞ r=k r P N,p 0 [ Tq = r] .
We use Lemma 12 to control the deviation of Tq . Below X 1 , X 2 , . . . denote independent binomial random variables with parameter N and p 0 .

∞ r=k r P N,p 0 [ Tq = r] ≤ ∞ r=k r q r P N,p 0 [X 1 + . . . + X r = r -q] ≤ ∞ r=k q exp -N rH p 0 r -q N r , (32) 
by Chernoff inequality since

r -q N r ≥ k -q N k ≥ k 0 -q 0 N k 0 = λ 0 e I λ 1 N > λ 0 N = p 0 .
By Lemma 2, H p 0 (a) ≥ a log(a/p 0 ) -a + p 0 . Thus, we arrive at

E S |U i |1 {U i ≥k} ≤ ∞ r=k q exp -(r -q) log r -q rλ 0 + r -q -rλ 0 ≤ q ∞ r=k exp[A r ] , (33) 
where A r := -(r -q)I λ 0 -qλ 0 -(r -q) log r-q r . Differentiating the function A r with respect to r, we get

dA r dr = -I λ 0 -log r -q r -1 + r -q r ≤ -I λ 0 -log k -q k -1 + k -q k ≤ -I λ 0 -log k 0 -q 0 k 0 -1 + k 0 -q 0 k 0 = -λ 0 -I λ 1 + λ 0 e I λ 1 ,
which is negative as argued below the definition of k. Consequently, A r is a decreasing function of r. Define r 1 as the smallest integer such that log((r -q)/r) ≥ -I λ 0 /2. Since lim sup λ 0 < 1, it follows r 1 = O(q). Coming back to (33), we derive

E S |U i |1 {U i ≥k} ≤ q(r 1 -k) + exp[A k ] + q ∞ r=r 1 exp[A r ] ≤ qe A k (r 1 -k) + + ∞ r=r 1 e -(r-k)[I λ 0 -log((r-q)/r)] ≤ qe A k (r 1 -k) + + ∞ r=r 1 e -(r-k)I λ 0 /2 ≤ e A k O(k 2 ) , (34) 
since lim sup λ 0 < 1. From (26), we know that k = O(log(N )) = n o(1) , which allows us to prove (31).

Turning to the proof of (30), we have the decomposition

Var S [V |G S ] ≤ |I| P S [U i ≥ k] + i =i ∈I P S [|U i | ≥ k, |U i | ≥ k] -P 2 S [|U i | ≥ k] ≤ |I| P S [U i ≥ k] + |I| 2 P S [|U i | ≥ k , U i ∩ U i = ∅] +|I| 2 P S [|U i | ≥ k, |U i | ≥ k , U i ∩ U i = ∅] -P 2 S [|U i | ≥ k] . (35) 
The last term is nonpositive. Indeed,

P S [|U i | ≥ k, |U i | ≥ k , U i ∩ U i = ∅] -P 2 S [|U i | ≥ k] = N r=k P S [|U i | = r] P S |U i | ≥ k, U i ∩ U i = ∅ |U i | = r -P S [|U i | ≥ k] ≤ N r=k P S [|U i | = r] P S |U i | ≥ k U i ∩ U i = ∅ , |U i | = r -P S [|U i | ≥ k] ,
where the last difference is negative, as the graph is now smaller once we condition on

|U i | ≥ 1 and U i ∩ U i = ∅.
Consider the second term in (35):

P S [|U i | ≥ k , U i ∩ U i = ∅] = N r=k P S [|U i | = r] P S [U i ∩ U i = ∅ | |U i | = r] .
By symmetry and a union bound, we derive

P S [U i ∩ U i = ∅ | |U i | = r] ≤ q 2 P S [y ∈ C -S (x) | |U i | = r] ,
for some x ∈ C(i) S and y ∈ C(i ) S . Since the graph G -S is not symmetric, the probability that a fixed node z belongs to C -S (x) conditionally to |C -S (x)| is smaller for z ∈ S \ {i} than for z ∈ S c . It follows that

P S [y ∈ C -S (x) | |U i | = r] ≤ E S |C -S (x)| -1 N -1 |U i | = r .
Since |C -S (x)| ≤ r, we conclude

P S [|U i | ≥ k , U i ∩ U i = ∅] ≤ N r=k P S [|U i | = r] q 2 r N = q 2 N E S [|U i |1 {U i ≥k} ] .
Let us continue with the proof of Theorem 2, now assuming that λ 1 < 1, that Condition (23) holds, and that n 2 = o(N ). We assume in the sequel that I λ 1 ≤ -log(λ 0 ), meaning that λ 1 is not too small. We may do so while keeping Condition (23) true, because the distribution of |C max | under P S is increasing with respect to λ 1 and because for I λ 1 = -log(λ 0 ), ( 23) is equivalent to lim sup log(n)/ log(N ) < 1, which is always true since n 2 = o(N ). Similarly, we assume that 

I λ 1 = o(log(n))
I λ 0 log(n)
I λ 1 log(N ) < 1 and since I -1 λ 0 log(N ) → ∞. By Condition ( 23), there exists a constant c > 0 such that lim sup

I λ 0 λ 0 + I λ 1 -λ 0 e I λ 1 log(n) log(N ) < 1 -c . (36) 
We shall prove that with probability P S going to one, the largest connected component of G does not intersect S. As the distribution of the statistic under the alternative dominates the distribution under the null, this will imply that the largest connected component test is asymptotically powerless. Denote A the event that, for all (x, y) ∈ S, there is no path between x and y with all other nodes in S c . For any subset T , denote C T (x) the connected component of x in G T , and recall that C(x) is a shorthand for C V (x). By symmetry, we have

P S [A c ] ≤ n 2 P 0 [y ∈ C -S (x)] ≤ P 0 [y ∈ C(x)] ,
since the probability of the edges outside G S under P S is the same as under P 0 . Again, by symmetry

P 0 [y ∈ C(x)] = E 0 [P 0 [y ∈ C(x)] | |C(x)|] ≤ E 0 |C(x)| N -1 ≤ 1 (N -1)(1 -λ 0 ) ,
as the expected size of a cluster is dominated by the expected progeny of a branching process with parameters N and p 0 (Lemma 11) and the expected progeny of a subcritical branching process having mean offspring µ < 1 is (1 -µ) -1 (Van der Hofstad, 2012, Th. 3.5). Thus,

P S [A c ] = O(n 2 /N ) = o(1) . (37) 
Define

k := (1 -c) 1/2 log(N )I -1 λ 0 . ( 38 
)
Since lim sup λ 0 < 1 and since log log 1) . By Lemma 9, |C max | is larger or equal to k with probability P S (and P 0 ) going to one. Thus, it suffices to prove that

(N ) = o[log(n)], it follows that k log(N ) = n o(
P S [∨ x∈S |C(x)| ≥ k] → 0. Observe that P S [∨ x∈S |C(x)| ≥ k] ≤ n P S [{|C(x)| ≥ k} ∩ A] + P S [A c ] ,
so that, by (37), we only need to prove that n P S [{|C(x)| ≥ k} ∩ A] = o(1). Under the event A, C(x) ∩ S is exactly the connected component C S (x) of x in G S . Furthermore, C(x) is the union of C -S (y) over y ∈ C S (x). Consequently, we have the decomposition

P S [{|C(x)| ≥ k} ∩ A] ≤ P S [|C S (x)| ≥ k] + k-1 q=1 P S [|C S (x)| = q] P S [ B q | |C S (x)| = q] ,
where B q := {| ∪ y∈C S (x) C -S (y)| ≥ k}. By Lemma 11, the distribution of |C S (x)| is stochastically dominated by the total progeny distribution of a binomial branching process with parameters (n, λ 1 /n). Denote by J any set of nodes of size q. Since, conditionally to |C S (x)| = q, the event B q is increasing and only depends on the edges outside G S , we have

P S [ B q | |C S (x)| = q] ≤ P 0 [| ∪ y∈J C(y)| ≥ k] ,
which is in turn, by Lemma 11, smaller than the probability that the total progeny of q independent branching processes with parameters (N, λ 0 /N ) is larger than k. Relying on the law of the total progeny of branching processes (Lemma 12) and Lemma 11, we get

P S [|C S (x)| = q] ≤ 1 q P [Bin(nq, λ 1 /n) = q -1] , P S [ B q | |C S (x)| = q] ≤ ∞ r=k q r P [Bin(N r, λ 0 /N ) = r -q] .
Working out the density of the binomial random variable, we derive

P S [|C S (x)| = q] ≤ nq q -1 p q-1 1 (1 -p 1 ) nq-q+1 ≺ 1 λ 1 e -I λ 1 q ,
and for q ≤ (1 -λ 0 )k, we get

P S [ B q | |C S (x)| = q] ≤ q k exp -N kH p 0 k -q N k ,
which is exaclty the term (32), which has been proved in (34) to be smaller than

O(k 2 ) k -q k k-q e -(k-q)I λ 0 -qλ 0 .
Let define

B := e -I λ 1 -λ 0 -(k-)I λ 0 k k - k-
Gathering all these bounds, we get

P S [{|C(x)| ≥ k} ∩ A] ≺ e -I λ 1 k λ 1 + k-1 q= (1-λ 0 )k e -I λ 1 q λ 1 + O k 2 λ 1 (1-λ 0 )k q=1 B q ≺ k 3 λ 1 e -I λ 1 (1-λ 0 )k + k q=1 B q ≺ n o(1) sup q∈[0;k] B q ,
where we observe that e -I λ 1 (1-λ 0 )k = B (1-λ 0 )k and we use k = n o(1) and I λ 1 = o(log(n)). By differentiating log(B q ) as a function of q, we obtain the maximum sup

q∈[0;k] B q ≤ e -kI λ 0 , if λ 0 e I λ 1 > 1 ; e -I λ 1 k exp λ 0 k(e I λ 1 -1) , else .
Recall that we assume λ 0 e I λ 1 ≤ 1 so that 1) , by definition (38) of k and Condition (36). We conclude that

P S [{|C(x)| ≥ k} ∩ A] ≺ n o(1) 1 λ 1 exp -k λ 0 + I λ 1 -λ 0 e I λ 1 ≺ n -(1-c) -1/2 +o(
n P S [{|C(x)| ≥ k} ∩ A] = o(1).
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Supercritical regime

We now briefly discuss the behavior of the largest connected component test in the supercritical regime where lim inf λ 0 > 1. When λ 0 -log N → ∞, the graph G is connected with probability tending to one under the null and under any alternative (Van der Hofstad, 2012, Th. 5.5), which renders the test completely useless. We focus on the case where λ 0 is fixed for the sake of simplicity.

In that regime, we find that, in that case, the test performs roughly as well as the total degree test -compare Proposition 1.

Proposition 3 (Supercritical largest connected component test). The largest connected component test is asymptotically powerful when λ 1 > λ 0 > 1 are fixed and n 2 /N → ∞.

Proof. We keep the same notation. Under P 0 , we have Van der Hofstad, 2012, Th. 4.16). Hereafter, assume that we are under P S . Then, by the same token,

|C max | = (1 -η λ 0 )N + O( √ N ) (
|C S c max | = (1 -η λ 0 )(N -n) + O( √ N -n) and |C S max | = (1 -η λ 1 )n + O( √ n). Given G S and G S c , the probability that C S c max and C S max are connected in G is equal to 1 -(1 -p 0 ) |C S c max | |C S max | → 1 in probability, since p 0 |C S c max | |C S max | n in probability.
Hence, with probability tending to one,

|C max | ≥ |C S c max | + |C S max | = (1 -η λ 0 )(N -n) + O( √ N ) + (1 -η λ 1 )n + O( √ n) = (1 -η λ 0 )N + (η λ 0 -η λ 1 )n + O( √ N ) ,
with η λ 0 -η λ 1 > 0 since λ 1 > λ 0 > 1 and η λ is strictly decreasing. Hence, because n √ N by assumption, the test that rejects when 

|C max | ≥ (1 -η λ 0 )N + 1 2 (η λ 0 -η λ 1 )n. When λ 0 > 1 is fixed, the largest connected component is of size |C max | satisfying |C max | -(1 -η λ 0 )N √ N → N (0,

The number of k-trees

We consider the test that rejects for large values of N tree k , the number of subtrees of size k. This test will partially bridge the gap in constants between what the broad scan test and largest connected component test can achieve in the regime where λ 0 is constant. Recall the definition of I λ in (21).

Theorem 3. Assume that λ 1 and λ 0 are both fixed, with 0 < λ 0 /e < λ 1 < 1, and that

lim sup log(N/n 2 ) log n < I λ 0 λ 1 e -I λ 0 e 1 -λ 0 λ 1 e I √ λ 1 e . ( 39 
)
Then there is a constant c > 0 such that the test based on N tree k with k = c log n is asymptotically powerful.

Thus, even in the supercritical Poissonian regime with 1 < λ 0 < e, there exist subcritical communities λ 1 < 1 that are asymptotically detectable with probability going to one. The condition λ 1 > λ 0 /e will be shown to be minimal in Theorem 5. Condition (39) essentially requires that n 2 /N does not converge too fast to zero. In particular, when n = N κ , (39) translates into an upper bound on κ. We show later in Theorem 5 that such an upper bound is unavoidable, for when κ is too small, no test is asymptotically powerful. Nevertheless, Condition ( 39) is in all likelihood not optimal.

Proof of Theorem 3. Let N tree k denote the number of subtrees of size k. We first compute the expectation of N tree k under P 0 using Cayley's formula. Since

k 2 = o(n) = o(N ) and k → ∞, we derive E 0 [N tree k ] = |C|=k P 0 [G C is a tree] = N k k k-2 p k-1 0 (1 -p 0 ) k (2) -k+1 ∼ N (λ 0 e) k 1 √ 2πk 5/2 λ 0 ,
where we used the fact any k-tree has exactly k -1 edges. The last line comes from an application of Stirling's formula. We then bound the variance of N tree k under P 0 in the following lemma, whose lengthy proof is postponed to Section 6.3.

Lemma 13. When λ 0 < e, we have

Var 0 [N tree k ] ≺ N kλ 0 (eλ 0 ) k e 2k √ λ 0 /e .
By Chebyshev's inequality, under P 0 ,

N tree k = E 0 N tree k + O Var 0 (N tree k ) 1/2 .
Fix S ⊂ V of size |S| = n, and let q be an integer between 1 and k chosen later. We let N tree k,S c denote the number of k-trees in G S c , and let N tree k,S,q as the number of subsets C of size k such that |C ∩ S| = q and both G C∩S and G C are trees. We have N tree k ≥ N tree k,S c + N tree k,S,q . Therefore, by Chebyshev's inequality, under

P S N tree k ≥ E S N tree k,S c + E S N tree k,S,q + O Var S (N tree k,S c ) 1/2 + O Var S (N tree k,S,q ) 1/2 .
Noting that G S c ∼ G(N -n, p 0 ), and letting λ 0 = (N -n)p 0 , Lemma 13 implies that

Var S [N tree k,S c ] ≺ N -n kλ 0 (eλ 0 ) k e 2k √ λ 0 /e ∼ N kλ 0 (eλ 0 ) k e 2k √ λ 0 /e ,
because nk = o(N ). Thus, we only need to show that, for a careful choice of q,

E S [N tree k,S,q ] E 0 [N tree k ] -E S [N tree k,S c ] , (40) 
E 2 S [N tree k,S,q ] Var S [N tree k,S,q ] , (41) 
E 2 S [N tree k,S,q ] N kλ 0 (eλ 0 ) k e 2k √ λ 0 /e Var 0 [N tree k ] . (42) 
From now on, let q = k -λ 0 λ 1 e k . We use the following lemma, whose lengthy proof is postponed to Section 6.4. Lemma 14. When q = k -λ 0 λ 1 e k , we have

E S [N tree k,S,q ] n λ k-1 1 e 2k-q k 3 n(eλ 1 ) k e λ 0 λ 1 e k 1 λ 1 k 3 , (43) 
and

Var S [N tree k,S,q ] ≺ nk 2 λ 2k-q-1 1 e 4k-2q e 2 √ λ 1 e q + k 7 n 2 N λ 2k-2 1 λ 0 e 4k-2q . ( 44 
)
We first prove (40), bounding

E 0 [N tree k ] -E S [N tree k,S c ] = N k - N -n k k k-2 p k-1 0 (1 -p 0 ) k (2) -k+1 ≤ N k -(N -n -k) k k k-2 k! λ 0 N k-1 ≺ n(λ 0 e) k k -5/2 , since [1 -(n + k)/N ] k = 1 + kn/N + o(kn/N
) by the fact that k = o(n) and kn = o(N ). We also used Stirling's formula again. Using this bound together with (43), we derive

E S [N tree k,S,q ] E 0 [N tree k ] -E S [N tree k,S c ] λ 0 k 1/2 λ 1 λ 1 λ 0 k e k λ 0 λ 1 e = λ 0 k 1/2 λ 1 exp kI λ 0 λ 1 e → ∞ ,
since λ 0 and λ 1 are fixed such that λ 0 /λ 1 e < 1, implying that

I λ 0 λ 1 e > 0 is fixed.
Second, we prove (41). Using ( 43) and ( 44), we have

Var S [N tree k,S,q ] E 2 S [N tree k,S,q ] ≺ k 8 n λ -q 1 e 2 √ λ 1 e q + k 13 N ≺ k 8 n exp 2k 1 - λ 0 λ 1 e I √ λ 1 e + k 13 N ,
and the RHS goes to 0 as long as

lim sup k log(n) < 1 2 1 -λ 0 λ 1 e I √ λ 1 e .
Finally, we prove (42). Using Lemma 13 and (43), we have

Var 0 [N tree k ] E 2 S [N tree k,S,q ] ≺ N k 5 n 2 λ 2 1 eλ 0 k e 2k λ 0 e -4k+2q ≺ N k 5 n 2 exp 2k I λ 0 e -I λ 0 λ 1 e .
Note that I λ 0 e -I λ 0 λ 1 e < 0 is fixed, since our assumptions imply that λ 0 λ 1 e < λ 0 e < 1 and the function I λ is decreasing on (0, 1). Thus, the RHS above goes to 0 as long as

lim inf k log(N/n 2 ) > 1 2 I λ 0 λ 1 e -I λ 0 e .

The number of triangles

We recall that this test is based on the number T of triangles in G. This is an emblematic test among those based on counting patterns, as it is the simplest and the least costly to compute. As such, the number of triangles in a graph is an important topological characteristic, with applications in the study of real-life networks. For example, [START_REF] Maslov | Detection of topological patterns in complex networks: correlation profile of the internet[END_REF] use the number of triangles to quantify the amount of clustering in the Internet.

Proposition 4. The triangle test is asymptotically powerful if lim sup λ 0 < ∞ and λ 1 → ∞ ;

(45)

or lim inf λ 0 > 0 , λ 0 < N/n and λ 2 1 λ 0 1 ∨ λ 0 √ N 2/3 . ( 46 
)
When λ 0 and λ 1 are fixed, T converges in distribution towards a Poisson distribution with parameter λ 3 0 /6 under the null and (λ 3 0 + λ 3 1 )/6 under the alternative hypothesis. In particular, the test is not asymptotically powerless if

lim sup λ 0 < ∞ and lim inf λ 1 > 0 . ( 47 
)
Proof of Proposition 4. Let T be the number of triangles in G. For S ⊂ V, let T S denote the number of triangles in G S . We have

T ≥ T S c + T S .
The following result is based on (Bollobás, 2001, Th. 4.1, 4.10). We use it multiple times below without explicitly saying so.

Lemma 15. Let T m be the number of triangles in G(m, λ/m). Fixing λ > 0 while m → ∞, we have T m ⇒ Poisson(λ 3 /6). If instead λ = λ m → ∞ with log λ = o(log m), then Tm-µ √ µ ⇒ N (0, 1) where µ := E T = m 3 (λ/m) 3 ∼ λ 3 /6. Assume that (45) holds. Applying Lemma 15, T = O P (1) under P 0 , while T ≥ T S → ∞ under P S . (For the latter, we use the fact that T is stochastically increasing in λ 1 .)

Assume that λ 0 and λ 1 are fixed. Applying Lemma 15, T ⇒ Poisson(λ 3 0 /6) under P 0 , while under P S , T S c + T S ⇒ Poisson((λ 3 0 + λ 1 ) 3 /6) since T S c ∼ G(N -n, p 0 ) and T S ∼ G(n, p 1 ) are independent, and n = o(N ). Define T S,S c := T -T S -T S c as the number of triangles in G with nodes both in S and S c . We have

E S [T S,S c ] ≤ N 2 np 3 0 + n 2 N p 1 p 2 0 ≤ n N λ 3 0 + n N λ 1 λ 2 0 = o(1)
, so that T S,S c = o P S (1), and by Slutsky's theorem, T ⇒ Poisson((λ 3 0 + λ 1 ) 3 /6) under P S . Assume that (47) holds. By considering a subsequence if needed, we may assume that λ 0 < ∞ is fixed. And since T is stochastically increasing in λ 1 under the alternative, we may assume that λ 1 > 0 is fixed. We have proved above that T ⇒ Poisson(λ 3 0 /6) under P 0 , T ⇒ Poisson(λ 3 0 /6+λ 3 1 /6) the alternative; hence the test {T ≥ 1} has risk P 0 (T ≥ 1) + P S (T S = 0) → 1 -e -λ 3 0 /6 + e -λ 3 0 /6-λ 3 1 /6 < 1 .

Finally, assume that (46) holds. Using Chebyshev's inequality, to prove that the test based on T is powerful it suffices to show that

E S T -E 0 T Var S (T ) ∨ Var 0 (T ) → ∞ . ( 48 
)
Straightforward calculations show that E 0 T = N 3 p 3 0 , and

Var 0 (T ) = 3(N -3)(1 -p 0 )p 2 0 + (1 -p 3 0 ) N 3 p 3 0 N 4 p 5 0 + N 3 p 3 0 .
And carefully counting the number of triplets with 2 or 3 vertices in S gives

E S T = N -n 3 p 3 0 + n 1 N -n 2 p 3 0 + n 2 N -n 1 p 2 0 p 1 + n 3 p 3 1 ,
while counting pairs of triplets with a certain number of vertices in S, shared or not, we arrive at the rough estimate

Var S (T ) N 4 p 5 0 + n 2 N 2 p 4 0 p 1 + n 3 N p 2 0 p 3 1 + n 4 p 5 1 + E S T .
Note that

E S T -E 0 T = n 2 N -n 1 p 2 0 (p 1 -p 0 ) + n 3 (p 3 1 -p 3 0 ) n 2 (p 1 -p 0 ) N p 2 0 + np 2 1 N n 2 p 2 0 p 1 + n 3 p 3 1 , (49) 
since by condition ( 46), np 0 ≤ 1 and np 1 = λ 1 1. and

Var 0 (T ) ≺ Var S (T ) N 4 p 5 0 + n 2 N 2 p 4 0 p 1 + n 3 N p 2 0 p 3 1 + n 4 p 5 1 + N 3 p 3 0 + n 3 p 3 1 .
We only need to prove that the square root of this last expression is much smaller than (49). Since (np 1 ) 2 N p 0 and np 1 → ∞, we first derive that

n 3 N p 2 0 p 3 1 + n 4 p 5 1 + N 3 p 3 0 + n 3 p 3 1 = o (np 1 ) 6 .
Similarly, we get n 2 N 2 p 4 0 p 1 = o n 4 p 2 1 N 2 p 4 0 . Finally, (46) entails that λ 2 1 λ 0 (λ 0 / √ N ) 2/3 which is equivalent to N 4 p 5 0 = o (np 1 ) 6 .

Information theoretic lower bounds

In this section we state and prove lower bounds on the risk of any test whatsoever. In most cases, we find sufficient conditions under which the null and alternative hypotheses merge asymptotically, meaning that all tests are asymptotically powerless. In other cases, we find sufficient conditions under which no test is asymptotically powerful.

To derive lower bounds, it is standard to reduce a composite hypothesis to a simple hypothesis. This is done by putting a prior on the set of distributions that define the hypothesis. In our setting, we assume that p 0 is known so that the null hypothesis is simple, corresponding to the Erdös-Rényi model G(N, p 0 ). The alternative H 1 := |S|=n H S is composite and 'parametrized' by subsets of nodes of size n. We choose as prior the uniform distribution over these subsets, leading to the simple hypothesis H1 comprising of G(N, p 0 ; n, p 1 ) defined earlier. The corresponding risk for H 0 versus H1 is γN (φ) = P 0 (φ = 1) + 1 Note that γ N (φ) ≥ γN (φ) for any test φ. Our choice of prior was guided by invariance considerations: the problem is invariant with respect to a relabeling of the nodes. In our setting, this implies that γ * N = γ * N , or equivalently, that there exists a test invariant with respect to permutation of the nodes that minimizes the worst-case risk (Lehmann and Romano, 2005, Lem. 8.4.1). Once we have a simple versus simple hypothesis testing problem, we can express the risk in closed form using the corresponding likelihood ratio. Let P1 denote the distribution of W under H1 , meaning G(N, p 0 ; n, p 1 ). The likelihood ratio for testing P 0 versus P1 is

L = 1 N n |S|=n L S , (50) 
where L S is the likelihood for testing P 0 versus P S . Then the test φ * = {L > 1} is the unique test that minimizes γN , and

γN (φ * ) = γ * N = 1 - 1 2 E 0 |L -1| .
For each subset S ⊂ V of size n, let Γ S be a decreasing event, i.e., a decreasing subset of adjacency matrices, and define the truncated likelihood as

L = 1 N n |S|=n L S 1 Γ S . (51) 
We have

E 0 |L -1| ≤ E 0 | L -1| + E 0 (L -L) ≤ E 0 [ L2 ] -1 + 2(1 -E 0 [ L]) + (1 -E 0 [ L]) ,
using the Cauchy-Schwarz inequality and the fact that E 0 L = 1 since it is a likelihood. Hence, for all tests to be asymptotically powerless, it suffices that lim sup E 0 [ L2 ] ≤ 1 and lim inf E 0 [ L] ≥ 1.

Note that

E 0 [ L] = 1 N n |S|=n P S (Γ S ) .
In all our examples, P S (Γ S ) is only a function of |S|, and since all the sets we consider have same size n, E 0 [ L] → 1 is equivalent to P S (Γ S ) → 1.

All tests are asymptotically powerless

We start with some sufficient conditions under which all tests are asymptotically powerless. Recall α in (8) and ζ in (13). We require that ζ → 0 below to prevent the total degree test from having any power (see Proposition 1).

Theorem 4. Assume that ζ → 0. Then all tests are asymptotically powerless in any of the following situations:

λ 0 → 0, λ 1 → 0, lim sup I λ 0 I λ 1 log n log N < 1 ; (52) 0 < lim inf λ 0 ≤ lim sup λ 0 < ∞, λ 1 → 0 ; (53) λ 0 → ∞ with α → 0, lim sup λ 1 < 1 ; (54) 0 < lim inf α ≤ lim sup α < 1, lim sup (1 -α) n sup k=n/u N E S [W * k,S ] k < 1 . ( 55 
)
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We recall here the first few steps that we took in (Arias-Castro and Verzelen, 2012) to derive analogous lower bounds in the denser regime where lim inf α ≥ 1. We start with some general identities. We have

L S := exp(θW S -Λ(θ)n (2) ) , (56) 
with

θ := θ p 1 , θ q := log q(1 -p 0 ) p 0 (1 -q) , (57) 
and Λ(θ) := log(1 -p 0 + p 0 e θ ) , which is the cumulant generating function of Bern(p 0 ). In all cases, the events Γ S satisfy

Γ S ⊂ k>k min {W T ≤ w k , ∀T ⊂ S such that |T | = k} , (58) 
where k min and w k vary according to the specific setting.

To prove that E 0 L2 ≤ 1 + o(1), we proceed as follows. We have

E 0 L2 = 1 N n 2 |S 1 |=n |S 2 |=n E 0 L S 1 L S 2 1 Γ S 1 1 Γ S 2 = 1 N n 2 |S 1 |=n |S 2 |=n E 0 exp θ(W S 1 + W S 2 ) -2Λ(θ)n (2) 1 Γ S 1 ∩Γ S 2 . Define W S×T = i∈S,j∈T W i,j ,
and note that W S = 1 2 W S×S . We use the decomposition

W S 1 + W S 2 = W S 1 ×(S 1 \S 2 ) + W S 2 ×(S 2 \S 1 ) + 2W S 1 ∩S 2 , (59) 
the independence of the random variables on the RHS of (59) and FKG inequality to get

E 0 e θ(W S 1 +W S 2 )-2Λ(θ)n (2) 1 Γ S 1 ∩Γ S 2 = E 0 e 2θW S 1 ∩S 2 -2Λ(θ)K (2) E 0 e θ(W S 1 ×(S 1 \S 2 ) +W S 2 ×(S 2 \S 1 ) )-2 Λ(θ) 2 (n-K)(n+K-1) 1 Γ S 1 ∩Γ S 2 G S 1 ∩S 2 ≤ I • II • III , where K = |S 1 ∩ S 2 |, I := E 0 exp θW S 1 ×(S 1 \S 2 ) - Λ(θ) 2 (n -K)(n + K -1) = 1 , II := E 0 exp θW S 2 ×(S 2 \S 1 ) - Λ(θ) 2 (n -K)(n + K -1) = 1 , III := E 0 exp 2θW S 1 ∩S 2 -2Λ(θ)K (2) 1 Γ S 1 ∩Γ S 2 .
In The first two equalities are due to the fact that the likelihood integrates to one.

Assuming that ζ → 0, we prove that all tests are asymptotically powerless in the following settings:

lim sup λ 0 < ∞, λ 2 1 = o(λ 0 ) ; (60) λ 0 → 0, λ 1 → 0, lim sup I λ 0 log(n) I λ 1 log(N ) < 1, n 2 = o(N ) ; (61) lim sup λ 1 < 1, λ 0 → ∞ , lim sup α < 1 ; (62) lim inf λ 1 ≥ 1, 0 < lim inf α ≤ lim sup α < 1, lim sup (1 -α) n sup k=n/u N E S [W * k,S ] k < 1 . ( 63 
)
This implies Theorem 4. Indeed, ( 60) includes ( 53). Assume that (52) holds. Consider any subsequence n 2 /N converging to

x ∈ R + ∪ {∞}. If x = 0, then (61) holds. If x = 0, then ζ → 0 implies that (λ 1 -λ 0 n/N ) 2 /λ 0 = o(1). If, in addition, λ 1 ≥ 2λ 0 n/N , this implies that λ 2 1 /λ 0 = o(1). If, otherwise, λ 1 ≤ 2λ 0 n/N , then λ 2 1 /λ 0 ≤ 4λ 0 (n/N ) 2 = o(1) since λ 0 = o(1)
. Thus, in both cases, (60) holds. Finally, ( 62) includes ( 54) and also (55) when lim sup λ 1 < 1, while ( 63) includes ( 55) when lim inf λ 1 ≥ 1. We note that (63) implies that lim sup λ 1 < ∞ because of ( 16).

Proof of Theorem 4 under (60)

The arguments here are very similar to those used in (Arias-Castro and Verzelen, 2012), except for the choice of events Γ S . Define Γ S := {G S is a forest} .

When Γ S holds, for any T ⊂ S, G T is also a forest, and since any forest F with k nodes and t connected components (therefore all trees) has exactly k -t ≤ k edges, we have W T ≤ |T |. Hence, (58) holds with w k := k.

Lemma 16. P S (Γ S ) is independent of S of size n, and P S (Γ S ) → 1.

Proof. The expected number of cycles of size k in G S under P S is equal to

n! (n -k)!2k p k 1 ≤ λ k 1 2k . ( 64 
)
Summing ( 64) over k, we see that the expected number of cycles in G S under P S is smaller than

λ 3 1 /(1-λ 1 ) = o(1)
. Hence, with probability going to one under P S , G S has no cycles and is therefore a forest.

In order to conclude, we only need to prove that lim sup E 0 [ L2 ] ≤ 1. We start from (60) and we recall that K = |S 1 ∩ S 2 |. We take k min as the largest integer k satisfying.

2 k -3 ≥ p 2 1 (1 -p 0 ) p 0 (1 -p 1 ) 2 ,
with the convention 2/0 = ∞, so that k min ≥ 3. Let q k = 2/(k -1). Recall that ρ = n/(N -n) and define k 0 = bnρ , where b → ∞ satisfies b 2 ζ → 0.
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• When K ≤ k min , we will use the obvious bound:

III ≤ E 0 exp 2θW S 1 ∩S 2 -2Λ(θ)K (2) = exp ∆K (2) ,
where

∆ := Λ(2θ) -2Λ(θ) = log 1 + (p 1 -p 0 ) 2 p 0 (1 -p 0 ) . ( 65 
)
• When K > k min , we use a different bound. Noting that Γ S 1 ∩ Γ S 2 ⊂ {W S 1 ∩S 2 ≤ w K }, for any ξ ∈ (0, 2θ), we have

III ≤ E 0 exp ξW S 1 ∩S 2 + (2θ -ξ)w K -2Λ(θ)K (2) 1 {W S 1 ∩S 2 ≤w K } ≤ E 0 exp ξW S 1 ∩S 2 + (2θ -ξ)w K -2Λ(θ)K (2) , so that III ≤ exp ∆ K K (2) ,
where

∆ k := min ξ∈[0,2θ] Λ(ξ) + (2θ -ξ)q k -2Λ(θ) . ( 66 
)
Using the fact that

E 0 [ L2 ] ≤ E[III]
where the expectation is taken with respect to K, we have

E 0 [ L2 ] ≤ E 1 {K≤k 0 } exp ∆K (2) + E 1 {k 0 +1≤K≤k min } exp ∆K (2) + E 1 {k min +1≤K≤n} exp ∆ K K (2) = A 1 + A 2 + A 3 ,
where the expectation is with respect to K ∼ Hyp(N, n, n). By Lemma 4, K is stochastically bounded by Bin(n, ρ). Hence, using Chernoff's bound (see Lemma 1), we have

P(K ≥ k) ≤ P(Hyp(N, n, n) ≥ k) ≤ P(Bin(n, ρ) ≥ k) ≤ exp (-nH ρ (k/n)) . (67) 
• When K ≤ k 0 , we proceed as follows. If k 0 = 1, we simply have

A 1 = P(K ≤ 1) ≤ 1 .
If k 0 ≥ 2, we use the expression (65) of ∆ to derive

A 1 ≤ exp ∆k 2 0 ≤ exp O(1) (p 1 -p 0 ) 2 p 0 (1 -p 0 ) b 2 n 4 N 2 = exp O(b 2 ζ) = 1 + o(1) .
• When k 0 + 1 ≤ K ≤ k min , we use (67) and Lemma 2, to get

A 2 ≤ k min k=k 0 +1 exp ∆ k(k -1) 2 -nH ρ k n ≤ k min k=k 0 +1 exp k ∆ k -1 2 -log k nρ + 1 .
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The last sum is equal to zero if k min ≤ k 0 ; therefore, assume that k min > k 0 . For a > 0 fixed, the function f (x) = ax -log x is decreasing on (0, 1/a) and increasing on (1/a, ∞). Therefore, for

k 0 + 1 ≤ k ≤ k min , ∆ k -1 2 -log k nρ ≤ max ∈{k 0 ,k min } ∆ -1 2 -log N n 2 .
We know that ∆(k 0 -1) = o(1), so that

∆ k 0 -1 2 -log k 0 nρ ≤ o(1) -log b → -∞ .
Therefore, it suffices to show that

k min -1 2 ∆ -log k min nρ → -∞ . If k min > 3, observe that k min -1 2 ∆ ≤ 1 + k min -3 2 log 1 + 2 k min -3 (1 + o(1)) ≤ 3 2 log 3 + o(1) , while log(k min /(nρ)) ≥ log(k 0 /(nρ)) → ∞. If we have k min = 3, then we have ∆ -log 3 nρ ≤ log(p 2 1 /p 0 ) -log(N/n 2 ) + O(1) ≤ log λ 2 1 λ 0 + O(1) → -∞ ,
because of (60).

• When k min < K ≤ n, we need to bound ∆ K . Remember the definition of the entropy function H q in (10), and that H(q) is short for H p 0 (q). It is well-known that H is the Fenchel-Legendre transform of Λ; more specifically, for q ∈ (p 0 , 1),

H(q) = sup θ≥0 [qθ -Λ(θ)] = qθ q -Λ(θ q ) . (68) 
Hence, the minimum of Λ(ξ) + (2θ -ξ)q k -2Λ(θ) over ξ > 0 is achieved at ξ = θ q k as soon as 2θ ≥ θ q k . Moreover, by definition of θ in (57), our choice of q k , and the fact that k ≥ k min , we have

2θ -θ q k = log p 2 1 (1 -p 0 ) p 0 (1 -p 1 ) 2 2 k -3 ≥ 0 .
Hence, we have

∆ k = -H(q k ) + 2θq k -2Λ(θ) = -2H p 1 (q k ) + H(q k ) . ( 69 
)
Using the definition of the entropy and the fact that p 0 = o(1), we therefore have

∆ k = q k log p 2 1 q k p 0 + (1 -q k ) log (1 -p 1 ) 2 (1 -q k )(1 -p 0 ) ≤ 2 k -1 log λ 2 1 N (k -1) 2λ 0 n 2 + O(1) ,
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where the O(1) is uniform in k. Hence, starting from the bound we got when bounding A 2 , we have

A 3 ≤ n k=k min +1 exp k ∆ k k -1 2 -log k nρ + 1 ≤ n k=k min +1 exp k log λ 2 1 λ 0 + log N (k -1) 2n 2 -log N k n 2 + O(1) ≤ n k=k min +1 exp k log λ 2 1 λ 0 + O(1) = o(1) , since λ 2 1 /λ 0 = o(1).
This concludes the proof of Theorem 4 under (60).

Proof of Theorem 4 under (61)

Let c be a positive constant that will be chosen small later on. Define

f n := (1 + c) I -1 λ 1 log(n) .
We consider the event

Γ S = {G S is a forest} ∩ {|C max,S | ≤ f n } .
When Γ S holds, for any T ⊂ S, G T is also a forest, with |T | -W T connected components. Since the size of each connected component is at most f n , there are at least |T |/f n connected components. Hence, (58) holds with w k = k -k fn .

Lemma 17. P S (Γ S ) is independent of S of size n, and P S (Γ S ) → 1.

Proof. This is a straightforward consequence of Lemmas 8 and 16.

To conclude, it suffices to show that E 0 [ L2 ] ≤ 1 + o(1). For this, we will need the following.

Lemma 18. Let F k,j stand for the number of forests with j trees on k labelled vertices. For any k ≥ 2 and any j ≤ k, F k,j ≤ k k-2 .

Proof. Fix k ≥ 2. By Cayley's formula, we have F k,1 = k k-2 . Therefore, it suffices to prove that F k,j ≥ F k,j+1 for all j ≥ 1. If we take a forest with j trees and erase any of its k -j edges, we obtain a forest with j + 1 trees. And there are exactly s =t k s k t such ways of obtaining a given forest with j + 1 trees of sizes

k 1 ≤ • • • ≤ k j+1 . Since s =t k s k t ≥ k 1 (k -k 1 ) ≥ k -1 , it follows that F k,j (k -j) ≥ F k,j+1 (k -1). Thus, F k,j ≥ F k,j+1 .
Starting from (60), and using the fact that, under Γ S 1 ∩Γ S 2 , G S 1 ∩S 2 is a forest with W S 1 ∩S 2 ≤ w K edges, we have

E 0 L2 ≤ E 0 exp 2θW S 1 ∩S 2 -2Λ(θ)K (2) 1 {G S 1 ∩S 2 is a forest, W S 1 ∩S 2 ≤w K } .
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E 0 L2 -1 ≤ n k=2 w k i=1 P K = k, W S 1 ∩S 2 = i, G S 1 ∩S 2 is a forest exp 2iθ -2Λ(θ)k (2) ≤ n k=2 w k i=1 n k ρ k F k,k-i p 2i 1 p i 0 1 -p 0 1 -p 1 2(i-k (2) ) ≺ n k=2 w k i=1 n 2 N k-i λ 2 1 λ 0 i F k,k-i n k n k ≺ n k=2 w k i=1 n 2 e N k-i λ 2 1 e λ 0 i 1 k 2 ≺ ∞ j=1 n 2 e N j j fn i=1 λ 2 1 e λ 0 i 1 (i + j) 2 ≺ ∞ j=1 n 2 e N 1 ∨ λ 2 1 e λ 0 fn j . ( 70 
)
In the second inequality, we used the fact that K is stochastically bounded by Bin(n, ρ) (see Lemma 4). In the third inequality, we used the fact that p 0 < p 1 and i ≤ w k < k, as well as the fact that n 2 = o(N ), which implies that ρ k ∼ (n/N ) k . In the fourth inequality, we used Lemma 18 and the lower bound k! ≥ (k/e) k . The fifth inequality comes from a change of variables and uses the definition of w k . When λ 2 1 e ≤ λ 0 , since

n 2 = o(N ), this sum is O(n 2 /N ). When λ 2 1 e > λ 0 , this sum is equal to 1 e An-1 -1 , A n := log N n 2 -f n log λ 2 1 e λ 0 . (71) 
So it suffices to show that A n → ∞. Since we are working under (61), there is c > 0 such that, eventually,

I λ 0 log n I λ 1 log N ≤ 1 -c 1 + c .
Then, using the fact that λ 0 ∨ λ 1 = o(1), we have

f n log λ 2 1 e λ 0 = (1 + c) log n I λ 1 2λ 1 -2I λ 1 + I λ 0 -λ 0 ≤ -(1 + c + o(1)) log(n 2 ) + (1 -c) log N ≤ log(N/n 2 ) -c log(N ) ,
eventually. This implies that

A n ≥ -1 + c log N → ∞.
This concludes the proof of Theorem 4 under (61).

Proof of Theorem 4 under (62)

Recall that ρ = n/(N -n) and define

k 0 = bnρ , where b → ∞ satisfies b 2 ζ → 0. Let k min be the integer part of 1 + 2 1-α 1 ∨ n 2-α N 1-α . Define Γ S = n k=k min +1 {W T ≤ w k , ∀T ⊂ S such that |T | = k} ,
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Lemma 19. For any k > k min and any subset S of size n, we have P S [Γ S ] → 1.

This takes care of the first moment. In order to conclude, it suffices to control the second moment, specifically, to prove that limE L2 ≤ 1. Arguing as before, we have

E 0 [ L2 ] ≤ E 1 {K≤k 0 } exp ∆K (2) + E 1 {k 0 +1≤K≤k min } exp ∆K (2) + E 0 1 {k 0 +1≤K≤k min } exp 2θW S 1 ∩S 2 -2Λ(θ)K (2) 1 {W S 1 ∩S 2 ≤w K } = A 1 + A 2 + A 3 .
• Arguing exactly as we did before, we have A 1 = 1 + o(1).

• Arguing as before, we also have

A 2 ≤ k min k=k 0 +1 exp k ∆ k -1 2 -log k nρ + 1 ≤ k min k=k 0 +1 exp k 1 + o(1) + max ∈{k 0 ,k min } ∆ -1 2 -log N n 2 . First, we have ∆(k 0 -1)/2 -log(k 0 N/n 2 ) → -∞. This is true if k 0 = 1, and when k 0 > 1, we have N/n 2 ≤ b, so that (p 1 -p 0 ) 2 p 0 (1 -p 0 ) ∼ N 2 n 4 ζ = N 2 n 4 b 2 b 2 ζ → 0 ,
by definition of b, and therefore

∆ k 0 -1 2 N 2 n 4 ζ bn 2 N ≤ b 2 ζ → 0 .
We also have ∆(k min -1)/2 -log(k min N/n 2 ) → -∞. To show this, we divide the analysis into two cases. When N 1-α ≤ n 2-α , this results from

∆ k min -1 2 ≤ (1 + o(1)) n 2-α (1 -α)N 1-α p 2 1 p 0 = (1 + o(1)) λ 2 1 1 -α = O(1) , together with log k min N n 2 ≥ log 2N α (1 -α)n α ≥ α log(N/n) → ∞ , (72) 
where we used the definition of k min and the fact that

λ 0 = (N/n) α . When N 1-α ≥ n 2-α , this results from ∆ k min -1 2 ≤ 1 2 2 1 -α log 1 + p 2 1 p 0 + o(1) ≤ 1 2 2 1 -α log 1 + λ 2 1 N 1-α n 2-α + o(1) ≤ 1 2 2 1 -α log (1 + λ 2 1 ) N 1-α n 2-α + o(1) ≤ 1 1 -α log(1 + λ 2 1 ) + o(1) + log(N/n 2 ) -α 1-α log (n) if α ≥ 1/3 -α log(N/n) if α < 1/3 ,
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And we also have

log k min N n 2 ≥ log N/n 2 , (73) so that 
∆ k min -1 2 -log k min N n 2 ≤ 1 1 -α log(1 + λ 2 1 ) - -α 1-α log (n) if α ≥ 1/3 -α log(N/n) if α < 1/3 , which goes to -∞ since λ 1 = O(1) and α log(N/n) = λ 0 → ∞. Hence, we have A 2 = o(1).
• It remains to prove that

A 3 = o(1). If we assume that p 1 ≤ 2p 0 , then ∆ k ≤ ∆ ≤ p 0 (1 + o(1))
and we can prove that A 3 = o(1) arguing as for A 2 above:

A 3 ≤ n k=k min +1 exp k ∆ k -1 2 -log k nρ + 1 ≤ n k=k min +1 exp k 1 + o(1) + max ∈{k min +1,n} ∆ -1 2 -log N n 2 ≤ n k=k min +1 exp k 1 + o(1) + ∆ n 2 -log k min N n 2 .
On one hand, we have ∆n ≺ np 0 = (n/N ) 1-α = o(1). On the other hand, log(k min N/n 2 ) → ∞. Indeed, when N 1-α ≤ n 2-α , we have (72); and when N 1-α > n 2-α , then N/n 2 > n α/(1-α) → ∞ and we use (73). We conclude that A 3 = o(1) when p 1 ≤ 2p 0 . In the following, we suppose that p 1 ≥ 2p 0 . Leaving w k unspecified, so we can use the same arguments later, we have

A 3 = E 0 1 {k 0 +1≤K≤k min } exp 2θW S 1 ∩S 2 -2Λ(θ)K (2) 1 {W S 1 ∩S 2 ≤w K } = n k=k min +1 w k i=1 P 0 [|S 1 ∩ S 2 | = k, W S 1 ∩S 2 = i] exp 2iθ -2k (2) Λ(θ) ≤ n k=k min +1 w k i=1 n k ρ k k (2) i p i 0 (1 -p 0 ) k (2) -i exp 2i log p 1 p 0 + 2(k (2) -i) log 1 -p 1 1 -p 0 := n k=k min +1 w k i=1 B i,k .
Furthermore, since 0 < 1 -p 0 < 1 and 1 -p 1 < 1 -p 0 , we have

B i,k ≤ n k ρ k k (2) i p i 0 (p 1 /p 0 ) 2i ≤ e o(k) en 2 kN k ep 2 1 k (2) p 0 i i , (74) 
using the standard bound n k ≤ (en/k) k .

We now specify the calculations when w k = k. Considering the sums over i = 1, . . . k/2 and over i = k/2 + 1, . . . k separately, we get

k i=1 B i,k ≤ e o(k) en 2 kN k   k/2 i=1 ep 2 1 k (2) p 0 i + k k/2 +1 ep 2 1 k (2) p 0 k/2 i   ≤ e o(k) en 2 kN k k   1 + ep 2 1 k (2) p 0 k/2 + ep 2 1 k (2) p 0 k/2 k   ≺ e o(k)   en 2 kN k + e 3/2 n 2 p 1 N √ 2p 0 k + e 2 n 2 p 2 1 N p 0 k   . First, en 2 kN ≤ en 2 k 0 N = o(1) by definition of k 0 . Next, n 2 p 1 N √ p 0 ≤ 2(p 1 -p 0 ) √ p 0 n 2 N = 2 √ ζ → 0, by the fact that p 1 ≥ 2p 0 . Finally, n 2 p 2 1 /(N p 0 ) = λ 2 1 /λ 0 → 0 since λ 0 → ∞ and λ 1 = O(1). Hence, we conclude that n k=k min +1 k i=1 B i,k = o(1) . (75) 
This immediately implies that A 3 = o(1).

This concludes the proof of Theorem 4 under (62).

Proof of Lemma 19. Let us consider the event Γ S := {no connected component of G S has more than one cycle} Under Γ S , a connected component of G S has at most as many edges as vertices. Consequently, Γ S ⊂ Γ S and we only need to prove that P S (Γ S ) → 1. Since lim sup λ 1 < 1 and P S (Γ S ) is nondecreasing in λ 1 , we may assume that λ 1 is fixed in (0, 1). As a warmup for what follows, we note that the number L k of cycles of size k in G S satisfies

E S [L k ] = p k 1 n! (n -k)!2k ≤ λ k 1 2k ,
since there are n!/[(n -k)!2k] potential cycles of size k. Now, if a connected component contains (at least) two cycles, there are two possibilities:

• The two cycles have at least one edge in common. In that case, there is a cycle (say of length k) with a chord (say of length s < k). Let L k,s denote the number of such configurations, There are n!/[(n -k)!2k] potential cycles of size k. Given a cycle of size k, there are less than k 2 starting and ending nodes possible for the chord. Once these two nodes are set, there remains less than n!/(n -s + 1)! possibilities for the other nodes on the chord. Thus, we have

E S [L k,s ] ≤ p k+s 1 n! (n -k)!2k k 2 n! (n -s + 1)! ≤ λ 1 n k+s kn k+s-1 ≤ λ k+s 1 k n .
Summing this inequality over s and k, we control the expected number of cycles with a chord:

∞ k=3 k-1 s=1 E[L k,s ] ≤ 1 n ∞ k=3 kλ k+1 1 1 -λ 1 1 n = o(1) ,
since lim sup λ 1 < 1. Hence, this event occurs with probability going to 0.

Comment citer ce document : Verzelen, N., Arias-Castro, E. ( 2015). Community detection in sparse random networks. Annals of Applied Probability, 25 (6), 3465-3510. DOI : 10.1214/14-aap1080

• The two cycles have no edge in common. Since there are in the same connected component, there is a path that goes from a vertex in the first cycle to a vertex in the second cycle. Let us note L k 1 ,k 2 ,s the number of cycles of size k 1 and k 2 that do not share an edge and are connected by a path of length s. Observe that there are less n!

(n-k 1 )!2k 1 possible configurations for the first cycle, less than n! (n-k 2 )!2k 2 possible configurations for the second cycle, and less than k 1 k 2 n!/(n -s + 1)! possibilities for the chord. Thus, we get

E L k 1 ,k 2 ,s ≤ p k 1 +k 2 +s 1 n! (n -k 1 )!2k 1 n! (n -k 2 )!2k 2 k 1 k 2 n! (n -s + 1)! ≤ λ 1 n k 1 +k 2 +s n k 1 +k 2 +s-1 = λ k 1 +k 2 +s 1 n ,
so that the expected number of such configurations is bounded as follows

k 1 ≥3 k 2 ≥3 s≥1 E L k 1 ,k 2 ,s ≤ 1 n k 1 ≥3 k 2 ≥3 s≥1 λ k 1 +k 2 +s 1 1 n = o(1) .
Hence, this second event occurs with probability going two zero All in all, we have proved that P S (Γ S ) → 1, implying that P S (Γ S ) → 1.

Proof of Theorem 4 under (63)

We follow the arguments laid out for the case (62). We define Γ S in the same way, except that

w k := k (1-c) 1/2 1-α
, where c is a positive constant (to be chosen small later) such that c < α and, eventually,

sup n/u N <k≤n 1 k E S [W * k,S ] ≤ 1 -2c 1 -α . ( 76 
)
Lemma 20. For any k > k min and any subset S of size n, we have P S [Γ S ] → 1.

For the second moment, we proceed exactly as in the case (62), and we start from (75). In fact, when w k ≤ k, the proof is complete. So we assume that c is small enough that w k > k, and bound the sum over k + 1 ≤ i ≤ w k . For i > k, we use the bound (74), together with the fact that λ 0 = (N/n) α and k < i, to derive

B i,k ≤ e o(k) en 2 kN k ep 2 1 k (2) p 0 i i ≤ e o(k) en 2 kN k N 1-α k n 2-α λ 2 1 e 2 i = e o(k)+k n N k-i(1-α) λ 2 1 e 2 i n k k-i ≤ e o(k)+k n N k-i(1-α) λ 2 1 e 2 i .
This allows us to control the sum

w k i=k+1 B i,k ≤ w k e o(k)+k n N k-(1-α)w k λ 2 1 e 2 ∨ 1 w k ≺ ke o(k)+k n N k(1-(1-c) 1/2 ) λ 2 1 e 2 ∨ 1 k (1-c) 1/2 1-α = exp O(k) -k(1 -(1 -c) 1/2 ) log(N/n) ,
where in the second line we used the fact that w k = O(k) since lim sup a < 1, and in the third line we used the fact that λ 1 = O(1). Thus,

n k=k min +1 w k i=k+1 B i,k = o(1) ,
which together with (75) allows us to conclude that A 3 = o(1). This concludes the proof of Theorem 4 under (63).

Proof of Lemma 20. Recall that u N = log log(N/n). First we consider integers k satisfying 2) . Applying a union bound and Chernoff's bound for the binomial distribution, we derive that

k min + 1 ≤ k < n/u N . Define ω k = k(1 -c) -1/2 λ 1 2 ∨ 1 and q k = ω k /k (
P S W * k,S ≥ ω k ≤ n k P[Bin(k (2) , p 1 ) ≥ ω k ] ≤ exp k log ne k - k -1 2 H p 1 (q k ) .
Since k/n ≤ 1/u N = o(1), and since λ 1 is bounded, we have q k /p 1 → ∞, so that

k -1 2 H p 1 (q k ) ∼ k -1 2 q k log q k p 1 = (1 -c) -1/2 λ 1 2 ∨ 1 log n k -1 + log (1 -c) -1/2 1 ∨ 2 λ 1 ≥ (1 + o(1))(1 -c) -1/2 log n k ,
and therefore, since c ∈ (0, 1) is fixed,

log ne k - k -1 2 H p 1 (q k ) ≤ 1 + 1 -(1 + o(1))(1 -c) -1/2 log(u N ) → -∞ .
We conclude that

n/u N k=k min +1 P S W * k,S ≥ ω k = o(1) .
Let us now prove that ω k ≤ w k . Indeed, this inequality holds if, and only if, λ 1 ≤ 2(1 -c)/(1 -α) and c ≤ α. The second inequality is by definition of c, while the first inequality is ensured by (76) since

λ 1 2 n -1 n = E S [W * n,S /n] ≤ sup k≤n E S [W * k,S /k] ≤ (1 -2c)/(1 -α) .
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E S [W * k,S ] ≥ E S [W T ] = p 1 k (2) ≥ λ 1 n (n/u N ) (2) n u 2 N → ∞ , (77) 
so that t satisfies the condition of Lemma 7 eventually. Using that lemma, we derive that

P S W * k,S ≥ E S [W * k,S ](1 -c) -1/2 ≤ exp -E S [W * k,S ] log(2) 4 c 0 1 ∧ c 0 8 By Condition (76), w k ≥ E S [W * k,S ](1 -c) -1/2
. Hence, there exists a positive constant κ, such that

n k=n/u N P S W * k,S ≥ w k ≤ n k=n/u N exp -κ E S [W * k,S ] ≤ n exp -κ E S W * n u N ,S
Because of ( 77) and the fact that log(N ) = o(n), we have

E S W * n u N ,S n log 2 (n) ,
and therefore the sum above goes to 0.

No test is asymptotically powerful

When λ 0 is bounded away from 0 and infinity, the triangle test has some non-negligible power as long as λ 1 is bounded away from 0 (see Section 3.4). This motivates us to obtain sufficient conditions under which no test is asymptotically powerful.

Our method is also based on bounding the first two moments of a truncated likelihood ratio L. Indeed, it is enough to show that lim inf E 0 L > 0 and lim inf E 0 [ L2 ] < ∞. This comes from the following result.

Lemma 21. Let P 0 and P 1 be two probability distributions on the same probability space, with densities f 0 and f 1 with respect to some dominating measure. Let Γ be any event and define the truncated likelihood ratio L = L 1 Γ , where L = f 1 /f 0 is the likelihood ratio for testing P 0 versus P 1 . Then any test for P 0 versus P 1 has risk at least 4 27

(E 0 L) 3 E 0 [ L2 ]
,

where E 0 denotes the expectation under P 0 , and by convention 0/0 = 0.

Proof. Assume E 0 L = 0, for otherwise the result is immediate. The risk of the likelihood ratio test {L > 1} -which is the test that optimizes the risk -is equal to

B := 1 - 1 2 E 0 |L -1| = 1 -E 0 (1 -L) + ≥ 1 -E 0 (1 -L) + ,
since L ≤ L. For any t ∈ (0, 1), we have

E 0 (1 -L) + ≤ (1 -t) P 0 ( L > t) + P 0 ( L ≤ t) = 1 -t P 0 ( L > t) .
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E 0 L = E 0 [ L 1 { L≤t} ] + E 0 [ L 1 { L>t} ] ≤ t + E 0 [ L2 ] P 0 ( L > t) ,
so that, taking t < E 0 L, we have

P 0 ( L > t) ≥ (E 0 L -t) 2 E 0 L2
.

We conclude that

B ≥ t P 0 ( L > t) ≥ t (E 0 L -t) 2 E 0 L2
, and optimizing this over 0 < t < E 0 L yields the result.

Since we only need to focus on the case where λ 0 is bounded from 0 and infinity, and where λ 1 is bounded from 0 (because the other cases are covered by Theorem 4), we may assume they are fixed without loss of generality. In that case ζ → 0 is equivalent to n 2 /N → 0, which is what we assume in the following.

Theorem 5. Write n = N κ with 0 < κ < 1/2, and assume that λ 0 and λ 1 are both fixed. No test is asymptotically powerful in all the following situations:

λ 1 < 1, λ 2 1 e ≤ λ 0 ; (78) 
λ 1 < 1, λ 2 1 e > λ 0 , 1 -2κ κ I λ 1 log eλ 2 1 λ 0 > 1 . ( 79 
)
Proof of Theorem 5. We use the same truncation as in Section 4.1.2, using the same notation Γ S and f n defined there, and still denote the resulting truncated likelihood by L.

For the first moment, by symmetry,

E 0 [ L] = P S [Γ S ] = P S [G S is a forest, |C max,S | ≤ f n ] .
We already saw that P S [|C max,S | ≤ f n ] → 1 ( Van der Hofstad, 2012, Th. 4.4). Consequently,

E 0 [ L] = P S [G S is a forest] + o(1) .
Of course, G S is a forest if, and only if, it has no cycles. By [START_REF] Takács | On the limit distribution of the number of cycles in a random graph[END_REF], the number of cycles in G S converges weakly to a Poisson distribution with mean

a(λ 1 ) = 1 2 log 1 1 -λ 1 - λ 1 2 - λ 2 1 4 , when λ 1 < 1 is fixed. As a consequence, E 0 [ L] = exp [-a(λ 1 )] + o(1)
, which remains bounded away from zero.

For the second moment, we start from ( 70):

E 0 L2 -1 ≺ ∞ j=1 n 2 e N 1 ∨ λ 2 1 e λ 0 fn j ,
with f n = (1 + c)I -1 λ 1 log n and c is a small positive constant. Under (78), we have λ 2 1 e ≤ λ 0 and the RHS is O(n 2 /N ) = o(1). Under (79), we have λ 2 1 e > λ 0 , and the RHS is, as before, equal to (71). Here we have

A n = 1 -2κ -(1 + c) κ I λ 1 log λ 2 1 e λ 0 log N → ∞ ,
when ( 79) is satisfied and c is small enough. Hence, in any case, we found that E 0 L2 ≤ 1 + o(1).

Discussion

5.1 Adapting to unknown p 0 and n

In (Arias-Castro and Verzelen, 2012), we discussed in detail the case where p 0 is unknown. In this situation, the total degree test is not applicable, and we replaced it with a test based on the difference between two estimates for the degree variance. On the other hand, the scan test (based on (4)) can be calibrated in various ways without asymptotic loss of power -for example, by plugging in the estimate p0 = W N (2) in place of p 0 . We showed that a combination of degree variance test and the scan test are optimal when p 0 is unknown, so that the degree variance test can truly play the role of the total degree test in this situation. We believe this is the case here also. In addition to that, the broad scan test (based on ( 7)) can also be calibrated without asymptotic loss of power, and the same is true for all the other tests that we studied here, except for the largest connected component test in the supercritical regime.

We also discussed in (Arias-Castro and Verzelen, 2012) the case where the size of the subgraph n is unknown. This only truly affects the broad scan test, whose definition itself depends on n. As we argued in our previous paper, it suffices to apply the procedure to all possible n's, meaning, consider the multiple test based on a combination of the statistics

W ‡ n , n = 1, . . . , N/2
with a Bonferroni correction. The concentration inequalities that we obtained for W ‡ n can accommodate an additional logarithmic factor that comes out of applying the union to control this statistic under P 0 , and from this we can immediately see that the test is asymptotically as powerful (up to first order).

Open problems

The cases where λ 0 → 0 and where lim inf λ 0 ≥ e are essentially resolved. Indeed, in the first situation, the largest connected component test is asymptotically optimal by Theorem 2 and Theorem 4 case (52), while in the second situation the broad scan test is asymptotically optimal by Theorem 1 and Theorem 4 cases ( 54) and ( 55), together with Theorem 5. The case where 0 < λ 0 < e is fixed is not completely resolved. Since the triangle test has non-negligible power as soon as λ 1 is bounded away from 0, consider τ defined as the largest real such that no test for G(N, λ 0 N ) versus G(N, λ 0 N ; n, λ 1 n ) is asymptotically powerful when lim sup λ 1 < τ . Theorems 2 and 3 provide some upper bounds on τ .

Open problem 1. Compute τ as a function of λ 0 and κ := lim sup log n log N .

Although we proved that the broad scan test was asymptotically optimal when lim inf λ 0 ≥ e, its performance was described only indirectly in terms of λ 1 in the case (14).

Open problem 2. Compute, as a function of λ 1 , the limits inferior and superior of

n sup k=n/u N E S [W * k,S ] k .
We also formulate an open problem that connects directly with the planted clique problem. We saw that the broad scan test is powerful when λ 1 is sufficiently large, but we do not know how to compute it in polynomial time. Is there a polynomial-time test that can come close to that? Open problem 3. Find a polynomial-time test that is asymptotically powerful for testing G(N, p 0 ) versus G(N, p 0 ; n, p 1 ) when n 2 /N = O(1), while λ 0 → ∞ and λ 1 = O(1).

6 Proofs of auxiliary results

Proof of Lemma 6

Fix > 0 and define x := 2 (1 + ) + (1 + ) 2 + λ 1 (1 + ) . First, we control the deviations of W * k,S . Define q k = (λ 1 + x)/(k -1) and notice that q k ≥ p 1 for n/u N ≤ k ≤ n. Since log(1 + t) ≤ t for any t > -1, we have

H p 1 (q k ) := q k log q k p 1 + (1 -q k ) log 1 -q k 1 -p 1 ≥ q k log q k p 1 -q k + p 1 .
Applying an union bound and Chernoff inequality (11), we control the deviations of W * k,S :

P S W * k,S ≥ k (2) q k ≤ n k exp -k (2) H p 1 (q k ) ≤ exp[kA k ] ,
where

A k := log en k - k -1 2 q k log q k p 1 -q k + p 1 .
Observe that x is larger than 2. As a consequence, we obtain

A k = 1 + log n k - λ 1 + x 2 log n(λ 1 + x) (k -1)λ 1 + λ 1 + x 2 - λ 1 (k -1) 2n ≤ 1 + x 2 - λ 1 + x 2 log λ 1 + x λ 1 - λ 1 2 k -1 n -1 -log k -1 n ≤ 1 - x 2 4(λ 1 + x) ,
where we used in the last line the inequalities t -log t -1 ≥ 0 and log(1 -t) ≤ -t -t 2 /2, valid for any t ≥ 0. By definition of x, we have x 2 /(4(λ 1 + x)) = 1 + . In conclusion, we have proved that for any integer k between n/u N and n

P S W * k,S k ≥ λ 1 + x 2 ≤ exp [-k ] . (80) 
Let us now control the lower deviations of 1 k W * k,S using Lemma 7

P S W * k,S k ≤ E S W * k,S k -E S W * k,S k 1/2 8 k 1/2 ≤ 2 -8 .
For k large enough, exp [-kε] ≤ 1/2, which therefore implies that

E S W * k,S k ≤ E S W * k,S k 1/2 8 (n/u N ) 1/2 + λ 1 + x 2 , (81) 
since k ≥ n/u N . Taking the supremum over k and letting n go to infinity, we conclude that lim inf

n k=n/u N E S W * k,S k ≤ lim inf λ 1 + x 2 = lim inf λ 1 2 + (1 + ) + (1 + ) 2 + λ 1 (1 + ) .
Then letting going to zero allows us to prove the first result. Now assume that λ 1 → ∞. From (81), we deduce that lim sup λ -1

1 n k=n/u N E S W * k,S k ≤ 1 2 .
On the other hand,

n k=n/u N E S W * k,S k ≥ E S [W * n,S ] n = λ 1 n -1 2n ∼ λ 1 2 .
This concludes the proof.

Some combinatorial results

We state and prove some combinatorial results.

Lemma 22 (Extension of Cayley's identity). The number T ( ) k of labelled trees of size containing a given labelled tree of size k satisfies

T ( ) k = k -k-1 .
The number T ( ) k 1 ,...kr of labelled trees of size containing a given labelled forest with tree components of size k 1 , . . . , k r satisfies

T ( ) k 1 ,...,kr ≤ k r r -k+r-1 ( -k + r -1) r-1 , with k = r i=1 k i .
Proof. The proof relies on the double counting argument of Pitman [START_REF] Aigner | Proofs from The Book[END_REF]. Noting T the fixed tree of size k, we count in two ways the number of labelled trees of size that contain T and whose vertices outside T have been ordered. Straightforwardly, we have T ( ) k ( -k)! such trees. Alternatively, we consider the following way of building such a labelled ordered tree:

1. Start from T .

2. Choose any vertex ũ0 among the original tree T and any vertex ṽ0 among the ( -k) remaining vertices. Add an edge between ũ0 and ṽ0 . Root the given tree -now of size k + 1 -at ṽ0 . Consider all the -k -1 remaining vertices as rooted trees of size 1.

3. Then, perform the iterative construction of Pitman. At each step i = 1, . . . , -k -1, add an edge in the following way: choose any starting vertex u i among the vertices and note ρ i the root of the tree containing u i . Choose any ending vertex v i among the ( -k -i) roots other than ρ i . This so-obtained tree is rooted at ρ i .

4. Let v -k denote the root of the final tree.

All in all, we have k -k-1 ( -k)! such constructions and the sequence v 1 , . . . , v -k obtained in

Step 3 provides an ordering for the vertices not in T .

Lemma 23. For any labelled tree T of size that contains T and whose vertices outside T have been ordered, there exists one and only one construction of T based on the algorithm above.

Comparing the two counts leads to the desired result.

Proof of Lemma 23. Let us slightly modify the iterative construction of Pitman by putting an orientation on the added edges: the first edge is oriented from ṽ0 to ũ0 . For any i = 1, . . . , -k -1, the edge between u i and v i is oriented from u i to v i . The so-obtained partially oriented tree is noted -→ T u,v . Observe that except for v -k which has no parents, all other nodes v i have one and only one parent. Also, observe that except for the edge ṽ0 → ũ0 , all edges between nodes in the subtree T and nodes in {v 1 , . . . v -k } leave the subtree T . By a simple induction, this leads us to the following claim:

Claim 1: All partially oriented tree -→ T u,v based on Pitman construction with sequences (u, v) = (ũ 0 , ṽ0 , u 1 , . . . , u -k-1 , v 1 , . . . , v -k-1 , v -k ) satisfy the following property (P )    Any edge in T is undirected, Any edges on the unique path between v -k and T is oriented towards T , Any other edge (not in T ) is oriented in the opposite direction to T .

In fact, this property characterizes the oriented partially trees -→ T u,v .

Claim 2: Conversely, for any sequence v = (v 1 , . . . , v -k ) and any partially oriented tree -→ T of size satisfying (P ), there exists a unique sequence, (ũ 0 , ṽ0 , u 1 , . . . , u -k-1 ) such that -→ T u,v = T . Proof of Claim 2. The uniqueness is straightforward. Given -→ T , define ũ0 as the unique child in T and define ṽ0 the parent of ũ0 . For any i = 1, . . . , -k -1, denote u i the parent of v i . These sequences are lawful for the Pitman construction. Indeed, at step i, v i is not in the same connected component as u i and v i is still a root of a connected component.

Then, the lemma proceeds from the fact that for any tree T of size and any sequence v = (v 1 , . . . , v -k ), there exists one and only partially orientation of T satisfying (P ).

We now prove the second part of Lemma 22, relying on the same double counting argument. Write k = k 1 + . . . + k r . Noting F the fixed forest with (labelled) connected components T 1 , . . . , T r of respective sizes k 1 , . . . , k r , we count in two ways the number of labelled trees of size that contain F and whose vertices outside F have been ordered. Straightforwardly, we have T ( ) k 1 ,...,kr ( -k)! such trees. Alternatively, we consider the following Pitman construction:

1. Start from F.

2. For any j = 1, . . . , r, choose any vertex w j ∈ T j . Root T j at w j . Consider all the -k remaining vertices as rooted trees of size 1.

3. Then, perform the iterative construction of Pitman: at each step i = 1, . . . , -k + r -1, add an edge in the following way: choose any starting vertex u i among the vertices and note ρ i the root of the tree containing u i . Choose any ending vertex v i among the remaining ( -k + r -i) roots other than ρ i . The resulting tree is rooted at ρ i .

4. Let v -k+r denote the root of the final tree.

All in all, we have r j=1 k j -k+r-1 ( -k + r -1)! such constructions. And the sequence v 1 , . . . , v -k+r obtained in Step 3 provides an ordering of the vertices outside F if we ignore the w j 's in that sequence.

Lemma 24. Any tree that contains F and whose vertices outside F are ordered by the sequence (t 1 , . . . , t -k ) can be constructed in this way.

Consequently we have

T ( ) k 1 ,...,kr ( -k)! ≤ r i=1 k i -k+r-1 ( -k + r -1)! ,
from which we derive the (crude) bound

T ( ) k 1 ,...,kr ≤ k r r -k+r-1 ( -k + r -1) r-1 .
Proof of Lemma 24. Consider a tree T that contains F and whose vertices outside F are ordered in the following sequence (t 1 , . . . , t -k ).

Claim. There exists a (non-necessarily unique) orientation of the edges outside F such that any node in t 1 , . . . , t -k-1 has exactly one parent, t -k has no parent, and any tree T i in F has exactly one parent.

Proof of Claim 1: Collapse each of the trees T i into a single node, to obtain the tree T -k+r with -k + r nodes. Then, we prove the result for T -k+r by a simple induction on the number of nodes.

For any i ∈ {1, . . . , r}, define ω i as the unique node in T i . We define the sequence v := (ω 1 , . . . , ω r , t 1 , . . . t -k ). Finally, we define u i as the unique parent of v i for any i ≤ -k + r -1. It is straightforward to check that these sequences ω, v and u are lawful for the Pitman construction and allow to build F.

Proof of Lemma 13

By definition,

Var 0 [N tree k ] = C 1 ,C 2 P 0 [G C 1 and G C 2 are trees] -P 0 [G C 1 is a tree]P 0 [G C 2 is a tree] ,
where the sum ranges over subsets C 1 , C 2 of size k.

In the sequel, we let q = |C 1 ∩ C 2 | and let r denote the number of connected components of C 1 ∩ C 2 . Note that, when q = 0, the corresponding terms in the sum above are zero. When q ≥ 1, we define B r,q = P 0 G C 1 , G C 2 are trees and G C 1 ∩C 2 has r connected components , so that

P 0 [G C 1 and G C 2 are trees] = q r=1 B r,q . Note that G C 1 ∩C 2 is a forest when G C 1 and G C 2 are trees.
We derive B 1,q first. Under the event {G C 1 , G C 2 and G C 1 ∩C 2 are trees}, there are exactly 2k-1-q edges in G C 1 ∪G C 2 among the potential 2k (2) -q (2) edges. Let us count the number of configurations compatible with this event. By Cayley's identity, there are q q-2 configurations for the tree G C 1 ∩C 2 . The tree G C 1 ∩C 2 being fixed, we apply Lemma 22 to derive that there are qk k-q-1 configurations for G C 1 and qk k-q-1 configurations for G C 2 . All in all, we get B 1,q = q q-2 [qk k-q-1 ] 2 p 2k-1-q 0 (1 -p 0 ) 2k (2) -q (2) -2k+1+q .

Then, we upper bound B r,q for r ≥ 2. Under the event defined in B r,q , there are 2k -2 -q + r edges in G C 1 ∪ G C 2 among the potential 2k (2) -q (2) edges. By Lemma 18 , there are less than q q-2 configurations for the forest G C 1 ∩C 2 with r connected components. G C 1 ∩C 2 being fixed, Lemma 22 tells us that there are less than q r r k k-q+r-1 (k -q + r -1) r-1 possible configurations to complete G C 1 and (independently) for G C 2 . It then follows that B r,q ≤ q q-2 q r r k k-q+r-1 (k -q + r -1) r-1 2 p 2k-q+r-2 0

(1 -p 0 ) 2k (2) -q (2) -2k+q-r+2

≤ B 1,q p 0 1 -p 0 r-1 k 6r-4 , using the fact that q ≤ k. Summing over r leads to q r=2 B r,q ≤ B 1,q k 2 q r=2 p 0 k 6 1 -p 0 r-1 ≤ B 1,q p 0 k 8 1 -p 0 -p 0 k 6 = o B 1,q , since p 0 k 8 = o(1). Thus, when |C 1 ∩ C 2 | = q ≥ 1, we obtain P 0 [G C 1 and G C 2 are trees] = B 1,q + o B 1,q ≺ q q k 2k-2q-2 p 2k-1-q 0 .

We can now bound the variance. The number of subsets (C 1 , C 2 ) of size k such that C 1 ∩ C 2 = q equals N k k q N -k k-q . Thus, we derive

Var 0 [N tree k ] ≺ k q=1 N k k q
N -k k -q q q k 2k-2q-2 p 2k-q-1 0 ≺ N k q=1 q q k 2k-2q-2 q!(k -q)! 2 λ 2k-2q-1 0

≺ N k q=1 (λ 0 e) k λ 0 k 2 A k-q , A := k √ λ 0 e 2 ,
by Stirling's lower bound. By convention, A 0 = 1. The function → A is easily seen to be increasing over (0, k λ 0 /e) and decreasing over (k λ 0 /e, ∞). Thus, when λ 0 < e, we have A k-q ≤ A k √ λ 0 /e ; and when λ 0 > e, we have A k-q ≤ A k ; this is for all q = 1, . . . , k. Then summing over q, we obtain the stated bounds in each case.

Proof of Lemma 14

First, we deal with the expectation. When G C 1 and G C 1 ∪C 2 are both trees, there are q -1 edges in G C 1 and k -q additional edges in G C 1 ∪C 2 . The number of configurations for G C 1 is q q-2 (Cayley's Identity). By Lemma 22, when G C 1 is fixed, there remains qk k-q-1 possible configurations for G C 1 ∪C 2 . As for the previous variance computation, we apply to control this probability. Hence, we get P S [G C 1 and G C 1 ∪C 2 are trees] = q q-2 qk k-q-1 p q-1 1 p k-q 0 (1 -p 1 ) q (2) -q+1 (1 -p 0 ) k (2) -q (2) -k+q q q-1 k k-q-1 p q-1 1 p k-q 0 , since (q (2) -q + 1)p 1 ≤ k 2 p 1 k 2 /n = o(1) and (k (2) -q (2) -k + q)p 0 ≤ k 2 p 0 k 2 /N = o(1). Hence, using the fact that nk = o(N ) and the usual bound m! ≤ √ m(m/e) m , and we derive E S [N tree k,S,q ] n q N -n k -q q q-1 k k-q-1 p q-1 1 p k-q 0 n q q-1 k k-q-1 λ q-1 1 λ k-q 0 q!(k -q)! n (eλ 1 ) k λ 1 k 3 λ 0 k λ 1 (k -q) k-q . This quantity is maximized with respect to q when (k -q)/k = λ 0 /(λ 1 e), and taking q := k -λ 0 λ 1 e k leads to

E S [ Ñ T k,S,q ] n (eλ 1 ) k λ 1 k 3 exp λ 0 λ 1 e k .
Let us turn to the variance. Again, we decompose it as a sum over (C 1 , C 2 ) ⊂ S Applying Lemma 22, there are s s-2 possible configurations for G C 1 ∩C 2 and then [sq q-s-1 ] 2 possible configurations to complete G C 1 ∪ G C 2 . The graph G C 1 ∪ G C 2 been fixed, there are s(s + r) r-1 configurations for G (C 1 ∩C 2 )∪(C 3 ∩C 4 ) , since this is a tree with s + r nodes containing the given tree G C 1 ∩C 2 with s nodes. By the same token, G C 1 ∪C 3 is a tree with k nodes that includes the given tree G C 1 ∪(C 3 ∩C 4 ) with q + r nodes, and similarly for G C 2 ∪C 4 , there at most [(q + r)k k-q-r-1 ] 2 possible configurations to complete G C 1 ∪C 3 ∪ G C 2 ∪C 4 . Thus, we obtain P S [A (1,1) ] ≤ s s-2 [sq q-s-1 ] 2 s(s + r) r-1 [(q + r)k k-q-r-1 ] 2 p 2q-1-s 1 p 2(k-q)-r 0

=: A 1,1 . (82) 
Let us now control the probability of A (t 1 ,t 2 ) for t 1 or t 2 strictly larger than one. First, observe that whenever t 2 < t 1 , A t 1 ,t 2 is empty. Indeed, if t 2 < t 1 , there is a path in C 3 ∩ C 4 between two connected components of G C 1 ∩C 2 . However, these two connected components are also related by a different (since C 1 ∩ C 3 = ∅) path in C 1 (since G C 1 is a tree), and that contradicts the fact that G C 1 ∪C 3 is a tree. Hence, we may assume that t 2 ≥ t 1 . By Lemmas 22 and 18, there are at most s s-2 possible configurations for the forest G C 1 ∩C 2 , and when this is fixed, there are at most (s/t 1 ) t 1 q q-s+t 1 -1 (q -s + t 1 -1) t 1 -1 2 ≤ [sq q-s q 3(t 1 -1) ] 2 possible configurations to complete G C 1 ∪ G C 2 . With G C 1 ∪ G C 2 being fixed, the number of possible configurations for G (C 1 ∩C 2 )∪(C 3 ∩C 4 ) is at most the number of trees that contain G C 1 ∩C 2 -which is at most (s/t 1 ) t 1 (s + r) s+r-s+t 1 -1 (s + r -s + t 1 -1) t 1 -1 ≤ s t 1 (s + r) r+2t 1 -2 by Lemma 22 -times k t 2 -1 , which bounds the number of ways of erasing t 2 -1 edges in this tree to obtain a forest with t 2 components. The graph G C 1 ∪(C 3 ∩C 4 ) contains t 2 -t 1 + 1 connected components. By Lemma 22, there are no more than q + r t 2 -t 1 + 1 t 2 -t 1 +1 k k-q-r+t 2 -t 1 (k -q -r + t 2 -t 1 ) t 2 -t 1 2 ≤ [(q + r)k k-r-q k 3(t 2 -t 1 ) ] 2 possible configurations to complete G C 1 ∪C 3 ∪ G C 2 ∪C 4 . The number of edges in G C 1 ∪ G C 2 is 2(q -1) -(s -t 1 ), while the number of edges in G C 1 ∪C 3 ∪ G C 2 ∪C 4 is 2(k -q) -(r -(t 2 -t 1 )) = 2(k -q) -r + t 2 -t 1 .

All together, and with some elementary simplifications, we arrive at the following bound P S [A (t 1 ,t 2 ) ] ≤ A 1,1 k 7(t 2 -t 1 )+9t 1 -6 p t 1 -1 1 p Using the definition of A 1,1 in (82) and the definition of q, we bound B 1 B 1 ≺ q s=1 k-q r=0 n q N -n k -q q s k -q r n -q q -s N -n -k + q k -q -r A 1,1

≺ n s,r s s+1 q 2(q-s-1) (s + r) r-1 k 2(k-q-r)-2 (q + r) 2 r!s!(q -s)! 2 (k -q -r)! 2 λ 2q-s-1 1 λ 2(k-q)-r 0

≺ n r,s e 2k-r-s s + r r r q q -s 2(q-s) k k -q -r 2(k-q-r) λ 2q-s-1 1 λ 2(k-q)-r+1 0 ≺ n λ 1 r,s e 4k-2q-3r-s s + r r r q q -s 2(q-s) k -q k -q -r 2(k-q-r) λ 2k-2r-s-1 1 λ r 0 ≺ n λ 1 r,s e 4k-2q-3r q q -s 2(q-s) k -q k -q -r 2(k-q-r) λ 2k-2r-s-1 1 λ r 0 .

We have applied Stirling's lower bound in the fourth line; we haved used the definition of q to control k/(k -q) in the fifth line k k -q 2(k-q-r)

= k λ 0 k λ 1 e 2(k-q-r)

≤ λ 1 e λ 0 2(k-q-r)

1 -λ 1 e kλ 0 -2k

= O(1) λ 1 e λ 0 2(k-q-r)

; and we have upper-bounded (1 + s/r) r by e s in the last line. Note that e -3r k -q k -q -r 2(k-q-r) λ -2r 1 λ r 0 = (k -q)e 3/2 λ 1 √ λ 0 k -q -r 2(k-q-r)

e 3/2 λ 1 √ λ 0 -2(k-q)
is decreasing with respect to r since λ 2 1 e > λ 0 . As a consequence, we have

B 1 ≺ nk λ 1 q =1 e 4k-2q λ 2k-q 1 D D := q 2 λ 1
The function → D is easily seen to be maximized at = q √ λ 1 /e. This allows us to conclude that

B 1 ≺ nk 2 λ 1 e 4k-2q+2q
√ λ 1 /e λ 2k-q 1 .

Finally, we bound B 2 following a similar strategy. First, we observe that the probability of the event B := {G C 1 , G C 2 , G C 1 ∪C 3 , G C 2 ∪C 4 are trees} is equivalent to the probability of the event B 1 := B∩{G C 3 ∩C 4 is a tree}. This follows from the fact that the event B r := B∩{G C 3 ∩C 4 contains r trees}
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  t 2 -t 1 O(1) (p 0 + p 1 ) = o(1), it follows that S (A t 1 ,t 2 ) ≺ A 1,1 .
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This is a popular model of a network with communities, also known as the planted partition model. In this model, the nodes belong to blocks: nodes in the same block connect with some probability pin, while nodes in different blocks connect with probability pout.
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involves r -1 more edges than B 1 while the number of possible configurations in B r is does not increase more than by a factor k O(1)r compared to B 1 .

In the third line, we bound the probability by counting the number of edges involved in the event and the number of possible configurations, as we did before. In the fourth line, we use the bound of k/(k -q) to obtain a ratio of the form k-q k-q-r . In the last line, we observe that the sum is decreasing with respect to r and is maximized at r = 0.