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Abstract Field-scale crop models are often applied at coarser spatial resolutions than the field. 33 

However, little is known on the response of the models to spatially aggregated climate input data 34 

and why these responses can differ across models. Depending on the model, regional yield estimates 35 

from large-scale simulations may therefore be biased as compared to simulations with high-36 

resolution input data.  37 
We therefore evaluated this so-called aggregation effect for 13 crop models for a selected region in 38 

Germany. For this purpose, the models were supplied with climate data of 1 km resolution and 39 

spatial aggregates of up to 100 km resolution raster. The models were used with two crops (winter 40 

wheat and silage maize) and three production situations (potential, water limited and nitrogen-41 

water-limited growth) to improve the understanding of errors in model simulations related to data 42 

aggregation and possible interactions with the model structure. The most important climate 43 

variables identified to determining the model-specific input data aggregation on simulated yields 44 

were mainly related to changes in radiation (winter wheat) and temperature (silage maize). 45 

Additionally, aggregation effects were systematic since models differed in the systematic fraction of 46 

the aggregation effect, regardless of the extent of the effect (20 to 66 % as compared to 1.7 % for 47 
random effects). Climate input data aggregation changed the mean simulated regional yield up to 48 

0.2 t ha-1, whereas simulated yields from single years and models differed considerably depending 49 

on the data aggregation. This implies that large-scale crop yield simulations are robust against 50 

climate data aggregation on average. However, they can be systematically biased at higher temporal 51 

or spatial resolutions, depending on the model and its parametrization.   52 

 53 

Key words: Spatial aggregation effects, climate, crop simulation model, input data, scaling, 54 

variability, yield simulation, model comparison 55 

1) Introduction 56 

Process-based crop models have typically been developed for the field-scale, for which model 57 

driving variables (e.g. soil variables) are easily obtained (Van Ittersum et al. 2003, Hansen et al. 58 

2006). However, crop models are increasingly used for large-scale simulations (Chipanshi et al. 1998, 59 

Folberth et al. 2012). Scale in the following refers to the spatial extent and resolution of a given grid 60 

cell size, ignoring temporal scales (van Bussel et al. 2011a, Weihermüller et al. 2011). Thus, using 61 

field-scale crop models with input data at scales other than they were developed for, raises the 62 

question how the choice of scale influences the simulation outputs. Changing the spatial resolution 63 

by aggregation or disaggregation of data bears the risk of missing the relevant scale of a process or 64 

phenomenon, since these are often scale dependent (Meentemeyer 1989). Thus, it is essential to 65 

determine the impact of input data (dis-)aggregation on crop model outputs.  66 

Although the relevance of scale (Hansen & Jones 2000, Ewert et al. 2011, Nendel et al., 2013) and 67 

spatial data aggregation (Gardner et al. 1982, Cale et al. 1983, Cale & O’Neill 1988, Rastetter et al. 68 

1992, Pierce & Running 1995, Nungesser et al. 1999, Gong et al. 2003, Syphard & Franklin 2004, 69 

Lorite IJ et al. 2005, Ershadi et al. 2013) are well-known and data aggregation has been addressed for 70 

instance in soil or hydrological process modelling (Heuvelink & Pebesma 1999, Haverkamp et al. 71 

2005, Leopold et al. 2006, Bormann et al. 2009), few studies have characterized the impact in 72 

application of crop models with spatially aggregated climate input data on simulated regional yields, 73 

hereinafter called aggregation effect. For instance, De Wit et al. (2005) used precipitation and 74 

radiation aggregated from 10 km to 50 km resolution as model input to  simulate winter wheat and 75 

grain maize yields in Germany and France. These yields showed a root mean square error (RMSE) of 76 

0.33 t ha-1 (R2 >0.96) and a low bias between results from 10 and 50 km resolutions (estimated from 77 

Fig. 4, De Wit et al. 2005). This low bias is in agreement with findings of Folberth et al. (2012) who 78 

found small differences in maize yields in the U.S. within resolutions of 7.5 to 45 km resolution. Also 79 

Angulo et al. (2013) found small differences in spring barley yields in Finland within resolutions of 10 80 
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to 100 km. Similarly, Van Bussel et al. (2011) reported a low bias in simulated winter wheat 81 

phenology using aggregated temperatures and sowing dates. Thus, aggregation of climate input data 82 

at resolutions of 10 to 100 km could be expected to have low impact on crop model output. This 83 

should be considered for instance in large-scale simulations, since data aggregation may destroy 84 

physical consistency (Hoffmann & Rath 2012) or combine data beyond the meaningful range of the 85 

underlying process. The latter may be taken into account by keeping aggregated grid size below the 86 

range estimated via semivariogram models (Brown et al. 1992, Artan et al. 2000). While this previous 87 

research indicates the spatial resolution at which crop models may be applied without larger errors 88 

in the average simulated crop yields, this research only represented a small sample of crop models 89 

and output variables. Furthermore, the systematic behaviour of aggregation effects of models across 90 

scales, production situations or crops has not been quantified beyond reporting magnitude and 91 

distribution.  92 

We hypothesize that crop models differ in their sensitivity to climate input data aggregation as well 93 

as in the fraction of explained variance of the aggregation effects. It is however unknown, whether 94 

this affects regional yield estimates from simulations in a systematic way. The objective of this work 95 

is therefore to compare the response of regional yields simulated by crop models to climate input 96 

data aggregation and to propose a measure for the systematic proportion of the aggregation effects.  97 

 98 

2) Methods 99 

2.1) General procedure and regional focus 100 

The hypotheses given above were tested in the state of North-Rhine Westphalia (NRW), one of the 101 

larger a federal states of Germany with a total area of 34,098 km2 (Cologne district council 2013). 102 

NRW is characterized by a humid, temperate climate and heterogeneous topography with elevations 103 

between 9 m and 843 m above sea level resulting in several agro-ecological zones with different 104 

temperature and rainfall regimes. In order to assess spatial aggregation effects, climate input data 105 

were aggregated to spatial resolutions varying between 1 km and 100 km (Fig. 1) and used for 106 

driving crop models for simulations of winter wheat (Triticum aestivum L.) and silage maize (Zea 107 

mays L.) for the entire state area (Fig. 2). Aggregation effects were estimated by relating model 108 

output variables to varying climate inputs. Finally, main determinants of these aggregation effects 109 

were identified by analyzing the relative contributions from the climate variables and separately the 110 

relative importance of model variables employing Partial Least Squares Regression (PLS). 111 

2.2) Climate data processing, aggregation and characterization 112 

Climate data. Time series of daily minimum, mean and maximum air temperature (2 m above 113 

ground), precipitation, global radiation, wind speed and relative humidity for the period 1982 to 114 

2011 from 280 daily weather stations, as well as an interpolated grid of 1 km resolution of monthly 115 

time series were obtained from the German Meteorological Service (DWD). The monthly grids were 116 

combined with the daily weather station data as described by Zhao et al. (2014b). Regional climate 117 

properties for the different resolutions are given by Table 1 and for 1 km also given by Van Bussel et 118 

al. (2014). 119 

 120 

Grids / Aggregation. Daily climate data in spatial resolution α of 1 km2 were spatially averaged for 121 

four different coarser grid sizes of 10, 25, 50 and 100 km (see the Appendix for equations). Coarser 122 

grids were technically set-up starting in the north-west corner of the study region. 123 

 124 
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Semivariance. In order to avoid the aggregation of spatially incoherent data, the climate was 125 

characterized by semivariograms, which provide information about the extent of spatial dependency 126 

(Brown et al. 1993). This so-called range was estimated by fitting Gaussian (precipitation, 127 

temperature) and exponential (global radiation) variogram models to the empirical semivariance 128 

(Minsasny 2005, Wackernagel 1995, Webster 2001).  129 

 130 

Sub-regions. Due to incomplete data coverage beyond NRW, data means of grid cells of resolutions 131 

larger than 1 km and thus crossing the boundary of the state may be biased, depending on the grid 132 

cell size and data coverage (Fig. S3). Therefore, all calculations were validated with the help of sub-133 

regions, being two cells of 100 km resolution and a spatial data coverage of >80 % (C0:R4 and C1:R3, 134 

Fig.1) and five cells of 50 km resolution with a corresponding coverage of 100 % (z50, Fig.1).  135 

 136 

2.3) Crop Simulations 137 

In our study 13 models currently used in addressing different research questions at various scales 138 

were selected (appendix Table 5, Suppl. 2). This model ensemble was used to simulate development, 139 

growth and yield for the period 1982 to 2011 for each grid cell at each spatial resolutions for winter 140 

wheat and silage maize. If not further specified in the following, yield of winter wheat refers to grain 141 

yield whereas silage maize yield is aboveground biomass. Simulations (see appendix Table 6 for an 142 

overview) were conducted, and both crops were evaluated for i) potential, ii) water-limited and iii) 143 

nitrogen-water-limited production situations; correspondingly limited by i) temperature and 144 

radiation, ii) precipitation, temperature and radiation, and iii) nitrogen, precipitation, temperature 145 

and radiation (Evans and Fisher 1999; Van Ittersum and Rabbinge 1997). Models were set up with a 146 

single soil profile (sandy loam; Table S1) which represents a typical deep cropland soil with high 147 

water holding capacity and with a common management for any of the grid cells (Appendix Table 7). 148 

Models were calibrated at 1 km resolution, using one typical sowing and one typical harvest date per 149 

crop as well as the whole region weighted average winter wheat yield and aboveground biomass of 150 

silage maize derived from county statistics respectively from 1999 to 2011 and from 2000 to 2008 151 

(Statistische Ämter des Bundes und der Länder 2013). The county statistics are point data and 152 

partially based on expert knowledge and are therefore shown only with the purpose to put results 153 

into context.  154 

2.4) Model intercomparison / Taylor diagrams 155 

Crop model results were compared via Taylor diagrams (Taylor 2001), presenting the correlation 156 

coefficient R, centered root-mean-square difference (RMSD) and standard deviations σ of all grid 157 

cells and years as compared to the model ensemble mean (see the appendix for equations). R and 158 

RMSD show correlation and difference, respectively, of each model to the model ensemble mean. 159 

SD is shown for each model as well as for the ensemble mean. Statistics were calculated from all grid 160 

cells of the 1 km resolution and years, thus showing the model agreement in time and space.  161 

2.5) Probability density functions (PDFs) 162 

PDFs were obtained by kernel density estimation with a Gaussian kernel (see Hoffmann & Rath 2013 163 

for equations). In order to assure comparability between the PDF of a given crop, the bandwidth was 164 

kept constant to 0.1 t ha-1 (winter wheat) and 0.3 t ha-1 (silage maize).  165 

2.6) Analysis of aggregation effects 166 

Mean regional effects. Climate data aggregation effects were evaluated in the climate data itself 167 

and in model outputs. For this purpose, regional means and spatial variances of daily climate data 168 
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and of annual crop model outputs were calculated as absolute differences from coarser resolutions 169 

to the 1 km resolution (see appendix 8.2 for equations). Model outputs were thus analyzed only at 170 

the resolution of the input data (e.g. to calculate the spatial variance) as well as the mean of the 171 

entire region (e.g. to calculate regional yields).  172 

 173 

Fraction of directed effects. We tested if winter wheat and silage maize yields follow a specific 174 

ascending or descending order related to the order of the spatial resolution, for instance if yields at 175 

100 km resolution were larger than yields at 50 km resolution and if yields at 50 km resolution were 176 

larger than yields at 25 km resolution and so on.  For this purpose, the fraction P of simulated yields 177 

following monotonously the order or inverse order of the spatial resolutions for each model was 178 

calculated (see appendix 8.2 for equations).  179 

 180 

Partial Least Squares Regression (PLS). While P gives insights into the direction and behavior of 181 

aggregation effects, the relevance of factors (e.g. of single climate variables) to aggregation effects 182 

remains unclear. However, while the estimated effects and possible causes will be highly auto-183 

correlated, regression algorithms may fail to establish statistical relations between independent 184 

(aggregated input dataset) and dependent (crop model output, e.g. yield) data (Luedeling & Gassner 185 

2012). Additionally, the algorithm must handle a large number of independent variables, while 186 

avoiding over fitting. In order to evaluate aggregation effects, which are likely driven by numerous 187 

complementary as well as contrary processes of crop model and input data interaction, Partial Least 188 

Squares Regression (PLS; also known as Projection to Latent Structures Regression) is applied. PLS 189 

has been employed for similar purposes related to impacts of climate variation, i.e. on tree 190 

phenology (Luedeling & Gassner 2012, Guo et al. 2013). The method takes the dependent variable 191 

into account, selecting only the most relevant linear combinations for regression. We thus introduce 192 

PLS as a method for quantifying the fraction of variance of aggregation effects explained by climate 193 

data or model outputs. PLS was used to assess the relative importance of the climate variables and a 194 

limited number of model variables to the aggregation effects.  195 

Dependent variables were changes in mean yields (winter wheat) and final aboveground biomass 196 

(silage maize), whereas i) the climate variables during the entire growing period, from sowing to 197 

anthesis and from anthesis to maturity, as well as ii) model outputs (winter wheat grain yield, silage 198 

maize aboveground biomass, maximum leaf area index, cumulative evapotranspiration, cumulative 199 

intercepted photosynthetic active radiation, duration of phenological phases) were used as 200 

independent variables. The importance of these variables to the aggregation effect was estimated 201 

calculating the variable importance (VIP) from the PLS loadings (Wold 1994, 2001). The highest five 202 

predictors with a VIP above 1 were selected. 203 

(Figure 1) 204 

(Figure 2)  205 
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3) Results 206 

3.1) Characterization of the climate input data: Semivariance and aggregation effects 207 

Spatial aggregation of climate time series removed climate extremes of the region, while area means 208 

were stable across resolutions (Fig. 3). Consistently, the corresponding spatial variance of the 209 

climate variables decreased with increasing spatial resolution. The climate variables daily mean 210 

temperature, global radiation and precipitation exhibit a spatial autocorrelation in the range and 211 

above the largest aggregation used in this study (Fig. 4, effective range of 93.9, 122.5 and 161.9 km 212 

for precipitation, daily mean temperature and global radiation, respectively; R2: 0.998, 0.997, 0.995, 213 

respectively). Aggregating the climate data decreases the semivariance, as shown for precipitation 214 

(Fig. 4).  215 

3.2) Characterization of simulated crop yields  216 

Crop-specific yields. The ensemble means of simulated winter wheat and silage maize yields of the 217 

region were in the range of 7.6 to 8.7 t ha-1 and 15.4 to 17.6 t ha-1, respectively depending on the 218 

production condition (Table 2, Fig. 5). On average, simulated yields were above the observed yields 219 

of 7.2 t ha-1 and 14.3 t ha-1, respectively. 220 

 221 

Temporal variability of simulated crop yields. On average, crop models reproduced the year-to-year 222 

variability of simulated yields calculated from county statistics (Fig. 5). However, the majority of the 223 

models simulated a larger year-to-year variability in yields than observed. Generally, simulated 224 

temporal variations of yields were better for winter wheat than for silage maize. Single year yield 225 

distributions are shown exemplarily in Fig. S2. 226 

 227 

Influence of the production situation on simulated crop yields. Yields decreased consistently from 228 

potential to water-limited to nitrogen-water-limited production (Table 2, Fig. 5). While on average 229 

water-limited winter wheat and silage maize yields were respectively 0.4 -1 and 1.2 t ha-1 lower than 230 

potential yields, they were additionally 0.6 t ha-1 and 0.7 t ha-1 lower under nitrogen-water-limited 231 

conditions as under water-limited conditions (Table 2). Noticeably, while nitrogen availability was 232 

thus limiting yields comparably stronger on average than water limitations, the latter were 233 

noticeably stronger in 1996, 2010 and 2011, corresponding to 74 % of the decline in these years as 234 

compared to potential conditions. 235 

 236 

Spatial variability of simulated crop yields. The interquartile range of yields across the region and 237 

from all three production situations was in the range (silage maize) and partially above the range 238 

(winter wheat) of observations (not shown). The corresponding coefficient of variation of crop yield 239 

across the region for the mean of years was up to 8.2 % and 12.9 % for winter wheat and silage 240 

maize, respectively. Distributions of simulated yields across the region at 1 km resolution 241 

consistently showed a negative skew in the mean (Fig. 6).  242 

 243 

Crop model variability in simulating yields. Simulated yields differed across models and crops, 244 

showing a higher agreement among models for winter wheat than for silage maize (Fig. 7). For 245 

winter wheat, most models – with the exception of DailyDayCent and LandscapeDNDC – had a 246 

standard deviation across all years and grid cells in the range of 1 t ha-1, while the standard deviation 247 

of the ensemble mean was about 0.5 t ha-1. Similar results were found for silage maize, where 248 

models showed a larger spread in the standard deviation (approximate range 1.3 to 3.5 t ha-1) 249 

compared to the ensemble mean (1.0 to 1.4 t ha-1). However, models are more dispersed for 250 
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potential silage maize aboveground biomass than for potential winter wheat grain yield, with only 251 

Simplace<LINTUL5> exhibiting a larger spatio-temporal standard deviation of biomass than other 252 

models. Contrastingly, while simulations for winter wheat varied little between production 253 

situations, simulations for silage maize showed an increasing standard deviation and RMSD between 254 

single models and the ensemble mean of model outputs, from potential to water-limited and 255 

nitrogen-water-limited production. However, correlation coefficients revealed a range of agreement 256 

of 0 to 0.75 and -0.5 to 0.95 for winter wheat and silage maize, respectively, underpinning the larger 257 

agreement between single models and model ensemble for wheat than for maize. 258 

 259 

3.3) General characterization of aggregation effects  260 

Crop-specific aggregation effects. Yield and biomass distributions were distinctly different for the 261 

two crops and affected by aggregation (Table 2, Fig. 6). On average, aggregation of climate input 262 

data led to an increase of winter wheat grain yields (Fig. 8). Mean aggregation effects up to 0.2 t ha-1 263 

were found for both winter wheat and silage maize, thus resulting in a lower relative aggregation 264 

effect in relation to the yield for silage maize as compared to winter wheat (Table 2). While the 265 

mean and maximum likelihood of yield probability density functions (PDFs) of the ensemble results 266 

over the region were hardly affected by aggregation, the width was reduced with increasing 267 

aggregation (Fig. 6). Contrary to the net aggregation effect of the region, crops differed in their PDF 268 

as aggregation led to a mode at higher yields of winter wheat in contrast to the PDF mode of silage 269 

maize.  270 

 271 

Temporal variability of yield aggregation effects. Single-year aggregation effects followed no clear 272 

pattern, as positive and negative aggregation effects were simulated. In some years, the aggregation 273 

effect consistently increased or decreased with the resolution (see example in Fig. S2). For instance, 274 

the annual mean yield of winter wheat and silage maize of the region followed the order of the 275 

spatial resolutions P in 50.1 % and 34.9 % of all years in the mean of models, respectively.  276 

 277 

Spatial variability of yield aggregation effects. With coarser spatial resolutions, grid cells located at 278 

the region boundary were increasingly less represented by data (Fig. 1, Fig. S1, Fig. S3). As the 279 

number of grid cells decreases with coarser spatial resolution, a higher fraction of grid cells extends 280 

beyond the boundary of the region. However, analysing sub-regions of 50 and 100 km resolution, 281 

revealed similar patterns for mean aggregation effects compared to the entire region of NRW (Fig. 282 

8). Similar to the mean aggregation effects, extremes of aggregation effects of sub-regions were 283 

comparable to those of NRW. For silage maize, however, sub-region C0:R4 showed larger 284 

aggregation effects under water-limited conditions, resulting from simulations of the AquaCrop 4.0 285 

model. 286 

 287 

Influence of the production situation on yield aggregation effects. Aggregation effects were similar 288 

in the median for all three production situations (Fig. 8), showing a similar pattern across 289 

resolutions. Again, larger aggregation effects were found under water-limited conditions for silage 290 

maize.  291 

 292 

3.4) Model-specific interaction with aggregation effects as influenced by treatments 293 

 294 

Aggregation effect - crop model interaction with crop. While aggregation effects were similar 295 

among the crops for the ensemble mean, they differed largely in their extent between models (Fig. 296 

8, Tables 3 and 4). The range of effects was larger on average for silage maize than for winter wheat. 297 



 

8 

 

However, some single models showed larger positive aggregation effects for silage maize (e.g. 298 

HERMES), comparable aggregation effects for both crops (e.g. MONICA) or lower net aggregation 299 

effects for silage maize (e.g. SIMPLACE<LINTUL5>).  300 

 301 

Aggregation effect - crop model interaction with time. Crop models differed substantially in their 302 

sensitivity to climate input data aggregation when single years are considered (Tables 3 and 4). Years 303 

with lowest and largest aggregation effects (Fig. S4) differed among crop models with no clear 304 

pattern. In addition, models differed in their fraction of yields following clearly the order of the 305 

resolutions, P, with models ranging from 20.0 % (EPIC) to 66.1 % (HERMES). As compared to 1.7 % 306 

probability for a randomly ascending or descending sequence out of 120 permutations, the results 307 

indicate systematic processes. Ranking models from high to low systematic effects for winter wheat 308 

yields according to P  results in the following order: STICS > APSIM(modified) > APSIM > 309 

SIMPLACE<LINTUL5> > LandscapeDNDC > HERMES > APSIM-Nwheat > MONICA > COUP > EPIC > 310 

MCWLA > DailyDayCent. For silage maize aboveground biomass the order is: HERMES > 311 

LandscapeDNDC > AquaCrop4.0 > DailyDayCent > SIMPLACE<LINTUL5> > STICS > APSIM(modified) > 312 

MONICA > EPIC > APSIM. 313 

 314 

Aggregation effect - crop model interaction with space. Differences in the interaction between 315 

models and the choice of the sub-region did not show a clear trend (data not shown). However, the 316 

proportion of crop models where the aggregation effects followed the order of the resolution was 317 

lower in the sub-regions (P: 18.3 %, 21.8 % and 26.6 % for C0:R4, C1:R3 and z50, respectively). 318 

 319 

Aggregation effect - crop model interaction with production situation. Crop models differed in their 320 

sensitivity to climate input data aggregation across production situations (Table 3 and 4). While most 321 

models showed no clear trend, aggregation effects followed a specific order in the case of few 322 

models: increasing limitations led to more positive aggregation effects in HERMES and 323 

LandscapeDNDC for both winter wheat and silage maize and for MONICA in the case of silage maize, 324 

whereas APSIM and APSIM(modified) where not altered for both winter wheat and silage maize and 325 

MCWLA in the case of winter wheat. For the crops simulated, aggregation effects of 326 

SIMPLACE<LINTUL5>, DailyDayCent, COUP and Apsim-NWheat decreased with increasing limitation 327 

in the production situation whereas STICS, EPIC and AquaCrop did not alter or showed an increasing 328 

range. 329 

 330 

3.5) Systematic effects in crop model output due to climate input data aggregation and variable 331 

importance  332 

Using differences in climate variables and their spatial variances as independent variables for PLS-333 

regression led to model-specific sets of variables which are most determinant for single year 334 

aggregation effects when wheat or silage maize yield are simulated  (Tables 3 and 4). The explained 335 

variance by PLS varied between crops, models and production situations. For instance, the explained 336 

variance was 60, 91 and 82 % of the single year aggregation effects in the wheat yields simulated by 337 

LandscapeDNDC for potential, water-limited and nitrogen-water-limited production, respectively, 338 

whereas SIMPLACE<LINTUL5> showed an opposite trend with 80, 61 and 54 %, respectively. Other 339 

models showed constantly high (HERMES, 73 to 80 %) or mid (STICS, 59 to 61 %) ranges of explained 340 

variance in aggregation effects of simulated wheat yields.  341 

Key variables that statistically explained the variance for aggregation effects of single years were 342 

identified by the variable importance for projection (VIP). Concerning winter wheat yield, most 343 

models showed the highest VIP for variables related to radiation, followed by variables related to 344 
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temperature (e.g. HERMES) or again radiation (e.g. STICS, COUP, APSIM). Changes in the aggregation 345 

effects of wheat yields of STICS for instance are apparently driven mainly by radiation in the period 346 

before anthesis, followed by the temperature before anthesis. Few models indicated precipitation-347 

related terms as most important, mainly for water-limited and nitrogen-water-limited runs 348 

(SIMPLACE<LINTUL5>, LandscapeDNDC, EPIC, MONICA). For silage maize, the climate variables with 349 

the highest VIP to explain aggregation effects are precipitation- and temperature-related variables, 350 

and less related to radiation. Furthermore, while changes in aggregation effects in winter wheat 351 

were mainly related directly to changes in climate variables, changes in aggregation effects in silage 352 

maize were related mainly to changes in the spatial variance of individual climate variables. No clear 353 

trend was obtained for the importance of model outputs (Tables S1 and S2) to explain the effects of 354 

climate input aggregation on either wheat or silage maize yields. 355 

 356 

(Figure 3) 357 

(Figure 4) 358 

(Figure 5) 359 

(Figure 6) 360 

(Figure 7) 361 

(Table 2) 362 

(Table 3) 363 

(Table 4) 364 

 365 

  366 
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4) Discussion 367 

4.1) Data aggregation effects on regional climate  368 

As expected for homogeneous data, changes in the climate variables due to spatial aggregation did 369 

not alter the regional mean significantly, but decreased the spatial variance and the semivariance 370 

while narrowing extremes. The range estimated from semivariograms was above or in the range of 371 

the largest spatial resolution investigated. Thus, the requirement of aggregating data of spatial 372 

coherence was met. However, aggregation effects at resolutions coarser than 100 km were not 373 

investigated. Thus, without further analysis and depending on the research question, averaging 374 

climate variables should probably be restricted to spatial resolutions up to the semivariogram range, 375 

which was 94 to 162 km in this study depending on the climate variable. Climate input data 376 

aggregation up to 100 km is supported by Van Bussel et al. (2011) and Angulo et al. (2013). 377 

4.2) General effects of climate input data aggregation on regional mean simulated yields and 378 

biomass 379 

Simulated regional winter wheat and silage maize yields (mean of region and years) were biased 380 

when using aggregated climate input data. However, aggregation effects were small compared to 381 

the effect of production situations, year-to-year variability or variations across crop models. 382 

Aggregation effects in mean yields up to 0.2 t ha-1 as compared to 1 km grid cells are in line with 383 

findings of Folberth et al. (2012) who found a decrease in mean yields of approximately 0.18 t ha-1 of 384 

maize after aggregating input data from approximately 7.5 to 45 km. Also Angulo et al. (2013) found 385 

biases in the median yield of up to 0.26 t ha-1 (LINTUL-SLIM) and 0.21 t ha-1 (WOFOST) due to the use 386 

of input data with resolutions ranging from 10 to 100 km, while biases from other models were 387 

lower (<0.08 t ha-1). Thus, aggregation effects on crop yields are on average low in all studies. 388 

Our results show that aggregation hardly influenced the mean climate conditions, but decreased the 389 

variance of the climate data. Consequently, an impact on crop model outputs was expected through 390 

non-linear functions in the models. The low overall aggregation effect can however be explained as 391 

follows. Firstly, the present study is situated in a region with a humid, temperate climate favourable 392 

for crop growth and all simulation runs used a typical cropland soil with high water retention 393 

capacity. Thus, changes in present climate extremes only slightly influenced the simulated mean 394 

regional yield. Secondly, aggregation effects may partially cancel out (Rastetter et al. 1992) at the 395 

grid cell level when several climate input variables are aggregated simultaneously and at the regional 396 

level when effects of single grid cells cancel out over the region. However aggregation effects have 397 

an impact at the grid cell level or on spatial patterns (Zhao et al. 2014a), which was also observed in 398 

our study. In conclusion, the low biases in simulating mean crop yields improve the confidence in 399 

applying crop models across scales for mean yield estimates of a given region in humid temperate 400 

conditions. However, the remaining biases still add to the simulation error and they are likely to 401 

increase with climate data variance and absolute level, increasing aridity of climate conditions, 402 

model complexity and sensitivity, whenever non-linear effects do not cancel out. This mean 403 

aggregation effect may therefore be best observed in stress situations as well as under near-404 

optimum conditions.  405 

Unlike the mean, yield variance and distribution narrowed down in this study with aggregation. This 406 

is partially in contrast to Angulo et al. (2013), who found the range of the yield distribution to be 407 

only marginally influenced by spatial resolution of climate input variables. However, the Angulo et al. 408 

study was based on climate data of a relatively topographically uniform region in south-western 409 

Finland with humid climate conditions. Thus, the discrepancies between influences of aggregation 410 
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effects for the two regions (NRW and south-western Finland) on yield distributions are explained by 411 

the spatial variance of the climate. 412 

4.3) Crop model-specific sensitivity to input climate data aggregation  413 

Aggregation effect interaction of crop model and crop. Despite an overall low bias in mean 414 

simulated yield or biomass over the region due to climate input aggregation, the presented results 415 

showed differences in the model response. For silage maize biomass, some models showed lower 416 

sensitivity to the climate input aggregation (e.g. MONICA, effect in maize biomass: <1 t ha-1), 417 

whereas other models showed stronger aggregation effects of up to 1.9 t ha-1, (HERMES, APSIM). 418 

Although most models showed nearly equally positive and negative aggregation effects, only in a 419 

few models the aggregation effect had a dominant direction over all spatial resolutions (e.g. 420 

dominant negative effect of input data aggregation in STICS, SIMPLACE<LINTUL5>). It is 421 

questionable, whether these responses are the result of the model structure, or whether they result 422 

from model parameterizations. Finally, major differences were found between crops regarding the 423 

climate variables, which explain most of the variance of the single year aggregation effects (radiation 424 

for winter wheat, temperature for silage maize). The variance in the aggregation effects were 425 

explained in most models to approx. 60 % and in few occasions up to >80 % by PLS. While the crop 426 

model structure does not change largely between simulating winter wheat and silage maize, these 427 

changes in the model sensitivity again emphasize the role of model settings for the aggregation 428 

effects. 429 

 430 

Aggregation effect interaction of crop model and time. Analysis of the aggregation effects at single- 431 

model- and single-year level (figures S2 and S4a – S4f) did not reveal general trends, but underlined 432 

the high variability in model responses to climate input data aggregation. It can thus be concluded 433 

that the year-to-year variability of yields masks the aggregation effects on long-term simulated 434 

yields.  435 

 436 

Aggregation effect interaction of crop model and production situation. Models reacted differently, 437 

depending on the production situation. While the minimum and maximum aggregation effects of 438 

AquaCrop4.0 showed a threefold increase from potential to water-limited production, no trend was 439 

found across production situations with DailyDayCent, APSIM_modified and SIMPLACE<LINTUL5>. 440 

However, some models (HERMES, LandscapeDNDC, Monica, EPIC) showed a tendency towards 441 

larger negative aggregation effects on silage maize biomass when comparing potential and limited 442 

production. Interestingly, the variance in aggregation effects explained by PLS decreased with 443 

increasing limitations in the production situation, being on average 70.3, 62.8 and 60.9 % for winter 444 

wheat and 57.9, 52.1 and 50.3 % for silage maize under potential, water-limited and nitrogen-water-445 

limited conditions. This indicates that increasing model complexity by adding sub-routines to 446 

account for additional processes potentially increases the fraction of aggregation effects, which can 447 

be regarded as not systematic, i.e. residual variability or noise. Angulo et al. (2013) proposed model-448 

specific fingerprints in the form of yield probability density functions (PDFs) after finding larger 449 

discrepancies between models than between aggregation levels.  450 

While no characteristic fingerprints were found for soil input data aggregation (Angulo et al. 2014), 451 

the model-specific fingerprints remain to be validated for climate input data aggregation. Since the 452 

model fingerprint certainly is modulated by the model structure, it may be co-determined by further 453 

factors like model parametrization. Considering the different aggregation effects from similar 454 

models (Supplementary 2: Apsim, Apsim_modified and Apsim-NWheat), aggregation effects seem to 455 

be partly the result of model parametrization. This does not support the hypothesis of model-456 

specific fingerprints (Angulo et al. 2013). This is similar to the findings by Gardner et al. (1982), who 457 
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assumed – after testing hypothetical models of varying structure - that the level of complexity does 458 

not alter the aggregation effect noticeably. Consequently, climate data aggregation effects cannot 459 

directly be attributed to a given process when using regional, ensemble or other pooled outputs (e.g. 460 

mean of years). The processes causing the aggregation effects must thus be assessed at the process 461 

level, before generalizing the findings at coarser scales. 462 

 463 

Model-specific drivers for aggregation effects. PLS-regression was used to identify possible drivers 464 

of the aggregation effects on mean simulated yields, which were largely masked by the spatial and 465 

temporal variance. However, possible model candidates for further analysis could be identified 466 

since: 1) The explained variance by PLS shows which models exhibit systematic aggregation effects 467 

explainable by a low number of factors, 2) the selected predictors identified climate variables and 468 

model outputs as relevant key drivers. While the variance in aggregation effects for HERMES for 469 

instance were explained by >70 % by PLS, this was only approx. 50 % for DailyDayCent. Similar 470 

results were obtained with generalized linear models (GLM, data not shown). Thus, models differ not 471 

only in their sensitivity, but also in their systematic component of aggregation effects. However, no 472 

clear general trend distinguishing crop models in their drivers for aggregation effects was found. 473 

While few models were identified as being influenced more by e.g. temperature or radiation, the 474 

attribution of these variables to processes in the model remain to be interpreted. For instance, 475 

HERMES showed aggregation effects well approximated by the duration of the growing period, 476 

which itself largely depends on crop specific parameters (temperature sum, base temperature).  477 

Although the structure of the models is known, a direct attribution of aggregation effects to the 478 

model structure (supplement 2) fails due to the high variability of the effects. For instance, 479 

aggregation effects on average were larger for i) simple light interception approaches than for 480 

detailed approaches, ii) models accounting for vernalization than models not considering 481 

vernalization, iii) yield formation based on harvest index than for yield formation based on other 482 

approaches (e.g. partitioning during reproductive stages). Hence, for a deeper understanding of 483 

aggregation effects and causal processes the analysis needs to be combined with other multivariate 484 

methods (e.g. pattern recognition).  485 

 486 

4.6) Generalization of findings towards the assessment of aggregation effects 487 

 488 

Following Pierce et al. (1995) and Rastetter et al. (1992), the aggregation effect should increase with 489 

increasing variance of the input data. Larger climate variability as well as different average climate 490 

conditions could lead to different aggregation effect distributions especially under growth limiting 491 

conditions. While this depends on the data (type, spatial heterogeneity) it is unknown how the 492 

aggregation effects from climate data compare to those from other data types. Most of the spatial 493 

yield variability in Germany is caused by soil properties and its interactions with climate. In order to 494 

focus solely on climate data aggregation effects, soil was not considered as a factor in this study. 495 

Aggregation effects from soil properties may therefore differ (Angulo et al. 2014) from the present 496 

findings. Pierce et al. (1995) compared the contributions of aggregated input data to the resulting 497 

bias in simulated net primary production, which was by 32 % due to spatially averaging climate data 498 

(topography 32 %, vegetation and soils 34 %). This remains to be verified for crop models.  499 

 500 

5) Conclusions 501 

Spatial aggregation of climate input data caused considerable aggregation effects for single models 502 

and in single years. Simulated regional yield estimates (average of region and years) were less 503 

affected. Differences in simulated mean regional yields across models and/or production situations 504 
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or in single year yields were larger than the aggregation error. The mean aggregation effects across 505 

models and years of up to 0.2 t ha-1 (<3 %) contribute to the uncertainty of the estimate of regional 506 

yield and biomass. Nevertheless, it has been shown that the effects are systematic. Crop models 507 

differ in their sensitivity to aggregated data, showing different means and distributions of 508 

aggregation effects, which also depend on the production situation and the crop. Crop models differ 509 

in their systematic component of aggregation effects, regardless of the extent of the aggregation 510 

effect. Aggregation effects can be attributed to different sources, including climate, climate 511 

variability and model structure. Having studied a region in which precipitation rarely limits crop 512 

growth, global radiation and temperature were identified as the relevant climate variables, which 513 

strongly influence the aggregation effects on winter wheat and silage maize yields, respectively.  514 
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8) Appendix  802 

8.1) Tables 803 

(Table 5) 804 

(Table 6) 805 

(Table 7) 806 

8.2) Equations 807 

Grids. We define a regular grid R808 

809 

Grids of aggregated data were obtained by taking the spatial mean 810 

811 

Five grids of resolutions of 1, 10, 25, 50 and 100 km 812 

34168, 20, 80, 24 and 9 were constructed813 

calculations. Having time series 814 

distance of the resulting grids, being a measure for the grid point dispersion 815 

2010), is given by Fig. S1. Maps displaying main regional climate variables are given by Zhao et al. 816 

(2014a).  817 

Variable notation. A simplified notation will be used818 

dimensions 819 

given dimension and are applied to all 820 

821 

where the variable  is averaged over dimensions822 

considered 823 

R (http://spatialreference.org/ref/epsg/31467/) with

of aggregated data were obtained by taking the spatial mean of data at α = 1 km

1, 10, 25, 50 and 100 km with the corresponding 

were constructed. Empty grid cells (data unavailable) were ignored in the 

calculations. Having time series of daily time steps,  was applied on each time step. 

, being a measure for the grid point dispersion 

2010), is given by Fig. S1. Maps displaying main regional climate variables are given by Zhao et al. 

simplified notation will be used in the following, indexing 

. In the following, equations are conducted over all elements of a 

and are applied to all dimensions indicated. For instance, averages are given by 

is averaged over dimensions A. In the following, these

20 

with grid points 

   

α = 1 km resolution: 

   

 number of grid cells 

Empty grid cells (data unavailable) were ignored in the 

was applied on each time step. The standard 

, being a measure for the grid point dispersion (Bahrenberg et al. 

2010), is given by Fig. S1. Maps displaying main regional climate variables are given by Zhao et al. 

indexing variables in their 

conducted over all elements of a 

, averages are given by  

 

se dimensions were 
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 824 

e.g. refers to a yield of a given resolution, grid cell, year and crop model.  825 

Analysis of aggregation effects. Mean aggregation effects were calculated as: 826 

 827 

 828 

Eq. 4 was applied on climate data with daily time steps (t , [d]) as well as on yearly yields (t , [yr]) of 829 

each model. Consistently, having the spatial variance 830 

 831 

aggregation effects in the spatial variance were quantified as 832 

 833 

Analysis of systematic effects in simulated yields. The order of mean changes in a given model 834 

output due to input data aggregation was analyzed by calculating the fraction of simulated yields 835 

following monotonously the order of the resolutions for each model: 836 

 837 

Equations for Taylor diagrams. 838 

The centered root-mean-square difference (RMSD) was calculated as follows: 839 
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  840 

The standard deviation ¾ for single models and for the model ensemble mean were calculated as 841 

described in eq. 5. The correlation coefficient R was calculated as follows: 842 

 843 

  844 
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Tables 845 

Table 1. Climate of North-Rhine Westphalia (1982-2011, not area weighted). Standard deviations are 846 

calculated from all grid cells and years of a corresponding resolution. 847 

Scale Annual precipitation sum Mean daily temperature Mean annual global radiation sum 

[km] Mean [mm yr-1] σ [mm yr-1] Mean [°C] σ [°C] Mean [MJ m-2 yr-1] σ [MJ m-2 yr-1] 

1 898.9 214.0 9.7 1.2 3758.0 169.4 

10 881.7 204.0 9.6 1.2 3757.1 166.8 

25 873.1 191.9 9.5 1.2 3756.6 163.8 

50 853.8 170.8 9.4 1.1 3754.0 162.0 
100 824.4 149.8 9.4 1.0 3765.5 160.6 

 848 

 849 

 850 

 851 

Table 2. Impact of climate input data aggregation on model ensemble mean and spatial variance of 852 

simulated yields. 853 

 854 

* P: Potential; W: Water-limited; N: Nitrogen-water-limited 855 

 856 

Production 

situation* 

Scale Winter wheat grain yield Silage maize aboveground biomass 

 

[-] [km] mean 

[t ha-1] 

σ2  

[t ha-1]2  

mean 

[t ha-1] 

σ2  

[t ha-1]2  

P 1 8.6 0.3 17.4 4.2 

P 10 8.6 0.3 17.4 3.8 

P 25 8.6 0.2 17.4 3.3 

P 50 8.6 0.2 17.5 2.5 
P 100 8.7 0.1 17.6 1.5 

W 1 8.2 0.5 16.2 4.1 

W 10 8.2 0.5 16.1 3.7 

W 25 8.3 0.4 16.2 3.2 

W 50 8.3 0.3 16.3 2.4 

W 100 8.4 0.2 16.4 1.6 

N 1 7.6 0.4 15.5 4.0 

N 10 7.6 0.4 15.4 3.6 

N 25 7.6 0.3 15.5 3.1 

N 50 7.6 0.2 15.6 2.3 
N 100 7.7 0.2 15.7 1.6 
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Table 3. Climate variables related to aggregation effects with winter wheat grain yield. Nomenclature: d: difference; v: spatial variance; P: precipitation 857 

sum, Tmin/Tmean/Tmax: minimum, mean, maximum air temperature; R: global radiation sum; GP: growing period (=sowing to maturity); SA: sowing-to-858 

Anthesis; AM: anthesis-to-maturity; L30A/L30M: period of 30 days before anthesis, maturity. Examples: dRSA, difference in the global radiation sum from 859 

sowing to anthesis; dvTminGP, difference in the spatial variance of the daily minimum temperature during the growing period. Variables are sorted from 860 

one to five in the order of their variable importance. 861 

Model 

Production* 

Situation 

Single year aggregation 

effect (difference in 
grain yield, [t ha-1]) 

minimum    maximum 

Explained  

Variance Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 

HERMES P -0.04 0.37 0.80 dRGP dTminAM dRL30A dTmeanAM dTmeanGP 

HERMES W -0.14 0.57 0.73 dRGP dvTmeanSA dvTmeanGP dTmeanGP dvTmaxGP 

HERMES N -0.13 0.58 0.74 dRGP dvTmeanSA dvTmeanGP dTmeanGP dvTmaxGP 

MONICA P -0.33 0.47 0.75 dRGP dvPSA dvTmaxSA dvTmeanSA dvPGP 

MONICA W -0.60 0.47 0.59 dvPSA dvPGP dTmaxSA dvTmeanSA dvTmaxSA 

MONICA N -0.60 0.47 0.59 dvPSA dvPGP dTmaxSA dvTmeanSA dvTmaxSA 

SIMPLACE<L5> P -0.06 0.37 0.80 dRSA dRGP dPL30A dvTmeanSA dvTminGP 

SIMPLACE<L5> W -0.77 0.30 0.61 dvPGP dvPSA dTmeanSA dvTmeanL30M dvTminL30M 

SIMPLACE<L5> N -0.73 0.37 0.54 dvPGP dvPSA dTmeanSA dvTminL30M dvTmeanL30M 
STICS P -0.60 0.62 0.59 dRSA dRL30A dTmaxL30A dRGP dTmeanL30A 

STICS W -0.58 0.58 0.61 dRSA dRL30A dTmaxL30A dvTminGP dvTmaxSA 

STICS N -0.56 0.62 0.60 dRSA dRL30A dTmaxL30A dTmeanL30A dvTmaxSA 

MCWLA P -0.72 0.73 0.64 dRSA dRGP dRL30A dPGP dvTmeanGP 

MCWLA W -0.72 0.73 0.64 dRSA dRGP dRL30A dPGP dvTmeanGP 

DayCent P -0.51 0.49 0.52 dRL30M dvRL30M dPL30M dTminGP dTmaxL30M 

DayCent W -0.48 0.47 0.35 dPL30M dvPGP dTminL30M dTmaxGP dTmaxL30M 

DayCent N -1.90 0.18 0.73 dRL30M dRGP dvTmaxGP dvTmeanGP dvRL30M 

LandscapeDNDC P -2.36 0.17 0.60 dPL30M dvPGP dRL30M dvPL30M dvTmaxGP 

LandscapeDNDC W -0.88 0.18 0.91 dPL30M dvPGP dRL30M dvTmaxGP dRGP 
LandscapeDNDC N -0.70 0.49 0.82 dvPGP dPL30M dRL30M dvPL30M dvTmaxGP 

COUP P -0.04 0.51 0.71 dRL30A dRGP dvTminGP dRSA dTmaxL30A 

COUP W -0.48 0.30 0.45 dRSA dRL30A dRL30M dvTminGP dvPL30A 

APSIM P -0.03 0.39 0.77 dRGP dRSA dvTmeanSA dvTmaxSA dTmeanSA 
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APSIM W -0.03 0.41 0.77 dRGP dRSA dvTmeanSA dTmeanSA dvTmaxSA 

APSIM N -0.13 0.27 0.57 dRSA dRGP dRL30A dvTmaxSA dvTmeanSA 

APSIM (modified) P -0.08 0.84 0.79 dRSA dRGP dTminAM dvTmaxSA dvTmeanGP 

APSIM (modified) W -0.15 0.83 0.77 dRSA dRGP dTminAM dvPSA dvPGP 

APSIM (modified) N -0.21 0.58 0.71 dRSA dTminAM dTmaxL30M dvPGP dRGP 
EPIC P -0.02 0.24 0.73 dRGP dvTminGP dvRL30M dTmeanGP dRL30M 

EPIC W -0.37 0.57 0.50 dRGP dvTminGP dvTmaxGP dTmeanGP dvTmeanGP 

EPIC N -0.27 0.25 0.18 dvPGP dvTminGP dPGP dvRL30M dTmaxGP 

APSIM-NWHEAT P -0.10 0.32 0.74 dTminAM dPL30A dRGP dRSA dRAM 

APSIM-NWHEAT W -0.50 0.32 0.61 dvPSA dvPGP dTmaxL30M dPL30M dTmeanL30M 

*P: Potential; W: Water-limited, N: Nitrogen-water-limited. 862 

 863 

  864 



 

26 

 

Table 4. Climate variables related to aggregation effects with silage maize. Nomenclature: d: difference; v: spatial variance; P: precipitation sum, 865 

Tmin/Tmean/Tmax: minimum, mean, maximum air temperature; R: global radiation sum; GP: growing period (=sowing to maturity); SA: sowing-to-866 

Anthesis; AM: anthesis-to-maturity; L30A/L30M: period of 30 days before anthesis, maturity. Examples: dRSA, difference in the global radiation sum from 867 

sowing to anthesis; dvTminGP, difference in the spatial variance of the daily minimum temperature during the growing period. Variables are sorted from 868 

one to five in the order of their variable importance. 869 

Model 

Production* 

Situation 

Single year aggregation 

effect (difference in 
grain yield, [t ha-1]) 

minimum    maximum 

Explained  

Variance Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 

HERMES P -0.15 1.42 0.85 dvPGP dTminGP dvTmaxGP dPL30M dTmaxGP 

HERMES W -0.15 1.42 0.85 dvPGP dTminGP dvTmaxGP dPL30M dTmaxGP 

HERMES N -0.06 1.97 0.83 dvTmaxGP dvRL30M dTminGP dTminL30M dvPGP 

MONICA P -0.71 0.30 0.55 dvRL30M dvTmeanL30M dTmaxGP dvTminL30M dRGP 

MONICA W -0.63 0.83 0.49 dTmaxGP dvRL30M dvPGP dTmeanGP dTminGP 

MONICA N -0.63 0.83 0.49 dTmaxGP dvRL30M dvPGP dTmeanGP dTminGP 

SIMPLACE<L5> P -1.24 0.68 0.49 dTmaxGP dTminGP dvTmaxGP dvPGP dPGP 

SIMPLACE<L5> W -1.21 0.24 0.58 dTminGP dvPGP dvTmaxGP dvRL30M dTmaxGP 

SIMPLACE<L5> N -1.20 0.42 0.46 dvPGP dTmaxGP dTminGP dPL30M dvRGP 
STICS P -0.61 0.25 0.56 dvPGP dTminL30M dRL30M dTminGP dTmeanGP 

STICS W -1.58 0.40 0.30 dvPGP dRGP dPL30M dvRGP dvRL30M 

STICS N -1.58 0.42 0.29 dvPGP dRGP dvRGP dPL30M dvRL30M 

DayCent P -0.71 1.07 0.52 dvPGP dTmaxGP dRL30M dPGP dTmeanGP 

DayCent W -0.71 1.07 0.52 dvPGP dTmaxGP dRL30M dPGP dTmeanGP 

DayCent N -0.71 1.07 0.52 dvPGP dTmaxGP dRL30M dPGP dTmeanGP 

LandscapeDNDC P 0.00 0.57 0.80 dvPGP dvPL30M dPL30M dRGP dvTmaxGP 

LandscapeDNDC W 0.00 0.60 0.79 dvPGP dvPL30M dPL30M dvTmaxGP dRGP 

LandscapeDNDC N -0.11 0.90 0.71 dvPGP dRGP dPL30M dvTmaxGP dvPL30M 

APSIM P -0.94 1.93 0.30 dPL30M dTmaxGP dTmeanL30M dRGP dTmaxL30M 
APSIM W -0.81 1.93 0.29 dPL30M dTmaxGP dTmeanL30M dRGP dvPL30M 

APSIM N -0.80 1.92 0.29 dPL30M dTmaxGP dTmeanL30M dRGP dvPL30M 

APSIM (modified) P -1.00 1.48 0.41 dTmaxGP dvPL30M dTmeanL30M dTmeanGP dTminL30M 

APSIM (modified) W -1.00 1.48 0.40 dTmaxGP dvPL30M dTmeanL30M dTmeanGP dvPGP 
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APSIM (modified) N -1.00 1.48 0.39 dTmaxGP dvPL30M dTmeanL30M dTmeanGP dTminL30M 

EPIC P -0.30 0.80 0.57 dvRL30M dvTminGP dvTminL30M dvTmeanGP dRGP 

EPIC W -1.04 0.98 0.55 dvRGP dPGP dPL30M dvRL30M dvTmaxGP 

EPIC N -1.04 0.98 0.55 dvRGP dPGP dPL30M dvRL30M dvTmaxGP 

AquaCrop4.0 P -0.40 0.55 0.74 dPGP dvRL30M dvPL30M dvRGP dvTmaxGP 
AquaCrop4.0 W -1.26 1.99 0.44 dvTminGP dvRL30M dvPGP dPGP dRL30M 

*P: Potential; W: Water-limited, N: Nitrogen-water-limited. 870 
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Table 5. Crop Models*.  871 

No. Model References 

1 APSIM-Nwheat Asseng et al. 1998, 2004; Keating et al. 2003 

2 APSIM Keating et al. 2003, Holzworth et al. 2014 

3 APSIM, modified Chen et al. 2010; Keating et al. 2003; Wang et al. 2002 

4 AquaCrop4.0 Raes et al. 2009; Steduto et al. 2009; Vanuytrecht et al. 2014 

5 COUP Conrad & Fohrer 2009; Jansson & Karlberg 2004 

6 DailyDayCent Del Grosso et al. 2001, 2006; Parton et al. 2001; Yeluripati et al. 2009 
7 EPIC v. 0810 Williams 1995 

8 HERMES Kersebaum 2007, 2011 

9 LandscapeDNDC Haas et al. 2012, Kraus et al. 2014 

10 LINTUL5 Van Ittersum et al. 2003; Shibu et al. 2010 

11 MCWLA Tao et al. 2009, 2013 

12 MONICA Nendel et al. 2011 

13 STICS Bergez et al. 2013; Brisson et al. 1998,  2008 

* A more detailed description is given in the supplementary 2. 872 

 873 

 874 

Table 6. Simulation runs conducted by models. 875 

Factor Level 

Crop Winter wheat, Silage Maize 

Production situation Potential a, Water-limited b, Nitrogen-water-limited c  

Resolution [km] 1, 10, 25, 50, 100 
a growth is limited by temperature and radiation.  876 
b growth is limited by precipitation, temperature and radiation 877 
c growth is limited by nitrogen, precipitation, temperature and radiation 878 

 879 

 880 

Table 7. Crop model settings and assumptions. 881 

Domain Unit Winter Wheat Silage Maize 

Sowing date DOYa 274 110 

Harvest date DOYa 213 263  

Average Yieldb t ha-1 7.2  14.3 

Max. rooting depth m 1.5 1.5 
Time of ploughing - autumn autumn 

Planting density m-2 400 10 

Sowing depth m 0.04 0.06 

Initial soil moisture relative 

to available field capacityc 

%  50 80 

Initial Nmind kg ha-1 56 56 

Nitrogen fertilization kg ha-1 130, 52, 26 30, 208 

Date of fertilization DOYa 60, 105, 152  91, 152  
a Day of the year of a non-leap year. b Area weighted average yield derived from county statistics,  882 

moisture content: 0 %. c Set for each soil layer. d Total mineral Nitrogen of the soil profile. Values 883 

differ with soil layer.  884 

 885 

  886 
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Figure Captions 887 

Fig. 1. Shape and elevation of the state of North-Rhine Westphalia, Germany. Squares display 888 

selected areas used to validate results at state level.  889 

Fig. 2. Illustration of climate data resolution ® = 1::100 [km] used as input for crop models. 890 

Fig. 3. Area weighted mean and range of key climate variables as well as their spatial variance as 891 

affected by data aggregation (Tmin, Tmean, Tmax: daily minimum, mean and maximum temperature 892 

respectively). Values are average area means and extremes. 893 

Fig. 4. Spatial dependency of selected climate variables in North-Rhine Westphalia. A) Empirical 894 

semivariance (dots) and fitted variogram model (solid lines). A Gaussian model was fitted to daily 895 

mean temperature (Tmean) and precipitation whereas an exponential model was used for global 896 

radiation. B) Empirical semivariance (dots) and fitted Gaussian variogram model (solid lines) for 897 

precipitation at varying resolutions α.  898 

Fig. 5. Simulated winter wheat grain yield and silage maize aboveground biomass for three 899 

production situations at 1 km resolution: Single model and observed 25 to 75 percentile range across 900 

the region (shaded areas), model ensemble and observed area weighted mean from county-level 901 

statistics (white lines). Areas are plotted with transparency, thus darker areas illustrate coinciding 902 

simulation results of several models or coincidence of simulation results with observations. 903 

Fig. 6. Probability density functions (pdf) of winter wheat grain yield and silage maize aboveground 904 

biomass. Pdfs were estimated from mean grid cell yields and biomass (mean of years) using a 905 

Gaussian kernel of bandwidth 0.1 and 0.3 t ha-1 for winter wheat and silage maize, respectively.  906 

Fig. 7. Taylor diagrams of simulated winter wheat and silage maize yields from respectively 29 and 907 

30 years and from 34168 grid cells (α = 1 km), showing: the standard deviation of each model (σ), 908 

the correlation between the models (R) and the centered root mean square difference to the 909 

ensemble mean (RMSD). Denser distributions show smaller diversity among models and vice versa. 910 

RMSD and standard deviation are given in t ha -1. For each model n = 990,872 and n = 1,025,040 for  911 

for winter wheat and silage maize, respectively. 912 

Fig. 8. Differences of winter wheat grain yield and silage maize aboveground biomass simulated with 913 

aggregated input climate data to yield and biomass simulated with climate time series at 1 km 914 

resolution of North-Rhine Westphalia (NRW), two 100 km2 subregions C0:R4 and C1:R3 and one 915 

subregion, z50, consisting of five 50 km2 grid cells (see Fig. 1 for regions). The figure displays the min-916 

to-max ranges over the models (shaded and hatched areas) and the ensemble median (thick lines). 917 

Values are mean values of 1983 to 2011.  918 
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Draft: Variability of aggregation effects of climate data on regional yield simulation by crop models 
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