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Abstract

Background: The accessibility of high-throughput genotyping technologies has contributed greatly to the development
of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for
some economically important species such as conifers. The potential for using genomic technologies in association
mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in
current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime
pine, the first species used for reforestation in south western Europe.

Results: Using a new map merging algorithm, we first established a 1,712 cM composite linkage map
(comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps.
Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot
spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a
12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity
and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current
and future breeding of this species. We observe very low levels of population genetic structure and find no evidence
that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we
provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze
the spatial pattern of genetic diversity (He) and long distance linkage disequilibrium (LD) along the chromosomes.
We found no particular pattern in the empirical variogram of He across the 12 linkage groups and, as expected for an
outcrossing species with large effective population size, we observed an almost complete lack of long distance LD.

Conclusions: These results are a stepping stone for the development of strategies for studies in population genomics,
association mapping and genomic prediction in this economical and ecologically important forest tree species.
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Background
Conifers represent an ancient and widespread lineage of
about 650 species [1,2]. They are of immense ecological
and economic importance as they dominate many ter-
restrial landscapes and are primarily used for timber and
paper production worldwide. Domestication of some of
these species started in the mid 1950ies with mass selection
of outstanding genotypes in natural forests [3]. Genetic im-
provement programs resulted in advances in biomass pro-
duction, wood quality and resistance to biotic and abiotic
stresses. However, traditional breeding has remained a slow
process because of long generation intervals and because
most traits cannot be correctly evaluated at an early devel-
opmental stage. The application of genomic techniques in
crop [4] and animal [5,6] breeding has resulted in
more powerful methods for genetic evaluation, and re-
cent advances in conifer genomics [6-8] have allowed
tree breeders to use these tools and methodologies
(namely association mapping and genomic prediction)
to dissect the genetic basis of phenotypic variability
and to accelerate the breeding process of these long-
lived organisms [9].
Knowledge about linkage disequilibrium (LD) measured

by the squared correlation between two loci is important
for applications of molecular markers in association map-
ping and genomic prediction. The decay of LD over phys-
ical and genetic distance determines the resolution and
density of the markers required for association mapping
[10,11]. A formal link between the power of association
tests and LD was established [12], and has recently been
generalized for structured populations with related geno-
types [13]. LD also determines the accuracy of genomic
estimated breeding values [14,15]. Indeed, the direct and
inverse relationship between expected LD (r2) and popula-
tion recombination rate (r2 = 1/(4Nec +1)) has obvious
consequences for genomic prediction, because both the
training population size and marker density vary with Ne,
the effective population size [16,17].
Previous studies of short-distance (physical) LD in

conifers, including maritime pine [18,19], have shown
that LD extends to only a few hundred to a few thou-
sand base pairs (reviewed in [20]), but with consider-
able variation between genes [21]. These results have
led to the conclusion that millions of SNPs would be
required for very high resolution of whole-genome
scan association mapping approaches for forest trees,.
Thus candidate gene-based approaches have been fa-
vored and may prove the best option before sufficiently
larger numbers of markers, covering the whole gen-
ome, become available [22] as recently illustrated for
fruit and forest trees [23], including maritime pine
[24]. Considering about 32 thousand genes, with an
average gene size of 3–3.5 kb, Pavy et al. [25] estimated
that a total of 1.1–1.3 million SNPs would be required
to cover the gene space of spruce at a rate of one SNP
per 85 bp, which may in any case correspond to only a
tiny fraction of the megagenome of this species. Only a
few studies have examined the extent and genome-
wide distribution of LD in conifers. Using physical in-
formation from three random BAC clones, Moritsuka
et al. [26] reported significant LD (surprisingly, extend-
ing over a distance of 100 kb) in non coding regions of
the Cryptomeria japonica genome, suggesting that re-
combination rate may vary according to the nature (coding
vs. non coding, low copy vs. repeated sequences) of DNA,
as shown in angiosperms [27] and gymnosperms [28]. In
the same species, Tsumura et al. [29] discovered that some
loci showing divergence along environmental gradients and
located in different linkage groups, displayed substantial LD,
suggesting an effect of epistatic selection between these loci.
To our knowledge, only one study in Pinus taeda [30]
reported LD for 807 mapped SNPs and confirmed the
assumption of independence between genetically linked
loci. This study showed that only a handful of loci de-
parted from this expectation, five of which were coseg-
regating loci displaying a high degree of differentiation
between populations. This pattern was attributed to the
presence of a ‘genomic island’ of differentiation.
The main objective of this paper was to describe LD

pattern, level and structure of genetic diversity across
the maritime pine genome. The result may provide base-
line information for future genetic studies (association
mapping, genomic selection) in this economically im-
portant conifer. To this end, we first establish a high-
density genetic linkage map by merging three existing
SNP-based maps [31] using map merging approaches
implemented in the software LPmerge [32,33] and Mer-
geMap [34]. Then, a set of unrelated individuals in the
first stage of domestication was genotyped with the
mapped markers to describe the genome-wide history of
recombination and estimate the level and structure of
genetic diversity in this first generation breeding popula-
tion. Based on knowledge on other forest tree species,
we would expect high levels of genetic diversity, a lack
of extended LD and limited population structure [22],
whereas the applied mass selection might be expected to
have decreased diversity around the loci underlying the
selected target traits [35]. All of these effects would have
important implications for association mapping [36] and
genomic prediction in breeding [37].

Results
Construction of a composite linkage map for maritime
pine and distribution of recombination on chromosomes
We used the following strategy to integrate the three
linkage maps, G2F, G2M and F2, into a single composite
map. First, intermediate composite maps were estab-
lished for G2F-F2 and G2M-F2 because there were few



LG1_LPM                          LG1_MM

Figure 1 Alignment of the composite linkage maps (illustrated
by LG1) obtained with LPmerge (LPM on the left) and
MergeMap (MM on the right) software. The whole map is
available in Additional File 1.
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markers common to the G2F and G2M maps suitable
for anchoring (25 in total), whereas 198 SNPs were com-
mon to F2 and G2F maps and 240 SNPs were common
to F2 and G2M maps (see [31]). We then calculated a
final composite map from these two intermediate maps.
It comprised 1,838 SNPs (1 SNP/contig) distributed
along 12 LGs (corresponding to the haploid chromo-
some number), with a minimum of 121 markers in LG8
and a maximum of 186 markers in LG3. With LPmerge
software, the 12 composite LGs covered a distance of
1,712 cM, with individual LG lengths ranging from 115
(LG12) to 182 cM (LG8), and a density of 1 SNP marker
per 0.9 cM (Figure 1; Additional file 1). With MergeMap
software, the LGs covered 1,850.5 cM, with a individual
LG length ranging from 119 (LG12) to 182 cM (LG2)
and a density of 1 SNP per cM.
We compared the results generated by LPmerge and

MergeMap methods, by carrying out Wilcoxon signed
rank tests on two metrics: the linkage group length of
the composite map, and the root mean square error
(RMSE) calculated from the difference in map position
(in cM), between each component map and the resulting
composite map. Three hypotheses were tested: i) the
map lengths obtained for the intermediate (or final) com-
posite maps do not differ significantly between LPmerge
and MergeMap; ii) The difference in RMSE between
component (or intermediate composite) maps and the
resulting intermediate (or final) composite map does
not differ significantly between LPmerge and MergeMap,
and iii) the RMSE for each component (or intermediate
composite) map does not differ significantly from the
intermediate (or final) composite map constructed with
LPmerge, and similarly for MergeMap. MergeMap sys-
tematically yielded longer maps than LPmerge, for both
intermediate and final composite maps (Additional file 2).
RMSEs were determined for each linkage group after the
map merging process. Comparisons between the two pro-
grams showed that MergeMap gave larger RMSEs than
LPmerge (optimized for the K parameter) for intermediate
composite maps, but that RMSEs were similar for the two
programs after the final step of map merging (Additional file 2).
Despite these differences, marker order was highly
correlated (Spearman’s rank R ≥ 0.87, P < 0.0001), for all
LGs, between the composite maps constructed with
LPmerge and MergeMap. Finally, correlations between
marker positions on parental maps (F2, G2F and G2M)
and on the final composite map constructed with
LPmerge were high (Spearman’s rank R ≥ 0.95, P <
0.0001), indicating that the positions of the markers on
the composite map were consistent with those on the
corresponding source maps.
A chi2-test (df=11) was performed on the composite

map, to determine whether genes were evenly distrib-
uted between maritime pine chromosomes. With twice
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as many markers than in our first investigation [31] it
was clear that the number of markers per LG did not de-
viate significantly from a uniform distribution over the
12 linkage groups (P = 0.65). In terms of the distribution of
markers on individual chromosomes, we found that a
density of at least 10 markers per bandwidth (P= 3.3 × 10−63)
was required for the identification of a recombination
cold spot, whereas a density of at most three markers
(P = 3.2 × 10−63) characterized a hot spot for recombin-
ation. Given these upper and lower limits, and consid-
ering the stringent confidence interval defined for
kernel density function, we identified 13 significant
clusters of markers (in 8 LGs), corresponding to re-
combination cold spots (Figure 2). It proved more dif-
ficult to identify significant hot spots of recombination
(we found only two). As reported in [31], hot spots are
more genetically variable, and it is therefore more diffi-
cult to detect them on a composite map maximizing
the number of recombination events from individual
crosses. Examination of the shape of the kernel density
estimate revealed that seven linkage groups (LG1, 3, 5,
6, 8, 11, 12) had three clear peaks, with locations con-
sistent with the centromeric and telomeric regions.
Compared to the study by Chancerel et al. [31] more
rigorous statistical testing (using resampling to define
confidence interval) certainly contributed to discard a
number of false positives. However, one should not
forget that the distribution of recombination is genet-
ically variable, therefore by merging information from
different genetic maps it is likely that only stable hot
and cold spots across the studied genetic backgrounds
were revealed.

SNP-assay genotyping statistics for the first-generation
breeding (FGB) population
The mean call rate (percentage of valid genotype calls)
was 92% for the FGB population. Two poorly perform-
ing samples were identified by plotting the sample call
rate against the 10% GeneCall score. Three pairs of trees
were found to display identical genotypic information
for the 2,600 SNPs and were therefore considered mis-
labeled in the tree archive (Additional file 3a). All six
trees were discarded. This left 186 trees for the analysis
of population genetics parameters. In total, 2,600 SNPs
were polymorphic (2,532 SNPs and 68 indels), corre-
sponding to 1,706 contigs of the maritime pine unigene
(PineContig_v2, [31]). We positioned 1,671 of these SNPs,
corresponding to 1,192 different loci, on the composite
map. The overall conversion rate (number of polymorphic
SNPs or indels divided by the total number of SNPs or
indels in the assay, i.e. 9,279 SNPs) was therefore 28%.
In total, 2,605 of the 3,498 “failed” assays corresponded
to SNPs and 893 to indels, whereas 1,162 of the 3,181
monomorphic loci corresponded to SNPs and 2,019
corresponded to indels. This increased the conversion
rate to 40.2% for SNPs and decreased the rate for
indels to 2.3%, indicating that indels should be avoided
when designing an Infinium assay. A list of poly-
morphic SNPs is available from the NCBI dbSNP data-
base (http://www.ncbi.nlm.nih.gov/SNP) and is also
provided in Additional file 4.

Test for Hardy–Weinberg equilibrium, distribution of
minor allele frequency and population structure analysis
Significant departure from Hardy-Weinberg equilibrium
was detected for 12 SNPs from the 2,600 polymorphic
markers in the FGB population (5% type I nominal
error). After Bonferroni correction for multiple tests
(5%/2,474 independent tests, although they were not
all independent, i.e. an experiment-wise type I error of
0.002%) none of these SNPs yielded a value significantly
different from the expected value. We can therefore con-
sider that the percentages of each of the three SNP ge-
notypes remained constant in what can be considered a
large population, with random mating, without muta-
tion, migration or natural selection. The minor allele fre-
quency (MAF) distribution of these 2,600 SNPs is shown
in Figure 3. A total of 106 SNPs presented a MAF<5%.
The scatter plots of these rare SNP alleles were checked
visually, one-by-one, with GenomeStudio genotyping
software. In all cases, the clustering profile was con-
firmed. This distribution is unlikely to reflect the true
MAF distribution for SNPs in the studied population.
Indeed, as pointed out in [31], in silico SNP detection
based on the use of sequenced cDNA libraries introduces
an ascertainment bias toward genes that are strongly
expressed (as they are called from expressed sequence
tags) and, probably, less polymorphic, due to the stringent
cutoffs used: i) MAF≥33% and coverage≥10×, to prevent
the selection of SNPs present at such low frequencies that
they are likely to be the product of sequencing error, ii)
ADT score ≥ 0.75, to minimize the variability of the flank-
ing region surrounding the targeted SNP, thereby increas-
ing the likelihood of a successful Illumina Infinium assay.
In addition, the MAF spectrum is likely to be shifted up-
ward, with an underrepresentation of rare alleles not cap-
tured due to the small size of the sample used to prepare
the cDNA libraries. The possibility of such a bias should
be borne in mind when making further evolutionary infer-
ences concerning the demographic and selective history of
maritime pine populations.
Population structure and relatedness between individ-

uals are known to bias the estimation of LD [13]. In this
study, the trees of the FGB population were selected
from natural stands in the Landes forest, with a sam-
pling method designed to ensure the sampling of unre-
lated individuals. The observed patterns of pairwise
relatedness (Additional file 3b) suggests that this objective

http://www.ncbi.nlm.nih.gov/SNP


Figure 2 Kernel density estimators (left y-axis) of marker density (right y-axis) along each linkage group (x-axis in cM). The red curve
corresponds to the kernel density estimator. The surrounding bandplot (in dark blue) is the confidence interval of the kernel density estimator.
The horizontal bandplot (in light blue) is the range of variation of marker density under a Poisson distribution. When the lower or upper limit of
the confidence interval is above or below this range, we declare the presence of a significant cold or hot spot of recombination, respectively.
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Figure 3 Minimum allele frequency (MAF, x-axis) distribution of each SNP in the first-generation breeding (FGB) population.
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was achieved. We tested for possible cryptic relatedness or
differentiation, by performing principal component ana-
lysis (PCA) on the full genotype matrix of 2,600 SNPs. A
comparison of the size of the eigenvalues obtained with
the Tracy-Widom distribution yielded two significant prin-
cipal components. In theory, this could indicate the pres-
ence of three distinct subpopulations, clustering on the
basis of the first two PCs yielded three groups with very
low levels of genetic differentiation (Fst 0.002-0.005). We
plotted these individuals along the two significant PCs and
found little evidence of separate clusters (Additional file 5a).
Geographic analysis reveals a significant relationship
(r2 = 0.17, p = 0.007) between genetic PC1 and the major
axis of geographic variation (mostly latitude), with some
evidence of PC2 being associated with the second axis
(mostly longitude) (r2 = 0.06, p= 0.11) (Additional file 5b,c,d).
Overall, there was a weak, but significant pattern of iso-
lation by distance (r = 0.2, p = 0.006) (Additional file 5e)
rather than a division into distinct groups. This result
was confirmed by the structure analysis performed with
Structure software (Additional file 6). In this analysis, the
values of mean likelihood obtained for the one- to ten-
group models tested did not reach a plateau and Evanno’s
delta K criterion did not identify a peak for any of the
K values tested. Moreover, for K values ranging from 2
to 10, the entire set of 186 individuals was found to be
admixed, with none being identified as a full member
of a specific group. These patterns are typical of an un-
structured population [38] and indicate the absence of
a particular genetic structure at the scale of the FGB
population.

Spatial analysis of genetic diversity on chromosomes
The mean value of Nei’s diversity index (He) calculated
for the 2,600 SNPs was 0.391 (SD = 0.127), while that for
the 1,421 SNPs corresponding to mapped contigs was
0.434, (SD = 0.067). These are very high estimates given
the biallelic nature of these markers (the maximum He

being 0.5 for a biallelic marker). We used the mapped
markers to determine whether genetic diversity was
equally distributed between the LGs (i.e. presence of
LGs with lower or higher overall diversity, Additional file 7).
A significant difference (P<0.05) between He values was
observed. Tukey’s HSD test showed that LGs could be
classified into three groups, with lower (LG3-6, He = 0.419;
SD = 0.072), medium (LG1-2-7-8-9-10-11-12, He = 0.434;
SD = 0.066) and higher (LG 4–5, He = 0.449; SD = 0.059)
levels of diversity.
We then used a spatial statistics approach to determine

whether the genetic diversity of the mapped markers was
distributed non-uniformly along the chromosomes. We
estimated the empirical variogram of He (γ̂ h), to determine
whether neighboring genes on the chromosome presented
similar patterns of diversity. A spatially structured process
would show an increase in variance with increasing map
distance between markers. Based on all the gene loci
from the composite map and map distances ranging
from 0 to 10 cM, we found no particular relationship
between γ̂h and gene position on the composite map.
Most of the calculated empirical variances fell within
the area predicted by permutation (Figure 4). This was
true for the individual LGs of the composite map and
was confirmed for the component maps as well (data
not shown). Thus, diversity at neighboring gene loci
was not correlated with recombination distances in the
study population and, with the marker density used,
there is little evidence for extended reductions in di-
versity due to selective sweeps. Given this result, we
did not attempt to krige our data to detect hot or cold
spots of diversity at a centimorgan scale.
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Figure 4 Empirical pangenomic variogram of genetic diversity
(He) plotted against map distance, ranging from 0 to 10 cM
(0.15 cM as the lag size). The red dots (connected by a red line for
trend detection) represent the variance of He for each pair of
markers for a given class of map distance. The bandplot indicates
the 95% confidence interval.
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Extent of intra- and inter-chromosomal linkage
disequilibrium
At least two SNPs were available in 248 EST-contigs for
investigation of the pattern of physical LD. We consid-
ered SNPs with a MAF>5%, resulting in the retention of
714 pairs for the analysis. However, given the biased pro-
cedure used to select SNPs in silico, the biased represen-
tation of polymorphic sites within these contigs and the
skewed distribution of distances between sites (half the
pairs being at a distance < 250 bp), the observed pattern
of short-distance LD (not shown) was not consistent
with trends typically observed in conifers [39] based on
amplicon sequencing. In addition, the estimate of the
population experimental parameter (C) was negative,
precluding any use of this data set for the further inter-
pretation of physical LD over short distances.
The pattern of long-distance (genetic) LD was exam-

ined for the first time in this species, over the 12 chro-
mosomes, on the basis of SNP markers localized on the
composite linkage map and their genotypic profiles in an
unstructured population. The distribution of the squared
correlation coefficient for allelic frequencies (r2) showed
that LD decreased rapidly over very short genetic dis-
tances for all chromosomes (Figure 5; Additional file 8).
However, we also identified 380 pairs (0.45% of the
84,679 pair-wise combinations) for which the r2 was
above the 0.1 critical level, while the genetic distance
was different from 0 in the composite map. In order to
verify whether these possible long distance LD (possibly
due to epistatic selection) were not due to inaccurate
map position resulting from the construction of the
composite linkage map, we directly checked the map
position of these pairs in the components maps. From
these 380 pairs, 238 originated from the same compo-
nent map, while 142 were from different component
maps. From these 238 pairs, the genetic distance in the
component map was equal to 0 cM for 102 pairs and
comprised between 0 and 1 cM for 66 pairs, indicating
that their position in the r2 plot was probably unreliable
and therefore could not be used to infer long distance
LD. An extreme case is provided for two outliers
markers (F51TW9001DHGV3 and CT583376) in LG3
placed 23 cM apart in the composite map, while they
completely co-segregated in the component map (G2M).
Thus, only 70 pairs (i.e. 238–102–66) were left to con-
struct the distribution of long distance (i.e. non physical)
LD. As rare allele frequency can influence LD, this dis-
tribution (Additional file 9) was drawn based on 65 pairs
(listed in Additional file 10) from which both markers
had a MAF >20%. In cases where a functional annota-
tion was available, there was no similarity between a
marker pair suggesting that these SNPs belonged to
different genes rather than to different contigs of the
same gene. In addition, 34 cases (highlighted in bold in
Additional file 10) of such possible long distance LD could
be confirmed by the fact that intragenic SNPs presented
similar r2 values with SNPs in another gene. Finally, this
distribution was used as a null model to test the signifi-
cance of inter-chromosomal LD (potentially due epistatic
selection). Each inter-chromosomal LD value was tested
against the upper bound of this null distribution (signifi-
cant if r2 > 0.32 at the 5% level). Given the number of tests
performed, Bonferroni correction was applied to this
upper bound (see the blue area in Figure 6). No significant
inter-chromosomal LD was found in this population.

Discussion
Development of a composite map for maritime pine and
genome-wide distribution of recombination
Advances in next-generation sequencing and array-based
genotyping technologies have lowered development times
and costs for reliable single-nucleotide polymorphism
(SNP) markers [40,41]. The availability of such markers
has been a boon for the generation of high-density linkage
maps in model and non model plant species, as recently
demonstrated in sunflower [42], barley [43], tomato [44],
and maize [45]. The integration of information from mul-
tiple linkage maps for hundreds to thousands of markers
is another challenge. One approach to the integration of
information for multiple populations is to pool the
genotypic data and minimize the sum of recombin-
ation frequencies (or related metrics), as in the maximum



Figure 5 Distribution of intra-chromosomal linkage disequilibrium (r2) as a function of physical and genetic distance between all
marker pairs for the 12 linkage groups of the maritime pine composite linkage map (see Additional File 5, for each LG independently).
SNPs from the same contig were placed at 0 cM. r2 was determined by the Rogers and Huff [93] approximation for loci with unknown phase,
based on the polymorphic data for 186 unrelated trees of the Aquitaine population. In yellow: r2 values below a cutoff value of 0.1. In red: r2

values above this cutoff.
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likelihood method [46] applied to single populations,
e.g. [47]. However, the computational time required
for this approach may be prohibitive in some situa-
tions [48,49] and this method is unworkable when
genotypic data are unavailable. An alternative strategy
involves integrating the linkage maps for separate pop-
ulations without analyzing their genotypic data. Yap
et al. [50] were the first to model a map as a directed
graph, with nodes representing mapped markers and
edges defining the order of adjacent markers. They
also designed an algorithm for merging maps from dif-
ferent studies on the basis of loci common to different
maps. Wu et al. [34] subsequently developed an algo-
rithm based on graph theory implemented in Merge-
Map, a program that has been used to construct
several composite maps for barley [43,51]. Endelman
[32] discovered that the graph linearization technique
used by MergeMap was suboptimal and proposed a
new approach to overcome this problem through
linear programming. However, the software developed
by Endelman [32], DAGGER, was unable to merge
linkage maps with ordering conflicts. LPmerge, used
for the first time on empirical data in the present
paper, was designed to resolve ordering conflicts between
component linkage maps and minimize errors between the
composite map and the component maps [33]. By using this
software we generated a composite map consisting of 1,838
SNP markers distributed over 12 LGs, covering 1,712 cM.
Map length was similar to that obtained for maps con-
structed with similar numbers of loci in other conifer spe-
cies: 2,083 cM in Picea glauca with 1,801 loci [25], 1,898cM
with 1,816 loci in Pinus taeda [30]. We then used this map
to investigate the genome-wide distribution of recombin-
ation. We found clear peaks for the number of markers.
Their locations was consistent with centromeric and telo-
meric regions, in agreement with previous findings in other
species with a similar genome size such wheat, reporting
that recombination was limited in these regions [52,53].



Figure 6 Distributions of inter-chromosomal LD (green bars). The blue area corresponds to expected values under a null model obtained for
non physical LD. The upper bound value of this blue area was corrected for multiple testing (Bonferroni correction, P-value=0.05/159,814).
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Level and genome-wide distribution of genetic diversity
in the first breeding population of maritime pine
We presented a genome-wide map of genetic diversity (as
estimated from expected heterozygosity, He) for a popula-
tion resulting from mass selection in natural forests, with
an estimated selection intensity of about 1.5 × 10−5 [54].
This population provided us a unique opportunity to
study the effect of the first stage of domestication on the
level and distribution of genetic diversity in a highly het-
erozygous forest tree species. We showed that a selection
intensity of this magnitude did not decrease the overall
level of genetic diversity.
Our findings are consistent with those of previous

studies carried out with an handful of allozyme markers
in breeding populations of Douglas fir [55] and Sitka
spruce [56], and with a recent investigation based on
SNP markers spanning the entire genetic map of white
spruce [57], showing no decrease in genetic variation
during the first stage of domestication of these highly
polymorphic species. We can therefore conclude that
mass selection applied at a regional scale (the Landes
forest covers about 1 million ha in the southwestern
France), even with very high intensity, did not appear to
compromise the background neutral genetic diversity of
the maritime pine base breeding population. Thus, the
high level of genetic diversity found in the FGB popula-
tion is consistent with a large randomly mating popula-
tion, as typically found for outcrossing species.
We found no significant spatial pattern of genetic di-

versity in the maritime pine genome (at least at the cM
scale). Such patterns would have been indicative of de-
creases in diversity associated with loci underlying the
variation of the target traits. However, given the rapid
decay of LD in this species (within a few hundred bp on
average), the marker density used was probably too low
to capture any localized decline in heterozygosity, if any
occurred around selected loci.
These results contrast with the large reduction of gen-

etic variability observed for the selected traits [58] be-
tween the Landes natural forest and the base population
of the breeding program (which includes the FGB popu-
lation), particularly for growth. We can therefore con-
clude that these markers are probably not functionally
important with respect to these selection criteria, in
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agreement with the lack of statistical association be-
tween allelic variation and breeding values for height
growth and stem straightness (data not shown). Further
investigations will be required to identify SNPs in LD
with target trait-QTLs. Such investigations could involve
the genotyping of unselected trees from wild populations
and the comparison of allele frequencies before and after
mass selection, or tests of association between breeding
values and marker genotypes, as illustrated in [57] for
white spruce. Given the polygenic basis of complex traits
subjected to breeding, such as height and radial growth
[59], we anticipate that this second approach is likely to
be successful only for well chosen candidate genes puta-
tively involved in trait variation.
The set of 2,600 SNP markers developed in this study

will be used to assess genetic diversity in subsequent
generations of the maritime pine breeding program. The
maintenance of genetic diversity is not only essential to
guarantee the adaptation of future improved varieties to
ongoing climatic change [60], it is also of particular im-
portance for plant breeding programs based on recur-
rent selection, because the progress of selection is
determined by the level of genetic variation within the
population.

Long distance LD pattern and consequences for association
mapping and genomic prediction in maritime pine
We scored 2,600 SNPs in a population of 186 unrelated
trees selected on the basis of their performance in nat-
ural forests of the Aquitaine region in southwestern
France, for establishment of the first generation of the
maritime pine breeding program. Markers for which
intra-chromosomal LD was estimated covered the whole
linkage map of this species, at a mean density of 1
marker per 1.4 cM (1 cM ≈ 12 Mb in maritime pine,
[61]). Sampled genes were well distributed across the 12
LGs of the composite map, with 78–115 genes per LG.
As expected, high values of r2 were obtained only for
physically linked polymorphisms, i.e. SNPs belonging to
the same gene. No significant LD was found over larger
distances. These results are consistent with population
genetics theory for such an undomesticated, outcrossing
species, and can be attributed principally to the large
effective sizes of the unstructured populations found in
most conifers (estimates of effective population sizes
for maritime pine are presented in Additional file 11).
Similarly, no significant epistatic LD was found be-
tween unlinked loci localized on different chromo-
somes. LD is a property of a given gene pool, but the
convergence of our results with those of Eckert et al.
[62] for Pinus taeda suggests a lack of LD between gen-
etically spaced gene-based markers in conifer species
characterized by the same type of reproductive regime
and life history traits.
Our findings suggest that the initial mass selection
used to form the base population of the maritime pine
breeding program was not only successful in terms of
the initiation of a program to develop improved varieties
[58], but also efficient for the sampling of neutral genetic
diversity from the Landes forest. Absence of inbreeding
and cryptic population structure within the base popula-
tion were also confirmed. The substantial level of poly-
morphism detected in the FGB population renders our
set of markers as a valuable tool for breeding applica-
tions. Trees have long generation interval and breeding
is therefore a slow process. The 2,600 SNPs developed in
this study will be extended to test the utility of genomic
selection (GS) approaches to reduce the breeding cycles
of maritime pine, as suggested for Pinus taeda [63,64].
Then, favorable combinations of polymorphisms will be
sought in manageable breeding populations with small
effective sizes to trace QTLs by linked markers. The
prospective of developing GS holds great promise to
increase the genetic gain in traits of interest in these
long-lived organisms and to accelerate their domesti-
cation [65,66], while maintaining sufficiently high levels of
genetic diversity to allow the selected trees to cope with
major biotic and abiotic disturbances.
Given the lack of LD in this population and lack of as-

sociations between markers and phenotypes, predictions
based on SNP markers for selection would likely have
very low reliability. In several simulation studies on do-
mestic animal and trees, LD showed a significant effect
on reliability of predictions from genomic prediction
models [15,16]. For example, in cattle breeding, for gen-
omic selection to be successful the level of LD was sug-
gested to be greater than 0.2 [14]. When LD among the
markers increased from 0.1 to 0.2, the reliability of gen-
omic predictions increased by 0.14 (from 0.68 to 0.82)
[67]. LD is population specific and is expected to
change with recombination, genetic background of the
population and effective population size. To exploit
marker-tagged QTL-trait associations in GS, we are
currently combining three-generation pedigrees of mari-
time pine (FGB and successive G1 and G2 populations),
where LD should be much higher compared to the base
population.

Conclusions
We established a 1,712 cM linkage map of maritime pine
with 1,838 SNP markers using for the first time a new
map merging algorithm that integrates linkage maps
from separate populations without any recourse to ori-
ginal genotypic data. We found clear cold spots of recom-
bination consistent with the centromeric and telomeric
regions of metacentric chromosomes [68]. We then used
an extended set of 2,600 SNP markers to describe histor-
ical recombination, genetic diversity and genetic structure
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within a mass-selected population of 186 unrelated ge-
notypes. The genetic structure of this population was
very weak and we found no evidence that artificial
selection had decreased neutral genetic diversity. Con-
sidering the map position of 1,671 of these 2,600
markers (corresponding to 1,192 different loci) we
found that LD mostly extend over short physical dis-
tances as expected for an outcrossing species with
large effective population size.
At the dawn of a new paradigm in forest tree breeding

[69-71], namely the implementation of GS [37], a range
of factors that influences the accuracy of genomic esti-
mated breeding values needs to be carefully considered,
including the heritability of the traits, its genetic archi-
tecture, the extent of genotype by environment inter-
action, the genetic structure and the effective size of the
targeted population, the number of records in the refer-
ence population, the number of markers and their asso-
ciated cost, and the overall prediction and validation
strategy. The present study provides novel results that
should be taken into account for the implementation of
GS in maritime pine. The drop in the status number (as
defined by [72]) from several hundred in the mass-
selected population, to 94 in the second breeding popu-
lation and 23 in the elite population of the new sub-line
structure of the breeding population (A. Raffin personal
communication) is a favorable situation for its further
development in this species.

Methods
Genetic material, DNA extraction and genotyping assay
The two mapping populations (G2 and F2) for which
SNP-based linkage maps were merged in this study were
described in [73]: G2 designates a three-generation out-
bred pedigree (full-sib progeny), whereas F2 is a three-
generation inbred pedigree. Chancerel et al. [31]
constructed male and female linkage maps from the G2
population (G2M and G2F, respectively), and a single
linkage map for the F2 population (Additional file 12).
In addition, 194 trees from the base population of the
maritime pine breeding program, referred to here as the
“first-generation breeding” or “FGB” population, were
used for genetic diversity and LD analysis. During the
1960s, adult stands in the Landes forest (south western
France) were explored and trees considered outstanding
in terms of their stem volume and straightness were identi-
fied. These trees were sampled across a wide range of
different locations covering the Aquitaine region
(Additional file 13), particularly along the Atlantic coast,
and were at least 50 m apart when present at the same
site. A phenotypic index was built from the performances
of the candidate trees and their 20 closest neighbors [54],
to select the base population. These trees were grafted
and stored in clonal archives [58].
Young needles from each tree were harvested and
stored at −80°C until DNA extraction and genotyping
(Infinium assay, Illumina), as described in [31]. In total,
9,279 SNPs (6,307 SNPs sensus stricto and 2,972 indels
distributed in 4,613 different contigs) were individually
inspected with Genome Studio software, using a GenCall
score cutoff of 0.15 (according to Illumina’s recommenda-
tions) to detect failed SNPs. Loci for which two or three
clusters (depending on the type of marker segregation)
were identified without ambiguity were considered to be
polymorphic markers. SNP clusters were modified manu-
ally, to refine cluster positions, when necessary. SNPs and
surrounding sequences were submitted to dbSNP (acces-
sion numbers are listed in Additional file 4). Overall, 186
out of the initial set of 194 trees presented genotyping in-
formation for 2,600 SNPs (Additional file 14).

Linkage map development
We compared two different software packages to gener-
ate a composite map from three existing SNP-based
linkage maps (G2F, G2M, F2, [31]) of maritime pine:
LPmerge [32,33], which is available as an R package [74]
at http://cran.r-project.org/web/packages/LPmerge/, and
MergeMap (http://www.mergemap.org/), which has been
used in several barley mapping projects [34,51]. To com-
pare both algorithms, the root-mean-squared error (RMSE)
for each marker was calculated by comparing its position
in the composite map with that on the individual linkage
maps, and the average RMSE across the markers within a
linkage group was used to assess the goodness-of-fit for the
composite map. For LPmerge, the maximum interval par-
ameter K was varied from 1 to 8, and the composite map
with the lowest RMSE was selected. For both software
packages, as few markers were common to G2F and G2M,
we first generated two intermediate composite maps
(“F2+G2F” and “F2+G2M”). We then merged intermedi-
ate maps into a final composite map. The merging of
the three maps in a single step yielded the same marker
order in the composite map (Spearman’s rank R > 0.99,
p = 2.2.10−16, data not shown), but we present the two-
step procedure here because this approach made it possible
to compare LPmerge and MergeMap on three datasets
(“F2+G2F”, “F2+G2M” and the combination of the two),
making it possible to draw more general conclusions.

Analysis of marker distribution on chromosomes
We investigated whether the mapped genes were evenly
distributed between linkage groups (LG), by comparing
the observed and expected numbers of genes per linkage
group in chi2 tests (P<0.05). The expected number of
genes for each LG was obtained by multiplying the ratio
“size of LG/total genome length” by the total number of
mapped markers. We also analyzed the distribution of
markers along the chromosomes, by using a kernel

http://cran.r-project.org/web/packages/LPmerge/
http://www.mergemap.org/
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density estimation to calculate optimal window size
(bandwidth) for dividing the genome into blocks, in
which we counted the number of genes. Kernel density
estimation is a non-parametric technique for density
estimation, in which a known density function (here a
Gaussian function) is averaged across the observed data
points to create a smooth approximation. The smooth-
ness of the density approximation depends on the band-
width. In our case, we used a fixed and robust bandwidth
estimator [75], based on the algorithm of Jones et al. [76].
Bandwidth values were calculated for each linkage
group of the composite map obtained with LPmerge
(Additional file 15). Compared to our first investigation
based on the three component maps [31], we estimated
here the variability of the kernel density estimator, by sam-
pling randomly 70% of the total number of markers for
each chromosome independently, 999 times without re-
placement [77,78]. For each random sample, we calculated
a kernel density estimate. For all the kernel density esti-
mates (from 999 random samples), we then calculated
both the 2.5 and 97.5 percentiles, to define the confidence
interval of the kernel density estimate. We defined the
lower and upper bound thresholds of significance, by ana-
lyzing the marker distribution, by comparing (in a chi2-
test) the observed distribution of the number of markers
per bandwidth with that expected under a Poisson distri-
bution. A lower bound threshold, defining a cold spot of
recombination (i.e. a cluster of markers on the linkage
map) was determined when the observed number of
markers was greater than the expected value, while the re-
sults of the chi2-test were significant. Similarly, to define a
hot spot of recombination, an upper bound threshold was
determined when the observed number of markers was
lower than expected, while the results of the chi2-test were
significant. Finally, we compared the position of the confi-
dence interval of the kernel density estimator with these
lower and upper bounds, to identify significant hot and
cold spots, respectively.

Population structure analysis
Genetic structure and cryptic relatedness within the
FGB population were assessed in three ways. First, we
assessed the patterns of pairwise relatedness, calculated
from the genotype matrix as described in [79]. Second,
we tested for cryptic population structure by performing
principal component analysis (PCA) on the genotypic
matrix of 2,600 markers, as described in [80], removing
the dependence between SNPs at the same locus [81].
The leading eigenvalues obtained by PCA were tested
for significance, by comparing their size with that expected
under a Tracy-Widom distribution [80,82]. Genetic clus-
ters were created on the basis of Ward clustering of the
calculated Euclidean distance from the significant PCs [81].
Significant PCs were averaged per geographic location
(sampling site) and their relationship to geographic loca-
tion was investigated by linear regression on the principal
components calculated for the geographic coordinates.
Genetic isolation by distance was determined as the correl-
ation between Euclidean distance along the averaged gen-
etic PCs and geographic (degree) distance. Significance was
assessed in a Mantel test. Finally, a third analysis of genetic
structure was carried out with the software Structure
v2.3.3 [38,83] using mapped loci. This method assumes
Hardy-Weinberg equilibrium for the tested population and
unlinked or weakly linked loci are required for clustering
analysis. Before carrying out this analysis of genetic struc-
ture, we checked that the markers used were in Hardy-
Weinberg equilibrium. Then, for a given EST contig, we
chose a single SNP at random, to avoid the problem of LD
between loci. Based on these criteria, we used a genome-
wide set of 1,180 mapped SNPs for the genetic structure
analysis. We carried out three runs of Structure for each
tested number of groups (K), from 1 to 10. The correlated
allele frequency model with admixture was used, with
burn-in and run-length periods of 2.5x105 iterations. We
used the mean likelihood L(K) and Evanno’s delta K criter-
ion [84] values obtained over three runs to determine
whether an optimum value of K could be identified, as ex-
pected when discrete populations are present in the data.

Spatial structure of diversity on chromosomes
A SNP diversity map was superimposed on the composite
linkage map. We used the FGB population to test depart-
ure from Hardy-Weinberg equilibrium and to estimate
three genetic diversity parameters for each SNP: minor al-
lele frequency (MAF), observed heterozygosity (Ho) and
expected heterozygosity (He, Nei’s index of genetic diver-
sity [85]. Raw data (SNP genotypes for each individual)
were formatted with GenAlEx6 [86] and analyses were
conducted with the GenePop package [87,88] available on-
line at URL: http://genepop.curtin.edu.au/. Genetic diver-
sity parameters were finally retrieved from the output of
GenePop, using a PerlScript. As these three parameters
were highly correlated, we considered only He.
We first analyzed the spatial structure of diversity

along the LGs of the composite map by variance ana-
lysis, generating a statistic that can be used to assess the
covariance (i.e. correlation) between a variable of interest
(here, He) and the location at which it is measured (here,
the position of SNP markers on the composite linkage
map). The covariance calculated is equal to half the vari-
ance of the differences in the value of a metric (Z) be-
tween all pairs of points (i and j) separated by a given
distance (h). This approach is often referred to as semi-
variance analysis in geostatistical studies (but see [89]
for the confusion between the terms variance and semi-
variance). If pairs of points are closely located spatially
and correlated, then they will have a low variance. The

http://genepop.curtin.edu.au/
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underlying assumption is that the difference in diversity
between any two markers is a function of the distance
between these markers.
The empirical variance (γ̂h) was calculated as follows:

γ̂h ¼ 1=2Var Zsi−Zsj

� � ¼ 1
2Nh

X
Nh

Zsi−Zsj

� �2

with Nh ¼ i; j : si−sj ¼ h
� �

;

where si and sj are the map positions of two SNP
markers, Zsi and Zsj are the values of their diversity sta-
tistics (He) and Nh is the number of paired data (SNP
markers) at a distance of h (1 to 10 cM) or less. We cal-
culated variance with a robust estimator, to avoid the
influence of outliers, as described in [90,91]. We first
estimated the empirical variogram for each LG inde-
pendently, and then by pooling all the data across LGs
to estimate a pangenomic variogram. We determined
whether a particular value of the variance differed sig-
nificantly from a random value, by carrying out permu-
tation tests in which the He values associated with each
SNP marker were randomized with respect to chromo-
somal position. One thousand permuted data sets were
generated and the probability of finding a value higher
than the observed value for a distance class was calcu-
lated from the distribution of the permuted data. We
then determined whether diversity was equally distrib-
uted between LGs (presence of LGs with lower or higher
overall diversity). A simple one-way ANOVA was per-
formed, followed by a Tukey’s HSD test for multiple
comparisons of means. This test compares the difference
between the He values of each pair of LGs, with appro-
priate adjustment for multiple testing.

Extent of linkage disequilibrium (LD) on chromosomes
LD between pairs of loci was estimated by the squared al-
lele frequency correlation r2 [92], based on SNP markers
located on the composite map. We used the Rogers and
Huff approximation for loci with unknown phases [93].
LD was calculated for all pairwise marker combinations,
both within and between chromosomes. The range of
minor allele frequencies in the FGB population was simi-
lar across LGs, ranging from 0.15 to 0.5, and it was as-
sumed that this population was unstructured, as shown in
the results section.
We investigated the distribution of intra-chromosomal

LD over physical and genetic distances. For the estima-
tion of short-distance (i.e. physical) LD, SNPs from the
same contig (discarded for linkage map construction)
were reintroduced into the LD analysis and placed at the
same map position as the marker initially selected for
linkage map generation. Pairwise r2 values were plotted
against the genetic distance between the two loci (starting
at 0 cM for SNPs from the same contig). We then built a
null model to test for the presence of inter-chromosomal
LD, by retaining only genetically linked pairs (i.e. corre-
sponding to two different contigs) with critical values
of r2 > 0.1 [94].
At the intragene level, LD was estimated by the

squared allele frequency correlation r2, based on pairs of
SNP belonging to the same contig, with MAF>5%. Of
the 4,911 contigs studied, 248 contained two or more
SNPs and were retained for the intragene LD analysis.
The extent of LD was estimated by nonlinear regression
analysis on the basis of intragene r2 values [95]. The ex-
pected values of r2 between pairs of adjacent sites (E(r2))
were estimated with the formula:

Eðr2Þ ¼ 10þ C
2þ Cð Þ 11þ Cð Þ

� 	�
1þ 3þ Cð Þð12þ 12C þ C2Þ

n 2þ Cð Þ 11þ Cð Þ
	
;

which is valid under drift recombination equilibrium
and low mutation rate and can be adjusted for sample
size [96]. In this formula, C is the population recombin-
ation parameter (ρ = 4Ner where Ne is the effective
population size and r is the recombination rate per site
and per generation) and n is the sample size. We carried
out nonlinear regression (nls function) with R software
x, replacing C with C × distance (in bp) between pairs of
sites, to fit this formula to our data.

Availability of supporting data
Supporting data are available as additional files.
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Additional file 1: Alignments of the composite linkage maps
obtained with LPmerge (LPM on the left) and MergeMap (MM
on the right) software.

Additional file 2: Comparison between LPmerge and MergeMap for
composite map construction. The first table provides the two metrics
for statistical testing, i.e. linkage group length of the composite map and
root mean square error (RMSE), whereas the second table provides the
result of the test. Two intermediate composite maps (G2F_F2 and
G2M_F2) were constructed before the production of the final composite
map (G2F_F2-G2M_F2).

Additional file 3: a) Pairwise kinship relationships between 192
individuals of the FGB population, showing 3 pairs of trees with
identical genotypic information over the 2,600 SNPs, which were
therefore considered to be mislabeled in the tree archive, b)
Pairwise kinship relationships between the 186 individuals of the
FGB population, i.e. excluding the three abovementioned pairs.

Additional file 4: List of SNP markers with dbSNP accession
numbers, corresponding contig ID in PineContig_v2, genetic
parameters in the first-generation breeding population, and linkage
group assignment on the component maps.

Additional file 5: a) Plot of genetic PC1 and PC2 and their
relationship to the two geographic components, b) biplot of PCA
against geographic coordinates, c) relationship between the first
genetic and geographic PC (averaged per location), d) relationship
between the second genetic and geographic PC (averaged per
location), e) genetic distance (along the first two genetic PCs) as a
function of geographic distance.
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Additional file 6: Clustering of the 186 G0 trees of the FGB
population using the Structure software. Distribution of Evanno’s
delta K values (A) and example of barplots obtained with numbers of
groups K varying from 2 to 5 (A).

Additional file 7: Distribution of genetic diversity (He values) along
the 12 linkage groups of the maritime pine composite map. Blue:
one SNP in the contig, He value for the SNP; red: two SNPs in the same
contig, He value for the second SNP; Green: three SNPs in the same
contig, He value for the third SNP; Purple: four SNPs in the same contig,
He value for the fourth SNP.

Additional file 8: Plot of linkage disequilibrium, measured as the
squared correlation coefficient of allele frequencies (r2), against
genetic map distance (cM) between all marker pairs in each of the
12 linkage groups (LG) of the maritime pine genome. r2 was
determined with the GGT 2.0 program, from the polymorphism data for
186 unrelated trees of the Aquitaine population. The 0.1 critical level of r2

was determined after Robbins et al. (2011). J Exp Bot, 62:1831–1845.

Additional file 9: Distribution of long distance intra-chromosomal
linkage disequilibrium (LD) as estimated by r2. This distribution was
used as a null model to test the significance of inter-chromosomal LD
potentially due epistatic selection.

Additional file 10: List of 65 pairs of markers with MAF>20% and
associated linkage disequilibrium values (r2).

Additional file 11: Estimates of effective population sizes.

Additional file 12: Description of the three component maps from
Chancerel et al. (2013).

Additional file 13: Geographic origin of the G0 trees.

Additional file 14: Genotyping dataset (186 trees of the FGB
population × 2,600 SNPs).

Additional file 15: Bandwidth values (cM) obtained by kernel
density analysis for the composite linkage map obtained with
LPmerge.
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