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A community-based sessile life style is the normal mode of growth and survival for
many bacterial species. Under such conditions, cell-to-cell interactions are inevitable
and ultimately lead to the establishment of dense, complex and highly structured
biofilm populations encapsulated in a self-produced extracellular matrix and capable of
coordinated and collective behavior. Remarkably, in food processing environments, a
variety of different bacteria may attach to surfaces, survive, grow, and form biofilms.
Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus
aureus are important bacterial pathogens commonly implicated in outbreaks of
foodborne diseases, while all are known to be able to create biofilms on both abiotic
and biotic surfaces. Particularly challenging is the attempt to understand the complexity
of inter-bacterial interactions that can be encountered in such unwanted consortia, such
as competitive and cooperative ones, together with their impact on the final outcome
of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence,
dispersal). In this review, up-to-date data on both the intra- and inter-species interactions
encountered in biofilms of these pathogens are presented. A better understanding
of these interactions, both at molecular and biophysical levels, could lead to novel
intervention strategies for controlling pathogenic biofilm formation in food processing
environments and thus improve food safety.

Keywords: biofilms, foodborne pathogenic bacteria, interactions, aggregation, competition, cooperation,
communication

Introduction

For many years it was believed that microorganisms inhabit the planet mainly in a planktonic
form, as free-living cells, but it is now widely accepted that most of them reside primarily
in biofilms. These are assemblages of microorganisms adherent to each other and/or to a
surface and embedded in a scaffold of self-produced extracellular polymeric substances (EPS;
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Stoodley et al., 2002; Hall-Stoodley et al., 2004). The last decades,
biofilm formation by bacterial pathogens has attracted much
attention, mainly in themedical and food processing fields, due to
its potential risks, including antimicrobial resistance, persistence,
and virulence factor production (Stewart and Costerton, 2001;
Chmielewski and Frank, 2003; Jahid and Ha, 2014; Bridier
et al., 2015). For simplicity, most of the research on biofilms
has taken a reductionist approach, where single species biofilms
have been extensively investigated. However, biofilms in nature
mostly comprisemultiple species, where inter-species interactions
can shape the development, structure and function of these
communities (Yang et al., 2011b; Elias and Banin, 2012; Rendueles
and Ghigo, 2012; Burmølle et al., 2014). Therefore, in recent years
there has gradually been a shift in focus toward examining the
complexity and interactions in multi-species biofilms. The use
of high throughput and high resolution methods has facilitated
this development in revealing complex microbial interactions
including genetic, metabolite exchange and signaling to occur
between microorganisms in biofilm communities (Møller et al.,
1998; Madsen et al., 2012; McLean and Kakirde, 2013). Such
interactions may influence growth and survival of biofilm
communitymembers and also their potential virulence properties
which could on their turn influence the overall pathogenicity of
such structures (Peters et al., 2012a).

Living in biofilms allows bacteria to interact with each other
and function as a group for coordinated activities (Nadell
et al., 2009). These cell-to-cell interactions influence both the
temporal and spatial formation of a highly organized community
architecture and are roughly categorized as either cooperative
or competitive (James et al., 1995; Shirtliff et al., 2002; Wuertz
et al., 2004; Moons et al., 2009). Their significance was first
realized and thoroughly described for bacteria residing in the
oral cavity (Kolenbrander et al., 2006), while equivalent patterns
were later revealed in biofilm bacteria isolated from various
non-host environments, including artificial habitats, such as
food processing. As an example, dental plaque is a well-
recognized biofilm community, which is characterized by its
broad biodiversity (>700 species) and high cell density (1011

cells/g wet wt), with the intra- and inter-species interactions
encountered inside this to be well described (Kuramitsu et al.,
2007; Hojo et al., 2009; Huang et al., 2011; Diaz, 2012; Guo
et al., 2014). For instance, bacterial coaggregation is a main
type of cooperative interactions encountered among oral bacteria
that facilitate coadhesion of bacterial pairs to the tooth surface
(Rickard et al., 2003). In terms of coaggregation, the succession
of bacterial biofilms is tightly controlled by specific cell surface-
associated receptor-ligand interactions and this often results in
enhanced levels of multi-species biofilm formation. Thus, some
attached pioneering bacteria will be recognized and serve as
anchor for secondary colonizers, while the close contact resulting
from coaggregation events facilitates cooperation between the
different species.

In a true cooperative partnership, all species profit in some
way from the presence of others, leading to an enhanced overall
fitness of the biofilm consortium. This can be achieved through
the provision of biofilm formation capacity to the community, by
producing substances that can serve as nutrients for the cohabiting

species, by removingmetabolites that would otherwise slow down
growth, or by any combination of all these. Bacteria can also
collaborate to degrade compounds, which often results in a three
dimensional organization whereby structures are formed that
facilitate the transfer of the primary degradation product toward
secondary degraders that are usually clustered around the primary
degrader. Cooperative metabolic interactions are also suggested
by the observation that certain bacterial species can modify the
localmicroenvironment,making itmore suitable for the growth of
other organisms, for instance by changing the pHor concentration
of oxygen. Thus, organisms which are able to metabolize oxygen
could favor the growth of nearby anaerobic organisms (Stewart
and Franklin, 2008).

Common competitive interactions are antagonism for limiting
nutrient sources, oxygen and available space to colonize. One
important factor in determining the bacterial composition of a
biofilm is clearly the availability of nutrients with the competition
for nutrients and other growth parameters to certainly be an
important driving force for the development of biofilm structure.
Thus, numerous experimental data obtained in the laboratory
show how different microorganisms may effectively outcompete
others as a result of better utilization of a given energy source
(Wuertz et al., 2004). Competition may also be done through
the production of compounds (e.g., bacteriocins, organic acids,
biosurfactants, enzymes) that may inactivate, inhibit the growth
of, or prevent attachment of other species or even provoke
detachment of their cells from the biofilm structures (Rendueles
and Ghigo, 2012).

It is well accepted that bacteria in biofilms are more protected
against various stresses than planktonic exponentially growing
cells (Anderson and O’Toole, 2008; Coenye, 2010). Several
studies have further suggested that interactions between biofilm
bacteria could influence their relative resistance (Burmølle et al.,
2006; Simões et al., 2009; Uhlich et al., 2010; van der Veen
and Abee, 2011; Giaouris et al., 2013; Lee et al., 2014b). In
the presence of toxic compounds, the relative abundance of
the different species in a population shifts toward the species
best equipped to deal with the compound. However, sensitive
strains may profit from protection by more resistant populations.
The most straightforward case is when the resistant species
completely detoxifies the compound. In other cases, the sensitive
strain is protected through physical shielding by the resistant
strain. Interestingly, advanced imaging techniques have identified
that microorganisms are clustered within biofilms and are
not randomly distributed (Neu et al., 2010). Such structural
organization and architectural differentiation has been shown to
enhance persistence of a synthetic biofilm consortium (Brenner
and Arnold, 2011). Another mechanism that might lead to higher
resistance is the interaction between the matrix polymers of the
different species. Thus, even when neither of the two partners is
intrinsically resistant to the treatment, enhanced resistance can
still occur (Moons et al., 2009).

Increased cell density also favors chemical cell-to-cell signals
involved in social interactions in biofilms (Kjelleberg and
Molin, 2002; Li and Tian, 2012). Thus, many bacteria are
known to regulate their cooperative activities and physiological
processes through a mechanism called quorum sensing (QS),
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in which bacterial cells communicate by producing, detecting,
and responding to small diffusible signal molecules called
autoinducers. Davies et al. (1998) was the first to show the
involvement of cell-to-cell signals in biofilm development by
describing their role in biofilm formation by the common
opportunistic pathogen Pseudomonas aeruginosa. Nowadays, it
is widely accepted that bacteria can form well-organized sessile
communities and communicate for coordinated activities or
social life that was once believed to be restricted to multicellular
organisms (Webb et al., 2003; Nadell et al., 2009; Mitri et al.,
2011). The close proximity of cells in biofilms, the spatio-chemical
conditions enabling bacterial coexistence and the compound-
retaining matrix provide optimal conditions for QS-mediated
gene regulation. As a consequence, increasing evidence shows that
QS is an integral component of bacterial global gene regulatory
networks responsible for bacterial communication in biofilms
(Irie and Parsek, 2008). However, research on the functional
consequences of QS in biofilms and more importantly in multi-
species ones remains in its infancy.

Another interaction which can have major consequences for
the physiology of biofilms, as well as evolutionary outcomes,
is the genetic exchange between biofilm residents, with these
communities to be uniquely suited for horizontal gene transfer
(HGT; Molin and Tolker-Nielsen, 2003; Madsen et al., 2012).
HGT through conjugation occurs in multi-species biofilms and in
contrast, to mono-species biofilms, this potentially results in new
genetic combinations and facilitate the creation of novel genotypes
that could become problematic for humans (Christensen et al.,
1998). Various conjugative plasmids, such as those encoding
adhesive structures (such as fimbriae), have been characterized,
with their presence to strongly induce biofilm formation by their
hosts (Ghigo, 2001; Reisner et al., 2006; Burmølle et al., 2008).
Multi-species biofilms also facilitate HGT by transformation. The
large amounts of extracellular DNA (eDNA) in biofilms is likely
to be an important common source of usable genetic information
for members of the biofilm community (Das et al., 2013b).

From all the above it is clear that microbial cells in biofilms
physically interact and maintain close relationships, which
have led to the smart perception of biofilms as cities of
microorganisms (Watnick and Kolter, 2000). Microbial diversity
in these communities leads to a variety of complex relationships,
involving both inter- and intra-species interactions (Moons
et al., 2009). Certainly, microbial community stability can be
achieved only when a natural balance is established among
different microorganisms within the same biological niche, and
this balance is often the result of the constant “war and peace”
activities experienced by all the members of the community. The
purpose of this article is to review the intra- and inter-species
interactions shown to be encountered in biofilms of the following
common foodborne bacterial pathogens: Salmonella enterica,
Listeria monocytogenes, Escherichia coli, and Staphylococcus
aureus and try to summarize—where possible—their underlying
mechanisms, as well as their impact on the physiology and
function of these communities. Many of these intercellular
interactions are governed by cell surface structures (adhesins) and
exopolymers that these pathogens carry/produce and are mainly
responsible for their ability to bind to different surfaces (including

cells) and/or compounds. However, for detailed information on
these molecules (involved in primary adhesion, including their
receptors), reader is referred to the recently published review
article of Jaglic et al. (2014). In the present review, only those
of these structures that are also known to be involved in biofilm
development, mostly by resulting in coaggregation of cells (of the
same and/or different species), will be mentioned (and not all
the surface adhesins in general). Given the huge importance of
cell-to-cell interactions in the establishment, maintenance, and
function of biofilm communities, a better understanding of the
mechanisms by which these bacteria interact in a biofilm should
help to develop strategies for their elimination at source.

Salmonella spp.

Salmonella enterica is one of the most significant enteric
foodborne bacterial pathogens (Ruby et al., 2012), with the non-
typhoidal strains to be classified into more than 2500 serovars
of which the serovars Typhimurium and Enteritidis are the most
prevalent (Foley et al., 2013). These bacteria are well known to
attach to various biotic and abiotic surfaces, such as those of plants,
the eukaryotic host, industrial facilities, andmedical supplies, and
create biofilms (Steenackers et al., 2012).

Intraspecies Interactions
The multicellular behavior of bacteria has been the subject of
much recent interest (Dunny et al., 2008). In addition, the
structural and physiological complexity of biofilms has led to the
idea that they are coordinated and cooperative groups, analogous
to multicellular organisms (Nadell et al., 2009). Regarding
Salmonella spp., rdar is a multicellular morphotype which biofilm
forming strains presentwhen these are cultured onCongo red agar
plates, due to the red, dry and rough appearance of the colonies.
This is characterized by the co-expression of the extracellular
matrix components curli (thin aggregative) fimbriae (Tafi or
SEF17 fimbriae) and cellulose (Zogaj et al., 2001; Römling, 2005).
Curli were first discovered in the late 1980s on E. coli strains that
caused bovine mastitis and these are mainly involved in adhesion
to surfaces, cell aggregation, and biofilm formation (Austin et al.,
1998). Curli alsomediate host cell adhesion and invasion, and they
are potent inducers of the host inflammatory response (Barnhart
and Chapman, 2006). Isolates of Salmonella spp. deficient in curli
and/or cellulose productionhave been found to be least effective in
biofilm formation (Solomon et al., 2005). In agreement, Jain and
Chen (2007) demonstrated that curli impart attachment ability to
Salmonella spp. and, upon co-expression with cellulose, enhance
biofilm formation on certain abiotic surfaces. However, Castelijn
et al. (2012) demonstrated that these two polymers contribute
specifically to biofilm production under low nutrient conditions
at ambient temperatures and that other unknown components
are conceivably more important during biofilm formation at 37°C
and/or in nutrient-rich conditions.

In Salmonella spp., the expression of curli and cellulose
is dependent on the transcriptional regulator CsgD, whose
expression integrates many environmental signals, such as
starvation, oxygen tension, temperature, pH, and osmolarity
(Gerstel and Römling, 2003). CsgD positively regulates the
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transcription of the csgBAC operon, which encodes the structural
subunits for curli (Hammar et al., 1995), and contributes
indirectly to cellulose production by activating the transcription
of adrA (Gerstel and Römling, 2003). Two operons, bcsABZD
and bcsEFG, are required for cellulose biosynthesis (Solano
et al., 2002). AdrA is a diguanylate cyclase that synthesizes
the second messenger signaling molecule bis-(3′-5′)-cyclic
dimeric guanosine monophosphate (cyclic-di-GMP), the effector
molecule that binds to and allosterically activates cellulose
synthase (Simm et al., 2007). c-di-GMP is widespread throughout
the bacterial domain and plays a vital role in regulating the
transition between the motile planktonic lifestyle and the sessile
biofilm forming state (Le Guyon et al., 2015). The GGDEF and
EAL domain-containing proteins, acting as phosphodiesterases,
are involved in turnover of this secondary messenger and play
a determinative role in the expression level of multicellular
behavior in Salmonella Typhimurium (Simm et al., 2007).

Besides curli, depending on the serotype, gene clusters for
more than 10 different fimbrial adhesins have been identified,
such as plasmid encoded fimbriae (Pef) and long polar fimbriae
(Lpf). In addition, autotransporter adhesins (e.g., ShdA, MisL,
and SadA) and type I secreted large repetitive adhesins (e.g., SiiE
and BapA) are known (Wagner and Hensel, 2011). Although the
functions of many of these adhesins, as well as of putative others
(such as flagella, capsular polysaccharides, lipopolysaccharides)
are not always very well understood, several studies have revealed
their putative roles in cell aggregation, multicellular behavior, and
biofilm formation (Römling and Rohde, 1999; Prouty et al., 2002;
White et al., 2003; Ledeboer and Jones, 2005; Anriany et al., 2006;
Jonas et al., 2007; Crawford et al., 2008). For instance, SadA, is a
trimeric autotransporter adhesin (TAA) of S.Typhimuriumwhich
belongs to type V secreted proteins and its expression results in
cell aggregation, biofilm formation, and also increased adhesion
to human intestinal Caco-2 epithelial cells (Raghunathan et al.,
2011). BapA is a large cell-surface protein required for biofilm
formation by Salmonella Enteritidis and this is secreted through
a type I protein secretion system (BapBCD) situated downstream
of the bapA (Latasa et al., 2005). Interestingly, the expression of
bapA is coordinated with that of genes encoding curli fimbriae
and cellulose, through the action of csgD. S.Typhimurium requires
the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2
tissue culture cells and chicken intestinal epithelium (Ledeboer
et al., 2006), while the contact of these bacteria with cultured
epithelial cells has also been shown to result in the formation
of unusually wide tubular appendages attaching bacteria to the
epithelial cells (Reed et al., 1998). In addition, these adhesive
appendages have been shown to interconnect bacteria in biofilms
grown on gallstones or coverslips (Galkina et al., 2011). Type 3
fimbriae, encoded by the conjugative plasmid pOLA52, enhance
biofilm formation and transfer frequencies in Enterobacteriaceae
strains (Burmølle et al., 2008). S. Enteritidis enteropathogens also
produce a variety of potentially adherent fimbrial types, including
SEF14, SEF18, and SEF21 (type I; Austin et al., 1998). Figure 1
shows a schematic overview of the most known Salmonella
adhesion molecules including their receptors.

Pathogenicity islands typically accommodate large clusters of
genes that contribute to a particular virulence phenotype, with S.

Typhimurium possessing at least five such pathogenicity islands
(SPIs; Marcus et al., 2000). Among these, SPI1 is primarily
required for bacterial penetration of the epithelial cells of the
intestine. Interestingly, Jennings et al. (2012) observed that S.
Typhimurium cultures containing cloned SPI1 secretion system
displayed an adherent biofilm and cell clumps in the media.
This bacterial aggregation phenotype was associated with hyper-
expression of SPI-1 type III secretion functions. With respect
to mobile genetic elements, Salmonella genomic island 1 (SGI1)
is associated with the multiple-drug-resistance (MDR) of S.
Typhimurium DT104 strain (Boyd et al., 2001), while Malcova
et al. (2008) has also demonstrated the additional positive effect
of SGI1 on biofilm formation. In accordance, in recent years some
other studies have revealed the role of multidrug efflux pumps
in the ability of Salmonella spp. to produce biofilm (Baugh et al.,
2012). Thus, resistance, biofilm production and fitness seem to be
interrelated (Fàbrega et al., 2014). Noteworthily, eDNA has been
found to inhibit biofilm development by S. Typhimurium and S.
Typhi on abiotic surfaces (Wang et al., 2014).

Interspecies Interactions
Several studies have reported that biofilm production of
Salmonella spp. may be promoted by the presence of other
bacteria. In dual-species biofilms on stainless steel in drip-flow
reactors, Staphylococcus piscifermentans and Pseudomonas sp.
isolated from the feed industry increased biofilm growth of S.
Agona compared to what was found in single species biofilms,
with about threefold increases of the biovolume (Habimana et al.,
2010b). In another flow system, with drinking water with acetate,
S. Typhimurium did only form very thin-layered biofilm in
monoculture on silicone tubes, but formed larger microcolonies
when cultured together with a mixture of three strains of
Paenibacillus sp., one Bacillus sp. and one strain of Enterococcus
(Schaefer et al., 2013). The mechanism behind increased biofilm
production was not investigated in these studies. However, in
another study with a laboratory reactor simulating flow in water
pipes, a much higher proportion of metabolically active cells
were found in mixed biofilms than in single species biofilms.
Also, the level of attachment of S. Enteritidis was seven times
higher after 72 h in a dual biofilm with Klebsiella pneumoniae
than in a single species biofilm (Jones and Bradshaw, 1997).
Curli are important for biofilm formation of Salmonella. In a
study of E. coli and S. Typhimurium, it was found that biofilm
negative Salmonella could utilize parts of curli from E. coli and
form biofilm on agar and pellicles (Zhou et al., 2012). In mixed
biofilms of S. Typhimurium and E. coli O157:H7 on microtiter
plates, Salmonella were generally found in higher numbers than
E. coli, and a curli and cellulose producing Salmonella competed
better with E. coli than a curli/cellulose negative Salmonella
(Wang et al., 2013). Salmonella spp. or E. coli strains with negative
EPS expression obtained significantly enhanced resistance to
sanitation with a quaternary ammonium compound or chlorine
by forming mixed biofilms with an EPS-producing companion
strain of the other species (Wang et al., 2013).

A number of studies have demonstrated that the presence
of other species may inhibit biofilm production of Salmonella
spp. S. aureus dominated (99%) over S. Typhimurium in a
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FIGURE 1 | Schematic drawing of the cell envelope of S. enterica (OM,
outer membrane; P, periplasm with peptidoglycan; IM, inner membrane)
with symbolized bacterial adhesion molecules including their receptors
(?, unknown receptors; ECM, extracellular matrix proteins; FP,

fibrinolytic proteins). *Mediates adhesion to abiotic surfaces and biofilm
formation. The structures depicted do not reflect the real macromolecule
structures. Figure obtained after permission from Jaglic et al. (2014), Copyright
Society of General Microbiology© 2015.

constant-depth film fermentor (Knowles et al., 2005). Salmonella
was primarily present in the top 40 µm of the biofilm and was
not detected below 180 µm. This observation can be explained by
that, in contrast to S. aureus, Salmonella require oxygen to produce
biofilm and often form biofilm at liquid-air interphases (Scher
et al., 2005). However, in another study where E. coli outcompeted
S. enterica and L.monocytogenes in biofilms on differentmaterials,
S. enterica and L. monocytogenes were found close to the material
surface, while E. coli was found in the biofilm top layer. The
higher growth rate and exopolymer production ability of E. coli
probably led this microorganism to outcompete the other two
(Almeida et al., 2011). In a mixed species biofilm of S. simulans,
Lactobacillus fermentum, Pseudomonas putida, L. monocytogenes,
and S. Enteriditis, P. putida composed 98% of the population,
while biofilm of S. Enteritidis was reduced by 1.5 log compared to
the density of its population when this was grown as monoculture
biofilm (Chorianopoulos et al., 2008).

Interbacterial communication signals like boronated-diester
molecules (AI-2) and N-acyl homoserine lactones (AHLs) may
be present in multi-species biofilms. Salmonella spp. can produce
and respond to AI-2 and transcriptomics indicated an effect of
AI-2 on biofilm formation in S. Typhimurium (Jesudhasan et al.,
2010). However, Yoon and Sofos (2008a) found no differences in

biofilm formation between AI-2 producing and non-producing
S. Thompson. Brominated furanones which are believed to block
QS signals have been shown to inhibit biofilm formation by
Salmonella spp. (Janssens et al., 2008; Vestby et al., 2010, 2014).
In the same way, grapefruit juice and its furocoumarins have
been found to inhibit biofilm formation by E. coli O157:H7,
S. Typhimurium and P. aeruginosa (Girennavar et al., 2008).
These results suggest that targeting of microbial cell signaling
processes could serve as a source to develop bacterial intervention
strategies. Several types of bacteria have been reported to secrete
compounds that inhibit biofilm of Salmonella spp. Heat stable
compounds present in Hafnia alvei culture supernatant inhibited
the early stage of biofilm development by S. Enteritidis on
stainless steel. Although AHLs were detected in the supernatant,
the role of AHLs could not be confirmed as synthetic AHLs
did not affect the initial stage of biofilm formation by this
pathogen (Chorianopoulos et al., 2010). The marine bacterium
Pseudoalteromonas strongly inhibited adhesion of Salmonella spp.
to glass through secretion of a compound of unknown identity
(Dheilly et al., 2010). A probiotic Lb. plantarum strain led to
2-log decrease in biofilm forming colonies of Salmonella spp.,
compared to growing Salmonella spp. in monoculture. The effect
was probably due to an unknown compound excreted by Lb.
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plantarum that also killed planktonic Salmonella spp. (Das et al.,
2013a). Likewise, Woo and Ahn (2013) suggested that probiotic
strains can be used as an alternative strategy to effectively
reduce the biofilm formation in pathogenic bacteria through
competition, exclusion, and displacement.

It has also been reported that Salmonella spp. can have an
effect on biofilm of other bacteria. Thus, S. Typhimurium was
found to outgrow and displace E. coli when it formed a biofilm on
HEp-2 cells in a flow-through continuous culture system (Esteves
et al., 2005). In biofilms on stainless steel, S. enterica influenced
the intraspecies distribution of three L. monocytogenes strains
in multi-species biofilms (Kostaki et al., 2012). The mechanism
behind this interaction was not revealed. Most biofilm studies
are on mixed cultures of bacteria, but two studies have also
demonstrated interactions between Salmonella spp. and fungi.
Tampakakis et al. (2009) showed that S. Typhimurium was able
to secrete a heat stable substance that inhibited filamentation
and biofilm formation of Candida albicans on silicone pads. In
another study, S. Typhimurium was reported to rapidly attach to
and forms biofilms on the hyphae of the fungus, Aspergillus niger.
Interactions between cellulose produced by S. Typhimurium and
chitin of A. niger was required for the production of the mixed
biofilms (Brandl et al., 2011).

Intercellular Interactions in Biofilms of
Salmonella: Current Knowledge and Concepts
for Future Research
The persistence of Salmonella within the food chain is a
major health concern, with its ability to form biofilms in food
processing environments to serve as a potential reservoir for
the contamination of food products. Undoubtedly, this ability
contributes to its survival in non-host environments, stress
hardening and its transmission to new hosts (Giaouris and
Nesse, 2015). Like other bacterial pathogens, Salmonella is able to
produce (depending on the surrounding conditions) various cell
surface structures (especially of proteinaceous and carbohydrate
nature) that all may result in the efficient coaggregation of its
own cells with each other, as well as with cells of other species,
facilitating thereby the formation of either mono- or multi-
species biofilm communities. For instance, the co-expression
of two of these components, curli fimbriae and cellulose,
was shown to lead in the formation of a highly hydrophobic
network with tightly packed cells aligned in parallel in a rigid
matrix (Zogaj et al., 2001). Interestingly, White et al. (2010)
showed by comparing extracellular matrix-embedded, wild-type
S. Typhimurium and the matrix-deficient csgD mutant that the
two populations present distinct metabolite and gene expression
patterns, with wild-type cells expressing genes mainly involved
in gluconeogenesis and stress-resistance pathways. Noteworthily,
the effect of the simultaneous presence of other bacteria on
the ability of Salmonella to form biofilms seems to greatly vary
depending on the environmental conditions and bacteria tested.
Thus, in laboratory studies, Salmonella spp. may be inhibited,
promoted, or apparently do not respond to the presence of other
bacteria in a biofilm. However, to the best of our knowledge,
nothing is yet knownonwhether thesemulti-species communities

could influence the pathogenicity of Salmonella (possibly by up-
regulating the expression of virulence genes), while very little is
still known on the effect of QS on Salmonella biofilm formation,
especially in multi-species environments (Boyen et al., 2009).
Targeting the QS mechanisms may provide a promising strategy
for combatting biofilms and their associated problems.

Listeria monocytogenes

Listeria monocytogenes is a Gram-positive opportunistic and
facultative intracellular bacterial pathogen that has served as a
model organism for many virulence and biofilm related studies
(Chavant et al., 2002; Møretrø and Langsrud, 2004; Cossart, 2011;
Renier et al., 2011; Huang et al., 2012; da Silva and De Martinis,
2013). This is one of themajor concerns in the food industry given
that it can survive and even multiply in the harsh environmental
conditions that exist in the production, processing, and storage
of food products (Gandhi and Chikindas, 2007; Carpentier and
Cerf, 2011). In addition, many L. monocytogenes strains can
attach to various surfaces and form biofilms. However, strain and
serotype differences occur, while conflicting results have been
reported regarding correlations between biofilm forming abilities
and persistence or phylogeny/lineage (Norwood and Gilmour,
2001; Djordjevic et al., 2002; Borucki et al., 2003; Di Bonaventura
et al., 2008; Kadam et al., 2013; Valderrama and Cutter, 2013).

Intraspecies Interactions
Concerning L. monocytogenes intracellular interactions, the
involvement of PrfA, the transcriptional activator of virulence
operons, in biofilm formation was initially reported by Lemon
et al. (2010) and Zhou et al. (2011), while Travier et al. (2013)
subsequently demonstrated that actA, one the PrfA-regulated
genes, was responsible for this function. In fact, ActA mediates
interactions between L. monocytogenes cells via direct ActA-
ActA interactions resulting in bacterial aggregation and biofilm
formation. This aggregation property of ActA favors long-term
gut colonization and fecal shedding, playing a key role in
persistencewithin the host and in transmission from the host back
to the environment (Travier et al., 2013; Travier and Lecuit, 2014).

Another protein involved in cell-to-cell interactions in this
bacterium is SecA2, which is a paralog of SecA, a peripheral
ATPase essential for the passage of pre-proteins through the
cytoplasmic membrane. The secA2 gene has been identified
in several pathogenic Gram-positive bacteria such as L.
monocytogenes in which its deletion results in cell morphotype
changes from discrete cells forming smooth colonies in wild
type strain to long-chain cells forming rough colonies (Lenz
and Portnoy, 2002). This colony morphotype is also observed
when cwhA and murA, two genes encoding extracellular cell
wall hydrolases, are deleted (Lenz et al., 2003; Renier et al.,
2013, 2014) or when the SecA2-dependent secretion of their
gene products is reduced (Machata et al., 2005). It is noticeable
that this morphotype has been already observed from clinical
patients, food samples and environmental biofilms (Rowan et al.,
2000; Monk et al., 2004). In fact, this morphotypic conversion
of bacterial cells is reversible and may have strong consequences
on the ability of L. monocytogenes to colonize surfaces. In
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liquid medium, the inactivation of the SecA2 pathway results
in extensive cell aggregation and sedimentation (Renier et al.,
2014). So, the morphotypic conversion provides a significant
advantage in listerial surface colonization under environmental
conditions (Monk et al., 2004). It could be considered as an
important risk factor for food processing plants and food
products contamination but also of potential significance for
asymptomatic human or animal carriage. Moreover, considering
that biofilms are generally multi-species rather than mono-
species, this cell differentiation could have consequences on L.
monocytogenes implantation and interaction with other microbial
species in various ecological niches (Sasahara and Zottola, 1993).

L. monocytogenes is a mobile bacterium thanks to 4–6
peritrichous flagella composed of thousands of monomers
of the FlaA protein. However, this mobility is temperature-
dependent because the transcription of flaA is stopped above
30°C. While flagella are important for biofilm formation of
numerous bacterial species, their involvement inL.monocytogenes
biofilm formation is quite controversial and seems dependent of
environmental factors, namelymore particularly growthmedium,
pH and temperature (Tresse et al., 2006, 2009), dynamic or
static conditions (Rieu et al., 2008a). Undoubtedly, mutagenesis
approaches have revealed that flagella and their motility play a
role in L. monocytogenes biofilm formation. (Chang et al., 2012;
Ouyang et al., 2012). However, this role seems to be limited to
the positive role afforded by motility on the initial steps of surface
attachment, probably by increasing the likelihood of encountering
a surface and overcoming the repelling electrostatic forces, and
not by flagella acting as surface adhesins per se (Vatanyoopaisarn
et al., 2000; Lemon et al., 2007; Kumar et al., 2009; Jaglic et al.,
2014). On the contrary, both non-flagellated and non-motile L.
monocytogenes mutants were impaired in initial attachment but
subsequently were revealed as hyper-biofilm formers when grown
in flow cells (Todhanakasem and Young, 2008).

Contrary to the extracellular matrixes of many microbial
biofilms, the one of L. monocytogenes seems to lack
exopolysaccharides (Renier et al., 2011). Some observations
by electron microscopy have sometimes revealed the presence
of putative fimbriae-like structures binding cells to each other
or to the surface (Hefford et al., 2005; Zameer et al., 2010;
Renier et al., 2011). However, it was suggested that these
fibrils resulted from the complete dehydration of a polymeric
matrix during the processing of sample preparation. In the
same way, the use of ruthenium red, a carbohydrate-binding
dye, showed that L. monocytogenes bind this dye (Borucki
et al., 2003; Zameer et al., 2010), which is consistent with the
presence of exopolysaccharides. Nevertheless, as this dye can
also bind carbohydrates on the bacterial cell surface unrelated
to exopolysaccharides (peptidoglycans, teichoic acids, etc), these
observations are not conclusive. Finally, it may be generally
accepted that L. monocytogenes is a poor exopolysaccharide-
producer by comparison with other bacterial species and that
the putative presence of an extracellular matrix is dependent on
the strain and environmental conditions (Borucki et al., 2003;
Marsh et al., 2003; Zameer et al., 2010). Recently, Chen et al.
(2014) identified a new c-di-GMP-inducible exopolysaccharide
which caused cell aggregation in minimal medium and also

impaired bacterial migration in semi-solid agar. However, this
polysaccharide was not found to promote biofilm formation
on abiotic surfaces. Harmsen et al. (2010) showed that in L.
monocytogenes eDNA may be the only central component of the
biofilm matrix and that it is necessary for both initial attachment
and early biofilm formation. DNase I treatment resulted in
dispersal of biofilms, not only in microtiter tray assays but
also in flow cell biofilm assays. A dispersal of pre-existing L.
monocytogenes biofilms by DNase treatment has also been shown
by Nguyen and Burrows (2014). In agreement, the disruption of a
putative DNA translocase gene impaired biofilm formation of L.
monocytogenes on abiotic surfaces (Chang et al., 2013).

Interspecies Interactions
In food industry settings, interactions of L. monocytogenes in
multi-species communities are likely, with the bacterial flora in
food processing plants to include bacteria with the potential
to increase or decrease colonization and biofilm formation
by L. monocytogenes (Fox et al., 2014). Strains providing
enhanced colonization and biofilm formation could contribute
to L. monocytogenes persistence in food industry premises
and consist a potential food safety risk. Bacteria with such
properties, e.g., Pseudomonas spp., are commonly found on
food processing surfaces even after cleaning and disinfection.
They are also found to be significant biofilm producers. For
instance, Hassan et al. (2004) showed increased attachment
of L. monocytogenes on wet surfaces pre-colonized with P.
putida. The change in surface properties due to P. putida EPS
production which enhanced attachment of L. monocytogenes was
the most likely cause to explain increased biofilm formation.
Other spoilage organisms including Flavobacterium sp. have
been reported to enhance biofilm formation of L. monocytogenes
(Bremer et al., 2001). In contrast, biofilm formation by L.
monocytogenes was reduced in co-cultures with Pseudomonas
fragi (Norwood and Gilmour, 2001). Co-cultures with various
Gram-negatives including Serratia spp., Aeromonas sp., and P.
fluorescens have shown similar reductions (Gudmundsdottir et al.,
2005; Daneshvar Alavi and Truelstrup Hansen, 2013). In less
humid environments, staphylococci and other Gram-positives
are regularly present. Co-culture biofilms with L. monocytogenes
and S. aureus showed strain dependence and either increased,
decreased or no effect on L. monocytogenes biofilm formation
(Rieu et al., 2008b). The stimulated biofilm formation seemed to
be caused by a S. aureus-excreted peptide. Biofilm formation of
L. monocytogenes was decreased in the presence of S. sciuri where
nutrient competition and extracellular substances produced by S.
sciuiri explained the decreased adhesion and biofilm formation
(Leriche and Carpentier, 2000). In another relevant study, Weiler
et al. (2013) analyzed whether different L. monocytogenes strains
are interactingwith themicrobial community of rawmilk in terms
of biofilm formation and found that the addition of individual
L. monocytogenes strains to raw milk caused significant shifts in
the biofilm biomass, in the chemical, as well as in the bacterial
community composition. However, the added L. monocytogenes
strains were not abundant, since mainly members of the
genera Citrobacter and Lactococcus dominated the mixed culture
bacterial biofilm community. In a study of 29 Gram-negative and
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Gram-positive isolates from food processing plants, 13% of the
strains increased L. monocytogenes counts in the biofilms, while
53 and 34% had a negative and no effect on L. monocytogenes
populations, respectively (Carpentier and Chassaing, 2004).
Almeida et al. (2011) employed peptide nucleic acid fluorescence
in situ hybridization (PNA FISH) to characterize S. enterica/L.
monocytogenes/E. coli tri-species biofilm and identified two well-
defined layers: the top one with E. coli, and the bottom one
with mixed regions of L. monocytogenes and S. enterica. The
higher growth rate and exopolymer production ability of E. coli
probably led this microorganism to outcompete the other two.
The competition of L. monocytogenes serotype 1/2a and 4b strains
in mixed-culture biofilms has been demonstrated by Pan et al.
(2009), with the serotype 1/2a strains tested to be generally more
efficient at forming biofilms and to predominate in the mixed-
culture biofilms.

Bacterial biofilms formed by useful technological bacteria, such
as lactic acid bacteria (LAB) have the potential to control the
development of L. monocytogenes through competitive exclusion
and the synthesis of organic acids and bacteriocins (Guillier
et al., 2008; Minei et al., 2008; Habimana et al., 2009, 2011;
Woo and Ahn, 2013; Perez Ibarreche et al., 2014). For instance,
Zhao et al. (2004) found 2 out of 413 microbial isolates from
drains in food processing facilities to have significant anti-
listerial activities. Follow-up studies have shown the potential
of these isolates (Enterococcus durans and Lactococcus lactis)
to control and eliminate L. monocytogenes from drains in the
meat and poultry processing industry (Zhao et al., 2006, 2013).
Although the mechanisms are not clear, both strains produce
anti-listerial metabolites. Other studies have revealed nutrient
competition as the principal mechanism behind the inhibition of
L. monocytogenes in presence of multi-species biofilm microflora
where L. monocytogenes often represent a minor part of the
biofilm bacterial population (Chorianopoulos et al., 2008; Guillier
et al., 2008), although a range of many other growth associated
parameters may affect this distribution.

Once adhered to surfaces, L. monocytogenes often show
enhanced survival and tolerance to food associated stresses which
may even be enhanced by biofilm formation (Chavant et al., 2004;
Pan et al., 2006; Carpentier and Cerf, 2011; Yun et al., 2012).
Tolerance of L. monocytogenes to sanitizers and disinfectants has
been reported to increase in dual culture biofilms as shownwith L.
monocytogenes and Lb. plantarum dual biofilms (van der Veen and
Abee, 2011). Other studies have reported increased disinfectant
tolerance of L. monocytogenes inmixed species biofilms. However,
the protecting effects of the secondary species have been difficult
to judge due to no results provided on single species biofilm
resistance (Fatemi andFrank, 1999;Norwood andGilmour, 2000).
In dual culture biofilms of L. monocytogenes and S. enterica,
the interspecies interactions did not influence either the biofilm
forming ability or the resistance of each species to commonly used
disinfectants. However, the intra- and interspecies interactions
encountered in the biofilms had effect on the population dynamics
and the resistance pattern of each L. monocytogenes strain
present in the biofilm (Kostaki et al., 2012). Interactions between
L. monocytogenes and P. putida provided increased tolerance
to P. putida biofilm cells to benzalkonium chloride while L.

monocytogenes tolerance remained unaffected in dual- or mono-
species biofilms (Giaouris et al., 2013). This contrast to the study
of Saa Ibusquiza et al. (2012) where increased tolerance of L.
monocytogenes in dual L. monocytogenes/P. putida biofilms was
reported.

Cell-to-cell signaling systems based on QS appear to be
involved in bacterial biofilm formation although their exact role
is still awaited (Li and Tian, 2012). In L. monocytogenes, there are
two QS systems: the AI-2 signal system reported in both Gram-
negative and Gram-positive bacteria and proposed as a universal,
interspecies communication system, and the peptide-mediated
QS system Agr, characteristic for Gram-positive bacteria (Waters
and Bassler, 2005). Another communication system present
in Gram-positive bacteria, involved in the development of
competence in Bacillus subtilis, is associated with the autoinducer
ComX. However, the main genes of this system are absent in the
genome of L. monocytogenes for which, moreover, natural genetic
transformation has never been observed (Borezee et al., 2000).
Although L. monocytogenes can produce AI-2, experimental
evidence indicates that L. monocytogenes lack receptors of AI-
2. Thus, this suggests that AI-2 is not a communication signal
in L. monocytogenes (Challan Belval et al., 2006; Garmyn et al.,
2009). Concerning the agr system described in L. monocytogenes,
it appears that this regulates major adaptive responses, such as the
promotion of biofilm formation, expression of adhesion factors
and internalins (Rieu et al., 2007, 2008a; Riedel et al., 2009). It
has been shown that agrA or agrD mutant strains, two of the four
genes composing the agr locus, were affected in adhesion and the
first stage of biofilm formation. However, the agrA or agrD gene
products, a response regulator of a two-component system and a
precursor peptide respectively, are parts of a complex signaling
system probably involved in multiple physiological regulation.
Thus, there is no demonstration to date of the mechanism by
which they intervene in biofilm formation.

Intercellular Interactions in Biofilms of
L. monocytogenes: Current Knowledge and
Concepts for Future Research
Listeria monocytogenes is considered as an environmental
pathogen because it is capable of saprophytic life in the outside
environment while also maintaining the ability to invade and
replicate within mammalian cells (Xayarath and Freitag, 2012).
This pathogen is capable of forming biofilms which considerably
increase its resistance to harsh physicochemical conditions and
particularly to cleaning and disinfection treatments. Thus, in
this sessile mode of growth, bacteria may persist in production
lines and constitute a permanent risk of contamination of food
products. Literature has shown that L. monocytogenes biofilm
formation, maturation, and structure depends on a multitude of
external and internal factors, where both intra- and inter-species
interactions seem to play an important role (Renier et al., 2011).
However, their exact and respective underlying mechanisms
are not always characterized, emphasizing that much remains
to be investigated. Remarkably, L. monocytogenes may display
increased disinfection tolerance when this forms biofilms with
other species. This is certainly something which is worth to
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be further studied. Besides such an increase in disinfection
resistance, the influence of various biofilm forming conditions
on the virulence properties of these bacteria is still largely
unexplored. Future research on this area should include both
mono and multi-species biofilms and focus on the underlying
molecular mechanisms hidden behind any observation. Finally,
while peptide sensing is able to promote L. monocytogenes biofilm
formation (Rieu et al., 2007, 2008a; Riedel et al., 2009), how this
is achieved is not yet recognized.

Escherichia coli

Escherichia coli is primarily a commensal species which however
also contains important pathogenic strains (Kaper et al., 2004),
with the foodborne pathogenic E. coli to be diarrheagenic
strains (Nataro and Kaper, 1998; Croxen et al., 2013). Those
intestinal pathogenic E. coli (InPEC) can be subdivided into
the following pathotypes, namely ETEC (enterotoxigenic E. coli),
EAEC (enteroaggregative E. coli), DAEC (diffusively adherent
E. coli), EIEC (enteroinvasive E. coli), EPEC (enteropathogenic
E. coli), and EHEC (enterohemorrhagic E. coli), with the
recently described subgroup of EAHEC (enteroaggregative and
haemorrhagic E. coli, Brzuszkiewicz et al., 2011). By definition,
EHEC are clinical strains of InPEC and belong to the larger group
of Shiga toxin producing E. coli (STEC), which pathogenesis is not
ascertained.

Intraspecies Interactions
Various cell surfacemolecules and structures have been implicated
in biofilm formation in E. coli (Van Houdt and Michiels,
2005). In this bacterium, a major cell–cell interaction involves
the autotransporter Ag43 (Antigen 43; van der Woude and
Henderson, 2008), a protein of the Type Va secretion system
(T5aSS; Desvaux et al., 2004b). This protein is found encoded
in a majority of E. coli genomes, from domesticated K-12,
commensal to pathogenic strains (van derWoude andHenderson,
2008). While Ag43 was known to be a self-recognizing protein
promoting autoaggregation and consequently biofilm formation
(Danese et al., 2000; Klemm et al., 2004), it was recently
uncovered that its functional domain displays a twisted L-shaped
β-helical structure firmly stabilized by a 3D hydrogen-bonded
scaffold which facilitates self-association and cell aggregation via
a mechanism described as a Velcro-like handshake (Heras et al.,
2014). Very interestingly, the expression of the Ag43 is subjected
to phase variation (Diderichsen, 1980; Henderson et al., 1997,
1999; Henderson and Owen, 1999). It was recently demonstrated
that biofilm formation did not influence the frequency of switch
between bacterial cells expressing the Ag43 (phase ON) and those
which do not expressed it (phase OFF; Chauhan et al., 2013).
Because of the autoaggregation phenotype, the phase ON E. coli
cells were physically selected and prominent within the biofilm
under dynamic flow conditions.

Of note, several other autotransporters can also be involved in
cell aggregation, namely AIDA (Sherlock et al., 2004; Girard et al.,
2010) and TibA (Sherlock et al., 2005), i.e., SAATs (self-associating
autotransporters; Klemm et al., 2006), but also EhaA (Wells et al.,
2008), at least when overexpressed. In E. coli O157:H7, Cah is

a calcium-binding and heat-extractable autotransporter protein
homologous to Ag43 andAIDA (Torres et al., 2002). Besides, TolC
was supposedly also involved in E. coli aggregation (Imuta et al.,
2008), as well as curli and Type 1 pili (Barnhart and Chapman,
2006; Tree et al., 2007; Ulett et al., 2007). Expression of Type 1 pili
and polar localization of Ag43 can further influence bacterial cell
chain formation in biofilm (Vejborg and Klemm, 2009). Within
the T5SS (Desvaux et al., 2004a; Henderson et al., 2004), some
proteins of the subfamily b (T5bSS) of the two-partner secretion
(TPS) are involved in contact-dependent inhibition (CDI; Hayes
et al., 2014). This system allows regulating bacterial growth
in response to changing environmental conditions upon direct
cell–cell interactions (Aoki et al., 2005; Hayes and Low, 2009;
Hayes et al., 2010). The CDI activity is very specific since it is
limited to target cells of the same species. So far, the role of CDI
in the course of biofilm formation has not been investigated in the
scientific literature.

Pili are cell-surface supramolecular protein complexes involved
in cell-to-cell interactions (Lasaro et al., 2009; Hernandes et al.,
2013), which have also been termed fimbriae or curli based
on some morphological differences. Curli production occurs
via the Type VIII secretion system and is dependent on the
CsgD transcription activator, which also promotes cellulose
biosynthesis (Brombacher et al., 2006). In E. coli, the expression
of the curli-specific genes (csg) which are clustered in the
csgBA and csgDEFG operons is dependent on a combination
of environmental parameters such as low growth temperature
and low osmolarity (Hammar et al., 1995; Römling et al., 1998).
Previous studies revealed a positive correlation between curli
expression, exopolysaccharides production (such as cellulose),
and autoaggregation by E. coli (Ryu et al., 2004a,b; Uhlich et al.,
2006; Tree et al., 2007; Gualdi et al., 2008; Saldaña et al., 2009;
Goulter et al., 2010). The E. coli common pilus (ECP) represents
a remarkable family of extracellular fibers and plays a dual role
in early-stage biofilm development and host cell recognition
(Garnett et al., 2012). The microcolony formation on biotic
surfaces in EPEC is mediated by several adhesins including the
type IV bundle-forming pilus (BFP) and the EspA filament,
which are also involved in bacterial aggregation during biofilm
formation on abiotic surfaces together with the type 1 fimbriae
and the antigen Ag43 (Moreira et al., 2006). EAEC forms thick
biofilms on the intestinal mucosa by virtue of a plasmid-encoded
fimbrial adhesin designated aggregative adherence fimbria I
(AAF/I; Czeczulin et al., 1997). EHEC factor for adherence
Efa1 confers haemagglutination, adherence to epithelial cells and
autoaggregation (Nicholls et al., 2000). Recently, Gómez-Gómez
and Amils (2014) characterized a novel E. coli sessile behavior
termed “crowning” which is developed independently of the
adhesiveness of the major components of E. coli’s EPS matrix,
the function of chemotaxis sensory system, type 1 pili and the
biofilm master regulator CsgD, but its formation is suppressed by
flagella-driven motility and glucose.

The F episome encodes a Type IVb secretion system (T4bSS)
responsible for bacterial conjugation, the so-called sexual pili
(Chagnot et al., 2013). It was elegantly demonstrated that the
F episome in E. coli was not only involved in the horizontal
transfer of genetic information to F-recipient cells but actively
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contributed to biofilm formation (Ghigo, 2001). Conjugation
further decreased motility, which increased the biofilm formation
in E. coli (Barrios et al., 2006; Reisner et al., 2006). As promoters
of bacterial colonization and development of mature biofilms
by providing aggregative properties, the conjugative plasmids in
general should be more systematically considered as a risk factor
among foodborne pathogenic bacteria (Dudley et al., 2006; Mliji
el et al., 2007; May and Okabe, 2008; Norman et al., 2008);
potentially, they cannot only promote intra- but also inter-species
genetic transfer even between Gram-positive and Gram-negative
bacteria (Goessweiner-Mohr et al., 2013).

Zhang et al. (2007) demonstrated, using DNA microarrays,
that the expression of ycfR, which encodes the putative outer
membrane protein YcfR (BhsA), is significantly induced in E.
coli biofilms. This protein seems to be involved in the regulation
of biofilm formation by decreasing cell aggregation and cell
surface adhesion, by influencing the concentration of signal
molecules, and by interfering with stress responses. Critical to the
development of a biofilm is the elaboration of exo-polysaccharide
that contributes to substrate and intercellular adhesion. Indeed,
one way to identify the environmental cues that cause a given
bacterial species to switch to the biofilm mode of growth is to
monitor exo-polysaccharide elaboration in vitro (Jefferson and
Cerca, 2006). Lipopolysaccharide (LPS) is the major component
of the surface of Gram-negative bacteria and its polysaccharide
portion is situated at the outermost region. Mutations known
to affect the composition of E. coli LPS core oligosaccharide
affected the biofilm formation which was associated with eDNA
(Nakao et al., 2012). The spatial periodicity of E. coli cells within a
biofilm has been associated to the secretion of the polysaccharide
adhesin β-1,6-N-acetyl-d-glucosamine PGA (Agladze et al.,
2005). Colanic acid also contributes to the biofilm architecture
and allows for the formation of voluminous biofilms (Prigent-
Combaret et al., 2000).

Quorum sensing has been shown to play a significant role
on the surface chemistry and electrokinetic properties of E.
coli cells, possibly through the regulation of outer membrane
macromolecules (Eboigbodin et al., 2006). In addition, E.
coli cells cultivated with an additional supplement of glucose,
displayed a higher concentration of bacterial surface functional
groups and a variation in outer membrane proteins, which
consequently reduced the tendency for cell-to-cell attachment
(Eboigbodin et al., 2007). AI-2 takes part both in intra-
and inter-species interactions in E. coli and is involved in
multiple physiological processes, including biofilm formation,
exopolysaccharides production, and determination of cell surface
properties via the regulation of the genes encoding outer
membrane proteins and putative adhesins (DeLisa et al., 2001).
The interactions between E. coli cell clusters involving particularly
the AI-2 mediated cell-to-cell signaling have been found to play
an important role in the spatial organization of the cell clusters
in biofilms of E. coli (Gu et al., 2013). The two component
signal-transduction system Cpx is also believed to act as a
strategic signaling pathway for confronting adverse conditions
and for settling biofilm communities by activating genes encoding
periplasmic-protein-folding and degrading factors (Dorel et al.,
2006). Interestingly, in recent years, plant phytochemicals have

appeared as a novel promising strategy for controlling biofilm
formation and virulence in E. coli and other pathogens through
interfering with the bacterial cell–cell signaling pathways and the
expression of cell surface adhesins (Vikram et al., 2010a,b; Lee
et al., 2014a).

Interspecies Interactions
Escherichia coli interacts with other microorganisms and is able
to form multi-species biofilms with many of the most common
bacterial genera occurring on food processing surfaces including
both Gram negatives (e.g., Pseudomonas, Acinetobacter) and
Gram positives (e.g., staphylococci, Bacillus, Castonguay et al.,
2006; Marouani-Gadri et al., 2009; Habimana et al., 2010a;
Kuznetsova et al., 2013; Liu et al., 2014). Strains isolated from
water and food processing environments have shown to stimulate
co-adhesion and biofilm formation of E. coli. For instance,
Castonguay et al. (2006) showed that biofilm formation of non-
adherent E. coli from drinking water reservoirs was stimulated
in dual and other multiculture biofilms with biofilm proficient
bacteria from the same environment. The mechanism of biofilm
stimulation required direct cell-to-cell contact. All but one of 20
randomly collected bacterial isolates obtained after cleaning and
disinfection from a beef processing plant increased the counts
of adhered E. coli O157:H7 in dual-culture biofilms (Marouani-
Gadri et al., 2009). Low-nutrient conditions conferred by growth
of the resident strains and which favored E. coli biofilm formation
was hypothesized as an explanation of the observed phenomenon.
Microflora isolates capable of producing biofilms are widely
distributed in fresh produce processing facilities, while the
presence of persistent biofilm forming strains is also reported (Van
Houdt et al., 2004; Liu et al., 2013). Strong biofilm forming plant-
associated bacteria promoted the incorporation ofE. coliO157:H7
in biofilms at 30°C (Liu et al., 2014). Carter et al. (2012) examined
the interaction of E. coli O157:H7 with spinach leaf indigenous
microorganisms during co-colonization and establishment of a
mixed biofilmon a stainless steel surface, by using ametagenomics
analysis, and revealed competition for essential macronutrients
as the primary interaction. Under flow conditions adhesion to
glass surfaces of Acinetobacter calcoaceticus (Habimana et al.,
2010a) or P. aeruginosa (Klayman et al., 2009) stimulated adhesion
of E. coli O157:H7 which was not able to form biofilm in
monoculture under dynamic flow conditions. Although the
detailed mechanisms are not known, it is likely that the early
colonizer provide surface structures or surfactants promoting co-
adhesion of E. coli. Cell-to-cell dependent interactions promoting
retention of E. coli O157:H7 in biofilms have also been shown by
others (Uhlich et al., 2010). Bacteria affecting biofilm formation
of E. coli through secreted metabolites have also been reported
(Cabellos-Avelar et al., 2006; Lopes et al., 2011; Vacheva et al.,
2012).

The above studies show that bacterial interactions can promote
pathogenic E. coli biofilm formation and even enable adherence
deficient strains to form biofilms. This is of significant relevance
and highlights that the control of environmental bacteria
promoting adherence and biofilm formation of other bacteria can
be an important measure to prevent establishment of pathogenic
E. coli and other pathogens in food processing environments. On
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the other hand, Da Re et al. (2013) analyzed genetic responses
induced in commensal E. coli upon entry of a diarrheagenic
EAEC or an unrelated K. pneumoniae pathogen into a biofilm
community and identified some genes involved in limiting
colonization of incoming pathogens within commensal biofilm.
Valle et al. (2006) demonstrated that all E. coli expressing group II
capsules release into their environment a soluble polysaccharide
that induces physicochemical surface alterations, which prevent
biofilm formation by a wide range of Gram positive and Gram
negative bacteria. Similarly, Rendueles et al. (2011) identified
an E. coli biofilm-associated anti-adhesion polysaccharide which
reduced susceptibility to invasion and provided rapid exclusion
of S. aureus from mixed E. coli and S. aureus biofilms. These
last findings identify bacterial interference via surface active
compounds produced during competitive interactions as a new
strategy to limit biofilm formation on surfaces.

As previously mentioned in the Salmonella part of this review,
dual cultures of E. coli O157:H7 and S. Typhimurium showed
that EPS-producing strains were able to establish themselves in
mixed biofilmsmore efficiently but also enhanced E. coliO157:H7
biofilm formation (Wang et al., 2013). The protective role of an
EPS producing strain of S. Typhimurium in providing increased
resistance to a non-EPS producing E. coli O157:H7 strain toward
two industrial sanitizers was also shown (Wang et al., 2013). This
indicates that EPS-producing strains also may provide protection
to sensitive companion strains in mixed species biofilms. E. coli
and its LPS has been shown tomodulate in vitro biofilm formation
byCandida species (Bandara et al., 2009). Putative F pili expressed
by EAEC strains boosted mixed biofilm formation when in the
presence of aggregative Citrobacter freundii (Pereira et al., 2010).
E. coli transformed with green fluorescent protein (GFP) and
Serratia marcescens stably co-existed in biofilms but did not affect
the growth of each other (Skillman et al., 1998).

Another interesting concern is the correlation between the
biofilm forming ability of pathogenic E. coli and the presence
of probiotic bacteria (Chapman et al., 2012, 2014). Decreased E.
coli O157:H7 biofilm formation was observed in the presence of
EPS produced by a probiotic Lb. acidophilus strain by interfering
with the expression of E. coli surface adhesins (Kim et al., 2009).
In the investigations conducted by Kim et al. (2012) cell extract
of Bifidobacterium longum caused 36% reduction in biofilm
formation by E. coli O157:H7. Significant inhibition in AI-2 QS
activity in E. coli O157:H7 was also observed, while proteome
analysis showed that seven proteins were differentially regulated
in E. coli in the presence of Bifidobacterium cell extract. However,
Miyazaki et al. (2010) observed no inhibitory effect of the culture
supernatant of Bifidobacterium spp. against biofilm formation by
EAEC. Andrzejewska and Sobieszczanska (2013) showed that Lb.
casei inhibited the biofilm formation by EAEC. The reason for
this was not explained. Obviously probiotic bacteria may reduce
biofilm formation by E. coli, but further analysis is still required.

Interspecies interactions in multi-species biofilms also include
HGT (Madsen et al., 2012; Van Meervenne et al., 2014).
Conjugative transfer of a plasmid encoding a type 3 fimbriae
rendered a non-biofilm producing uropathogenic E. coli strain to
be a significant member in a mixed biofilm (Ong et al., 2009).
Conjugative transmission of natural plasmids carried by the E.

coli lead to biofilm expansion in mixed E. coli biofilms (Reisner
et al., 2006). Another study showed HGT of shiga toxin encoding
genes (stx) to occur by transduction in E. coli (Solheim et al.,
2013). BdcA binds the ubiquitous bacterial signal c-di-GMP and
has been found to control biofilm dispersal in P. aeruginosa and
Rhizobium meliloti via conjugation from E. coli in mixed-species
biofilms (Ma et al., 2011). These reports illustrate the potential
of HGT to spread determinants involved in biofilm formation,
dispersal and virulence which have relevance for food-associated
E. coli. Surely, the impact of the transfer of conjugative plasmids
on multi-species biofilm formation is dependent on both the type
of the plasmid and the plasmid host (Røder et al., 2013).

So far, only a few studies indicated the important role of AI-
2 QS system in biofilm formation by E. coli (González Barrios
et al., 2006; Silagyi et al., 2009; Zhou et al., 2014). González Barrios
et al. (2006) showed that the addition of AI-2 enhanced biofilm
formation by E. coli by stimulating flagellar motion and motility.
Silagyi et al. (2009) observed that E. coli O157:H7 produced
maximum levels of AI-2 signals in 12 h of incubation in tested
foods and next formed strong biofilm in 24 h of incubation. In
other studies AI-2-based QS activity of E. coliO157 did not affect
biofilm formation in monocultures (Yoon and Sofos, 2008b).
Indole has been proved as an interspecies signal that decreases E.
coli biofilms through SdiA and increases those of pseudomonads
(Lee et al., 2007). E. coli also possess receptors for AHL which
can be produced by other bacteria (Moons et al., 2006; Ren et al.,
2013). The potential effect of AHL producing bacteria on E. coli
biofilm formation should be studied in multiculture biofilms.

Intercellular Interactions in Biofilms of E. coli:
Current Knowledge and Concepts for Future
Research
Escherichia coli possesses a wealth of cell surface structures
involved in intercellular interactions during biofilm development
(mainly by provoking cell aggregation). Their respective
contribution and regulation in the course of sessile growth
still remain to be further elucidated at a global scale respective
to crucial environmental conditions as a function of the pH,
temperature, and/or available nutrients. Of note for instance,
the mechanism, regulation and function of Ag43 are quite
restricted to studies using the non-pathogenic and domesticated
E. coli K12 strain but further investigations respective to the
different subfamilies of Ag43 and pathogenic E. coli species
are undoubtedly required (van der Woude and Henderson,
2008). As another example and in addition to bacterial growth
inhibition, CDI system might have other but as yet uncovered
physiological functions; its potential involvement in the course
of sessile development is particularly relevant and intriguing,
which would hopefully trigger intense research investigations in
the near future. Worth mentioning is also the growing evidence
that biofilms of E. coli and other microorganisms represent an
ideal microenvironment for HGT. Natural conjugative plasmids
have been shown to promote the development of mature E.
coli biofilms by providing aggregative properties, promoting
cell-surface interactions, and stimulating colanic acid and curli
production (Ghigo, 2001). However, there is no data in about
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the HGT by transformation (described as uptake of free DNA
from the surrounding environment) in multi-species biofilms
formed with E. coli contribution. For foodborne pathogenic E.
coli like EHEC, their extremely low infectious dose combined
with their ability to form biofilms and associate in multi-species
biofilms poses an extra challenge. Finally, the possible effect of
AHLs produced by other food related bacteria on E. coli biofilm
formation is for sure another intriguing case of future research.

Staphylococcus aureus

Staphylococcus aureus is a Gram-positive, ubiquitous bacterial
species commonly found on the skin and hair, as well as in
the noses and throats of people and animals. It is the causative
agent of a wide spectrum of human infections (Otto, 2013) and
is also often responsible for foodborne intoxications through
the production of heat stable enterotoxins in a variety of food
products (Hennekinne et al., 2012). S. aureus can produce a
multilayered biofilm embedded within a glycocalyx or slime layer
with heterogeneous protein expression throughout (O’Gara, 2007;
Archer et al., 2011; Periasamy et al., 2012; Laverty et al., 2013).
Especially S. aureus harbors a variety of proteinaceous and non-
proteinaceous adhesins that mediate attachment to a multitude of
host factors, such as extracellular matrix and plasma proteins and
human host cells, or intercellular adhesion, which is essential for
biofilm accumulation (Heilmann, 2011).

Intraspecies Interactions
The major constituents of staphylococcal biofilms are
polysaccharides, such as the polysaccharide intercellular
adhesin (PIA) or poly-N-acetyl glucosamine (PNAG), cell
surface and secreted bacterial proteins, and eDNA (Izano et al.,
2008). However, the exact composition of biofilms often varies
considerably between different strains of staphylococci and
between different sites of infection by the same strain. PIA is
encoded by the icaADBC operon, yet details of its biosynthesis are
limited (Atkin et al., 2014). Regulation of icaADBC is extremely
complex, this is influenced by many environmental factors and
involves an array of coordinated regulatory mechanisms which
have yet to be fully elucidated (Mack et al., 2004; O’Gara, 2007;
Cue et al., 2012). Biofilm-specific transcriptional regulators
include Rbf, which mediates the induction of biofilm formation
at the cell–cell interaction stage in response to glucose and
osmotic stress (Lim et al., 2004; Cue et al., 2009), and IcaR
and TcaR, both of which negatively regulate biofilm formation
(Jefferson et al., 2004). Global transcriptional regulators include
staphylococcal accessory regulator (SarA), which is required
for biofilm formation (Valle et al., 2003; Trotonda et al., 2005;
Sambanthamoorthy et al., 2008; Mrak et al., 2012), and the
two-component regulator ArlRS, a repressor of biofilm formation
(Toledo-Arana et al., 2005). Inactivation of a global regulator of
the bacterial stress response, the alternative transcription factor
sigma(B), resulted in a biofilm-negative phenotype and loss of
salt-induced biofilm production (Rachid et al., 2000). However,
Valle et al. (2003) demonstrated that complete deletion of sigmaB
did not affect PIA/PNAG production and biofilm formation,
although it slightly decreased ica operon transcription. You

et al. (2014) identified a new operon, gbaAB (glucose induced
biofilm accessory gene) that is involved in the regulation of the
multicellular aggregation step of S. aureus biofilm formation
in response to glucose and showed that this regulation may be
mediated through the ica operon. Osmotic stress was found to
induce biofilm formation in a S. aureus mucosal isolate (Rachid
et al., 2000).

Undoubtedly, the genetic and molecular basis of biofilm
formation in staphylococci is multifaceted (Götz, 2002). Beyond
PIA/PNAG, evidence is now emerging for the existence of
ica-independent biofilm mechanisms capable of mediating
intercellular accumulation in both S. aureus and S. epidermidis
(O’Gara, 2007). Thus, a number of biofilm-negative mutants
have been isolated in which PIA production appears to be
unaffected. Two of the characterized mutants were affected in
the major autolysin (atlE, Biswas et al., 2006; Bose et al., 2012)
and in D-alanine esterification of teichoic acids (dltA, Gross
et al., 2001). Teichoic acids are anchored to the outer layer of
the cytoplasmic membrane via a glycolipid (lipoteichoic acid,
LTA) or covalently to the cell-wall peptidoglycan (wall teichoic
acid, WTA). A S. aureus ypfP mutant with strongly reduced LTA
content was completely unable to form biofilm on plastic (Fedtke
et al., 2007). WTA-deficient S. aureus mutants showed a higher
degree of cell aggregation, but had reduced initial adherence
to abiotic surfaces and had a reduced capacity to form biofilms
under both steady-state and flow conditions (Vergara-Irigaray
et al., 2008). eDNA provides structure and stability in mature
biofilms of S. aureus (Izano et al., 2008), and many other species
(Das et al., 2013b). Secreted proteins may also influence S. aureus
multicellular behavior. Caiazza and O’Toole (2003) showed that
alpha-toxin (also known as α-hemolysin or Hla), a secreted,
multimeric, hemolytic toxin encoded by the hla gene, plays
an integral role in S. aureus biofilm formation and is required
for cell-to-cell interactions. Similarly, Anderson et al. (2012)
showed that alpha-toxin also promotes S. aureus mucosal biofilm
formation.

The surface of S. aureus is “decorated” with proteins that are
in most cases covalently anchored to the cell wall peptidoglycan
via an LPxTG motif cleaved by sortase A (SrtA). Interestingly,
the overexpression of SrtA has resulted in increased levels of
biofilm formation in some S. aureus strains (Sibbald et al., 2012).
Structural and functional analysis has identified four distinct
classes of surface proteins in this bacterium, of which microbial
surface component recognizing adhesive matrix molecules
(MSCRAMMs) are the largest class. These surface proteins have
numerous functions, including adhesion to and invasion of
host cells and tissues, evasion of immune responses and biofilm
formation (Foster et al., 2014; Speziale et al., 2014). Surface
proteins Bap (biofilm-associated protein), Eap (extracellular
adherence protein), or PSM (phenol soluble modulin) promote
S. aureus adherence to host cells and surfaces, as well as
cell aggregation (Cucarella et al., 2001; Hussain et al., 2008;
Thompson et al., 2010; Schwartz et al., 2012). Interestingly,
Arrizubieta et al. (2004) found that Bap binds Ca2+ with low
affinity and that this binding renders the protein non-competent
for biofilm formation and for intercellular adhesion, while Tormo
et al. (2007) described a process of phase variation that affects the
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expression of Bap in S. aureus. Thus, it is possible that S. aureus
can detach from a biofilm by switching to a Bap-negative state.
Schwartz et al. (2012) showed that the PSMs’ polymerization and
aggregation into amyloid fibers stabilize and promotes S. aureus
biofilm integrity. Intercellular auto-aggregation is also favored by
SasG (S. aureus surface protein G; Corrigan et al., 2007; Kuroda
et al., 2008; Geoghegan et al., 2010) and SasC (Schroeder et al.,
2009), but inhibited by the delta hemolysin (Hld or PSM; Vuong
et al., 2003).

Other examples of important surface proteins identified
to be involved in S. aureus biofilm formation include
accumulation-associated protein (Aap), clumping factor A
(ClfA), staphylococcal surface protein (SSP1; Foster et al., 2014),
protein A (Spa; Merino et al., 2009), serine-aspartate repeat
protein SdrC (Barbu et al., 2014), and SraP, a surface-exposed
serine-rich repeat glycoprotein (SRRP; Sanchez et al., 2010). Aap
and SasG are homologous proteins containing sequence repeats
known as G5 domains, which self-associate in the presence of
Zn2+ resulting in the formation of extensive adhesive contacts
between cells (Geoghegan et al., 2010; Conrady et al., 2013).
Surface proteins with tandem G5 domains are also found in other
bacterial species, suggesting that this mechanism for intercellular
adhesion in biofilms may be conserved among staphylococci and
other Gram-positive bacteria (Conrady et al., 2008). Expression
of SasG masked the ability of exponentially grown S. aureus cells
expressing protein A (Spa), clumping factor B (ClfB) and the
fibronectin binding proteins A and B (FnBPA and FnBPB) to bind
to IgG, cytokeratin 10 and fibronectin, respectively (Corrigan
et al., 2007). SasG-expressing strains formed peritrichous fibrils
of varying density on the cell wall, and also formed biofilm
independently of the PIA. It was concluded that the fibrillar
nature of SasG explains its ability to mask binding of S. aureus
MSCRAMMs to their ligands and to promote formation of
biofilm. S. aureus mutant strains unable to express the FnBPA
and FnBPB lacked the ability to adhere to fibronectin and to
form biofilms (O’Neill et al., 2008; McCourt et al., 2014). On the
contrary, the expression of these two proteins increased bacterial
aggregation suggesting that fibronectin-binding proteins can
promote the accumulation phase of biofilm. Loss of fibronectin-
binding proteins reduced the initial adherence of bacteria,
indicating that these proteins are also involved in primary
attachment.

Noteworthy, bacterial variants of S. aureus called small colony
variants (SCVs) originate by mutations in metabolic genes,
resulting in emergence of auxotrophic bacterial subpopulations
(Melter and Radojevič, 2010). Environmental pressure such as
antibiotics, select for isogenic SCV cells that are frequently found
coexisting with their parent wild-type strains in a mixed bacterial
culture. Such a menadione-auxotrophic S. aureus SCV displayed
an autoaggregative phenotype and formed highly structured
biofilms, consisting of large microcolonies separated by channels,
and containedmore biomass aswell as significantlymore PIA than
wild-type biofilms (Singh et al., 2010).

Cell population density-dependent regulation of gene
expression is an important determinant of bacterial biofilm
formation. Staphylococci have two QS systems: the accessory
gene regulator (agr) which is genus specific and uses a

post-translationally modified peptide as an autoinducing
signal and luxS, which is found in a variety of Gram-positive
and Gram-negative bacteria (Kong et al., 2006). Importantly,
unlike many QS systems described in Gram-negative bacteria,
Agr and LuxS of staphylococci reduce rather than induce biofilm
formation and virulence during biofilm-associated infection.
Agr enhances biofilm detachment by up-regulation of the
expression of detergent-like peptides, whereas LuxS reduces
cell-to-cell adhesion by down-regulating expression of biofilm
exopolysaccharide via an icaR-activation pathway (Yu et al.,
2012). However, the role of the Agr QS system appears to vary
depending on the strain or growth conditions, as disruption of
agr can inhibit, enhance, or have no effect on biofilm formation
(Yarwood et al., 2004).

Interspecies Interactions
Studying microbial interactions and adaptive processes leading
to co- or poly-bacterial infections is evidently important. P.
aeruginosa and S. aureus are the most prevalent pathogens in
airway infections of cystic fibrosis (CF) patients, while significant
research has been conducted on how these pathogens coexist
and interact with each other (Hoffman et al., 2006; Davies
and Marques, 2009; Chew et al., 2014). Interestingly, wild-
type P. aeruginosa PAO1 has been found to facilitate S. aureus
microcolony formation when both are grown in co-culture
biofilms in a flow-chamber system (Yang et al., 2011a). Further
investigations revealed that eDNA behaves as an essential EPS
material shared by both species in co-culture biofilms, which
facilitates interspecies interactions and that P. aeruginosa type
IV pili are required for this process, probably through their
ability to bind to eDNA. In another recent study, Fugère et al.
(2014) found that culture supernatants from 63 P. aeruginosa
clinical isolates retrieved from CF adult patients triggered a
wide range of biofilm-stimulatory activities when added to the
culture of a control S. aureus strain. However, when studying
co-isolated pairs of P. aeruginosa and S. aureus retrieved from
patients showing both pathogens, P. aeruginosa supernatants
stimulated less biofilm production by the S. aureus counterparts
compared to that observed using the control S. aureus strain.
This suggests that colonization of the CF lungs promotes some
type of strain selection, or that co-existence requires specific
adaptations by either or both pathogens. In the same context,
Wollenberg et al. (2014) demonstrated that coproporphyrin III
(CIII), a diffusible small molecule excreted by nostril- and skin-
associated Propionibacterium spp., induces S. aureus aggregation
in amanner dependent on dose, growth phase, and pH. In another
study on a polymicrobial wound infection, the presence of P.
aeruginosa resulted in induced expression of S. aureus virulence
factors (Pastar et al., 2013).

Bacteria and fungi are found together in a myriad of
environments and particularly in a biofilm, where adherent
species interact throughdiversemechanisms (Shirtliff et al., 2009).
The fungal species C. albicans and S. aureus are responsible for
a majority of hospital-acquired infections and are increasingly
co-isolated from implant-associated polymicrobial infections
creating an incremental health care problem (Harriott andNoverr,
2009). This polymicrobial biofilm formation and subsequent
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resistance seems to be a multifactorial process that may require a
unique combination of fungal and/or bacterial adhesins (Harriott
and Noverr, 2010; Peters et al., 2012b). Thus, synergistic effects
between both species seem to facilitate the formation of dual-
species biofilms (Millsap et al., 2001). Confocal laser scanning
microscopic (CLSM) analyses of such biofilms have revealed
a unique biofilm architecture where S. aureus is commonly
associated with the hyphal elements of C. albicans (Peters et al.,
2010). In addition, during such co-existence, S. aureus is known to
present enhanced pathogenesis due to the differential regulation
of specific virulence factors (Peters et al., 2010). Interestingly,
Fehrmann et al. (2013) also revealed the protective role of S.
aureus fibrinogen-binding proteins coagulase and Efb against the
phagocytosis of Candida cells by granulocytes.

Besides synergistic interactions, antagonistic ones have also
been observed in mixed culture biofilms of S. aureus and other
species. Thus, Malic et al. (2011) studied in vitro biofilms
generated either individually or in dual combinations by P.
aeruginosa, S. aureus, Streptococcus oralis, and Micrococcus
luteus and observed distinct species antagonism with apparent
antagonism of pathogenic species over “commensal” ones. Iwase
et al. (2010) showed that the serine protease Esp secreted by a
subset of commensal S. epidermidis, inhibits biofilm formation
and nasal colonization by S. aureus and also destroys pre-
existing biofilms of this pathogen. Furthermore, Esp enhances
the susceptibility of S. aureus in biofilms to immune system
components. Similar results were also obtained by Sugimoto et al.
(2013) who demonstrated that Esp inhibits S. aureus colonization
and biofilm formation by degrading specific proteins that are
crucial for biofilm construction and host-pathogen interaction.
Likewise, Chen et al. (2013) showed that Esp cleaves autolysin
(Atl)-derived murein hydrolases and prevents staphylococcal
release of DNA, which serves as extracellular matrix in biofilms.

Environmental biofilms grown in seawater on agar containing
spent S. aureus filtrate were more inhibitory to S. aureus,
as compared to environmental biofilms grown on plain agar
(without added spent S. aureus filtrate; Lafleur et al., 2013).
Jiang et al. (2011) isolated a bacterial exopolysaccharide (A101)
from the culture supernatant of the marine bacterium Vibrio sp.
QY101 able to inhibit cell aggregates and cell-surface interactions
in S. aureus. Similarly, Rendueles et al. (2011) also isolated
a new type of released high-molecular-weight polysaccharide
from in vitro mature biofilms formed by natural E. coli isolates,
whose production reduced susceptibility to invasion and provided
rapid exclusion of S. aureus from mixed E. coli and S. aureus
biofilms. Sadowska et al. (2010) demonstrated competitive
direct interactions due to the activity of antagonistic substances
produced by P. aeruginosa and Lb. acidophilus against planktonic
and sessile populations of S. aureus strains. Similarly, Walencka
et al. (2008) showed the inhibitory activity of surfactants obtained
from three Lb. acidophilus strains on the ability of S. aureus and
S. epidermidis to form biofilms, while also demonstrated that
the addition of surfactants to preformed mature staphylococci
biofilms accelerated their dispersal.

The interactions in dual species biofilms between L.
monocytogenes EGD-e and several strains of S. aureus have
also been studied, with S. aureus sessile population to either be

increased or decreased or remain unaffected in the presence of L.
monocytogenes (Rieu et al., 2008b). Respectively, the population
of L. monocytogenes in dual species biofilms was not affected by
the presence of S. aureus isolates except for one strain (either when
this was in situ present or just its supernatant). In an intriguing
study, Houry et al. (2012) studied the integrity of biofilms formed
by S. aureus when this was challenged using either of two motile
Bacillus species (B. thuringiensis and B. subtilis) expressing the
S. aureus-specific cell wall endopeptidase, lysostaphin. Biofilms
that were untreated or treated with non-motile B. thuringiensis
expressing lysostaphin remained essentially intact, and their
biovolumes were not statistically different. Remarkably, motile
B. thuringiensis producing lysostaphin eradicated S. aureus
within 24 h (Figure 2). Experiments using corresponding B.
subtilis strains gave results equivalent to those obtained with
B. thuringiensis. Besides competitive interactions, these results
clearly demonstrate that motility gives toxin-carrying bacteria
access deep into the biofilm layers to eradicate a preexisting
population.

Intercellular Interactions in Biofilms of S. aureus:
Current Knowledge and Concepts for Future
Research
The matrix in which S. aureus cells are encased in a biofilm
often consists of the PIA. However, in recent years, many surface
proteins capable of promoting biofilm development in the absence
of PIA/PNAG have been described. Like in many other species,
eDNA also seems to provide a stable architectural organization
in S. aureus biofilms. While significant progress in elucidating
the role of the icaADBC-encoded PIA in staphylococcal biofilm
development has been made, our understanding of how the
ica locus and PIA/PNAG biosynthesis are regulated is far
from complete and many questions remain. Interestingly, recent
results on dual-species S. aureus and P. aeruginosa biofilm
formation have provided insights on bacterial interactions
and support the emerging perspective of a co-adaptation and
interspecies cooperation that is largely contrasting with studies
focusing on the competitive/inhibitory interactions between both
bacterial species (Hoffman et al., 2006). Staying in the clinical
settings, S. aureus and Candida species are increasingly co-
isolated from implant-associated biofilm infectionswith amplified
virulence during co-infection to occur. However, nothing is
yet known on such putative virulence enhancement in S.
aureus cells forming polymicrobial biofilms in food processing
environments. This should be studied since this may significantly
compromise food safety. Like in other bacteria, inter-species
interactions encountered within S. aureus biofilms may be
cooperative, antagonistic or even neutral. These largely depend
on the bacteria and environmental conditions employed. Special
attention should thus be given when someone is trying to
formulate general conclusions. Undoubtedly, future studies on
multi-species biofilms formed under food relevant conditions will
shed light on this fascinating research area. Such information
could then serve as a basis for exogenously modulating the
interactions between biofilm constituents, resulting in novel
approaches for controlling biofilm activities.
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FIGURE 2 | Biocide-carrying motile B. thuringiensis eradicates and
supplants S. aureus biofilms. Confocal observations of S. aureus RN4220
GFP biofilms after treatment with motile B. thuringiensis 407 (+Bt), motile Bt
expressing lysostaphin (+Bt pLysost), and non-motile cells expressing
lysostaphin (+Bt ∆fla pLysost). In these experiments, S. aureus biofilms were

24 h old before being exposed to Bt. (Scale bar = 30 µm.) In the lower
left-hand corner of each confocal image is the quantification of the residual
biovolume (µm3) of S. aureus GFP biofilms after contact with B. thuringiensis;
each value is the average of ∼18 measurements performed in at least nine
independent wells. Figure obtained after permission from Houry et al. (2012).

Conclusions and Future Prospects

It is now well accepted that biofilms represent a microbial
phenotype, characterized by an explicit organization level,
wherein microorganisms are involved in complex intercellular
interactions that occur both within and between species and
can be either competitive or cooperative (Elias and Banin,
2012; Rendueles and Ghigo, 2012). Such interactions are surely
important for the selection of a specific microflora in a given
ecological niche (Diaz, 2012; Boon et al., 2014). Moreover,
the expression of different cell surface adhesins, their cognate
receptors, and exopolymeric components by individual cell
types within a biofilm can also contribute to overall biofilm
development (Jefferson and Cerca, 2006; Garnett and Matthews,
2012; Das et al., 2013b; Demuyser et al., 2014). Surely, biofilms
represent the most frequent mode of growth for many microbes.
While headway is being made in understanding their formation
and development, we are still far from being able to describe all
of these processes from a molecular perspective (Shirtliff et al.,
2002). As further insights into this complicated life style are
made available, new targets to be exploited will arise, giving us
a much wider scope to address problematic biofilms. In this
context, intercellular interactions have a profound influence on
the formation, structure, and physiology of biofilms (Moons et al.,
2009).

Interactions encountered at the stage of microbial adhesion
determine the initial community structure (i.e., which species
are present) of the developing biofilm. As biofilm accumulation
subsequently proceeds, stabilizing interactions between species
can lead to increased biofilm thickness and stability and influence

biofilm architecture. In addition, physiological interactions
between microbial populations increase both the genetic and
metabolic flexibility of the community. However, not only the
microbial participants but also the environmental conditions in
the niche determine the shape and phenotype of a mixed biofilm.
Although significant progress in understanding intercellular
interactions and their role in microbial growth, survival and
virulence have been obtained in recent years, the molecular
mechanisms of the regulatory networks involved in sensing and
responding to environmental stimuli remain to be elucidated.
Moreover, studies on mixed biofilms are beginning to unravel
the complexity of interspecies interactions and their impact in
clinical, industrial, and environmental settings (Wuertz et al.,
2004).

The food industry, authorities and legislation tend to focus on
surveillance and control of pathogenic bacteria like Salmonella
spp., L. monocytogenes, STEC, and S. aureus. However, the
majority of microorganisms in the food processing environment
are non-pathogenic. Undoubtedly, the fate of pathogens in
sessile multi-species communities may be affected by the type
of other bacteria present, thus knowledge of the composition
of such communities is important to understand survival and
growth of pathogenic bacteria in the food industry (Jahid and
Ha, 2014). Thus, the fate of each pathogen in multiculture
biofilms including tolerance to food associated stresses clearly
depends on the characteristic of co-cultured bacterium. An
obvious approach to inhibit the virulence of biofilms would be
to prevent the incorporation of potentially pathogenic organisms
into biofilms. Since the incorporation of some organisms into
biofilms is dependent upon other antecedent biofilm residents,
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it may be possible to identify such dependencies for specific
pathogens and target these antecedent organisms for elimination.
Moreover, sincemany unwanted bacteria are secondary colonizers
and adhere on a pre-existing biofilm by means of adhesins,
increasing or blocking available binding sites can potentially shift
a community toward being less harmful. Shifting nutrients can
also be used for directing biofilm functionality (Stoodley et al.,
1998). Additionally, hydrodynamic conditions can significantly
influence many of the processes involved in biofilm development.
However, the effects of these on QS and biofilm formation require
further study (Purevdorj et al., 2002).

The properties of biofilms providing protection to
environmental stresses and increased resistance to antimicrobial
agents are a big challenge (Coenye, 2010; Bridier et al., 2015).
Furthermore, resistance is usually enhanced when multiple
bacterial species coexist in biofilms. These protective, synergistic
effects are highly relevant in many aspects of risk assessment
and should be taken into account in selection and evaluation of
treatment regimes and cleaning procedures. Bacterial biofilms
can endure high concentrations of biocides, and new strategies
for controlling them must therefore replace or complement
the use of standard disinfectants, for example, by targeting the
extracellular matrix to cause dispersal or increased antimicrobial
susceptibility. As an example, eDNA is a matrix component of
most biofilms, and is therefore an attractive target (Okshevsky
and Meyer, 2015). Thus, its enzymatic degradation can prevent,
disperse, or sensitize biofilm to antimicrobials (Okshevsky
et al., 2014). In addition, given the typical involvement of QS
in biofilm development and virulence, QS inhibitors could
be used to reduce these characteristics (Burt et al., 2014).
These molecules act primarily by quenching the QS system
(Defoirdt et al., 2013). In fact, many organisms produce such
inhibitors (e.g., halogenated furanones, N-acyl homoserine
lactonases and acylases; Du et al., 2014), while synthetic
compounds have also been successfully developed (de Lima
Pimenta et al., 2013). However, despite the capacity of such
compounds to influence the formation and virulence of single
species biofilms (Rasmussen and Givskov, 2006; Lazar, 2011),

their effect on multi-species biofilms so far remains largely
unexplored.

Undoubtedly, biofilms should be envisioned as continuously
evolving dynamic entities that cannot merely be seen as the
sum of all components therein (Yang et al., 2011b; Burmølle
et al., 2014). It is now clear that the physiology and function
of these complex bacterial communities vary much from that of
the individual species when examined as monocultures, and in
some cases the underlying mechanisms are known. Accordingly,
it follows that insights gained from research based on planktonic
cells or even single species biofilms cannot readily be extrapolated
to multi-species consortia. Evidently, we are just beginning to
understand the complexity of biofilms, but it is already clear
from the above examples that much is to be gained in doing
so. Different approaches need to be combined, by using high
throughput and high resolution methods applied in combination,
for better understanding of these complex communities. As an
example, comparisons of transcriptomes and proteomes from
mono- and multi-species biofilms may allow identification of
genes and proteins of which expression is affected by the
presence of other species. Therefore, both underlyingmechanisms
and consequences of co-culturing may be revealed. Continued
expansion of such information in the near future will be
dependent on the development of new technologies designed
to simultaneously identify multiple properties within biofilms.
Such advanced knowledge on the physiology of complex biofilms
formed by foodborne pathogenic bacteria and the interactions
therein will be indispensable for the development of methods for
controlling them in food areas.
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