K. Agladze, X. Wang, R. , and T. , Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA, J. Bacteriol, vol.187, pp.8237-8246, 2005.

C. Almeida, N. F. Azevedo, S. Santos, C. W. Keevil, and M. J. Vieira, Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH), PLoS ONE, vol.6, p.14786, 2011.

G. G. Anderson and G. A. Toole, Innate and induced resistance mechanisms of bacterial biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.85-105, 2008.

M. J. Anderson, Y. C. Lin, A. N. Gillman, P. J. Parks, P. M. Schlievert et al., Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation, Front. Cell. Infect. Microbiol, vol.2, p.64, 2012.

B. Andrzejewska and B. M. Sobieszczanska, Influence of Lactobacillus casei on biofilm formation by enteroaggregative Escherichia coli strains isolated from irritable bowel syndrome (IBS), Med. Dosw. Mikrobiol, vol.65, pp.11-17, 2013.

Y. Anriany, S. N. Sahu, K. R. Wessels, L. M. Mccann, J. et al., Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose, Appl. Environ. Microbiol, vol.72, pp.5002-5012, 2006.

S. K. Aoki, R. Pamma, A. D. Hernday, J. E. Bickham, B. A. Braaten et al., Contact-dependent inhibition of growth in Escherichia coli, Science, vol.309, pp.1245-1248, 2005.

N. K. Archer, M. J. Mazaitis, J. W. Costerton, J. G. Leid, M. E. Powers et al., Staphylococcus aureus biofilms: properties, regulation, and roles in human disease, Virulence, vol.2, pp.445-459, 2011.

M. J. Arrizubieta, A. Toledo-arana, B. Amorena, J. R. Penadés, and I. Lasa, Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus, J. Bacteriol, vol.186, pp.7490-7498, 2004.

K. E. Atkin, S. J. Macdonald, A. S. Brentnall, J. R. Potts, and G. H. Thomas, A different path: revealing the function of staphylococcal proteins in biofilm formation, FEBS Lett, vol.588, pp.1869-1872, 2014.

J. W. Austin, G. Sanders, W. W. Kay, and S. K. Collinson, Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation, FEMS Microbiol. Lett, vol.162, pp.295-301, 1998.

H. M. Bandara, J. Y. Yau, R. M. Watt, L. J. Jin, and L. P. Samaranayake, Escherichia coli and its lipopolysaccharide modulate in vitro Candida biofilm formation, J. Med. Microbiol, vol.58, pp.1623-1631, 2009.

E. M. Barbu, C. Mackenzie, T. J. Foster, and M. Höök, SdrC induces staphylococcal biofilm formation through a homophilic interaction, Mol. Microbiol, vol.94, pp.172-185, 2014.

M. M. Barnhart and M. R. Chapman, Curli biogenesis and function, Annu. Rev. Microbiol, vol.60, pp.131-147, 2006.

A. F. Barrios, R. Zuo, D. Ren, and T. K. Wood, Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility, Biotechnol. Bioeng, vol.93, pp.188-200, 2006.

S. Baugh, A. S. Ekanayaka, L. J. Piddock, and M. A. Webber, Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm, J. Antimicrob. Chemother, vol.67, pp.2409-2417, 2012.

R. Biswas, L. Voggu, U. K. Simon, P. Hentschel, G. Thumm et al., Activity of the major staphylococcal autolysin Atl, FEMS Microbiol. Lett, vol.259, pp.260-268, 2006.

E. Boon, C. J. Meehan, C. Whidden, D. H. Wong, M. G. Langille et al., Interactions in the microbiome: communities of organisms and communities of genes, FEMS Microbiol. Rev, vol.38, pp.90-118, 2014.

E. Borezee, T. Msadek, L. Durant, and P. Berche, Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein, J. Bacteriol, vol.182, pp.5931-5934, 2000.

M. K. Borucki, J. D. Peppin, D. White, F. Loge, and D. R. Call, Variation in biofilm formation among strains of Listeria monocytogenes, Appl. Environ. Microbiol, vol.69, pp.7336-7342, 2003.

J. L. Bose, M. K. Lehman, P. D. Fey, and K. W. Bayles, Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation, PLoS ONE, vol.7, p.42244, 2012.

D. Boyd, G. A. Peters, A. Cloeckaert, K. S. Boumedine, E. Chaslus-dancla et al., Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona, J. Bacteriol, vol.183, pp.5725-5732, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02670923

F. Boyen, V. Eeckhaut, F. Van-immerseel, F. Pasmans, R. Ducatelle et al., Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives, Vet. Microbiol, vol.135, pp.187-195, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00485527

M. T. Brandl, M. Q. Carter, C. T. Parker, M. R. Chapman, S. Huynh et al., Salmonella biofilm formation on Aspergillus niger involves cellulose-chitin interactions, PLoS ONE, vol.6, p.25553, 2011.

P. J. Bremer, I. Monk, and C. M. Osborne, Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp, J. Food Prot, vol.64, pp.1369-1376, 2001.

K. Brenner, A. , and F. H. , Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium, PLoS ONE, vol.6, p.16791, 2011.

A. Bridier, P. Sanchez-vizuete, M. Guilbaud, J. C. Piard, M. Naïtali et al., Biofilm-associated persistence of food-borne pathogens, Food Microbiol, vol.45, pp.167-178, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204463

E. Brombacher, A. Baratto, C. Dorel, and P. Landini, Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion, J. Bacteriol, vol.188, pp.2027-2037, 2006.

E. Brzuszkiewicz, A. Thürmer, J. Schuldes, A. Leimbach, H. Liesegang et al., Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: entero-Aggregative-Hemorrhagic Escherichia coli (EAHEC), Arch. Microbiol, vol.193, pp.883-891, 2011.

M. Burmølle, M. I. Bahl, L. B. Jensen, S. J. Sørensen, and L. H. Hansen, Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains, Microbiology, vol.154, pp.187-195, 2008.

M. Burmølle, D. Ren, T. Bjarnsholt, and S. J. Sorensen, Interactions in multispecies biofilms: do they actually matter?, Trends Microbiol, vol.22, pp.84-91, 2014.

M. Burmølle, J. S. Webb, D. Rao, L. H. Hansen, S. J. Sørensen et al., Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms, Appl. Environ. Microbiol, vol.72, pp.3916-3923, 2006.

S. A. Burt, V. T. Ojo-fakunle, J. Woertman, and E. J. Veldhuizen, The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations, PLoS ONE, vol.9, p.93414, 2014.

T. Cabellos-avelar, V. Souza, and J. Membrillo-hernandez, Spent media from cultures of environmental isolates of Escherichia coli can suppress the deficiency of biofilm formation under anoxic conditions of laboratory E coli strains, FEMS Microbiol. Ecol, vol.58, pp.414-424, 2006.

N. C. Caiazza and G. A. Toole, Alpha-toxin is required for biofilm formation by Staphylococcus aureus, J. Bacteriol, vol.185, pp.3214-3217, 2003.

B. Carpentier and O. Cerf, Review-Persistence of Listeria monocytogenes in food industry equipment and premises, Int. J. Food Microbiol, vol.145, pp.1-8, 2011.

B. Carpentier and D. Chassaing, Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises, Int. J. Food Microbiol, vol.97, pp.111-122, 2004.

M. Q. Carter, K. Xue, M. T. Brandl, F. Liu, L. Wu et al., Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation, PLoS ONE, vol.7, p.44186, 2012.

G. A. Castelijn, S. Van-der-veen, M. H. Zwietering, R. Moezelaar, A. et al., Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium, Biofouling, vol.28, pp.51-63, 2012.

M. H. Castonguay, S. Van-der-schaaf, W. Koester, J. Krooneman, W. Van-der-meer et al., Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria, Res. Microbiol, vol.157, pp.471-478, 2006.

C. Chagnot, M. A. Zorgani, T. Astruc, and M. Desvaux, Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective, Front. Microbiol, vol.4, p.303, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204318

C. Belval, S. Gal, L. Margiewes, S. Garmyn, D. Piveteau et al., Assessment of the roles of LusS, S-ribosyl homocysteine, and autoinducer 2 in cell attachment during biofilm formation by Listeria monocytogenes, Appl. Environ. Microbiol, vol.72, pp.2644-2650, 2006.

Y. Chang, W. Gu, N. Fischer, and L. Mclandsborough, Identification of genes involved in Listeria monocytogenes biofilm formation by marinerbased transposon mutagenesis, Appl. Microbiol. Biotechnol, vol.93, pp.2051-2062, 2012.

Y. Chang, W. Gu, F. Zhang, and L. Mclandsborough, Disruption of lmo1386, a putative DNA translocase gene, affects biofilm formation of Listeria monocytogenes on abiotic surfaces, Int. J. Food Microbiol, vol.161, pp.158-163, 2013.

C. M. Chapman, G. R. Gibson, R. , and I. , In vitro evaluation of single-and multi-strain probiotics: interspecies inhibition between probiotic strains, and inhibition of pathogens, Anaerobe, vol.18, pp.405-413, 2012.

C. M. Chapman, G. R. Gibson, R. , and I. , Effects of singleand multi-strain probiotics on biofilm formation and in vitro adhesion to bladder cells by urinary tract pathogens, Anaerobe, vol.27, pp.71-76, 2014.

A. Chauhan, C. Sakamoto, J. M. Ghigo, and C. Beloin, Did I pick the right colony? Pitfalls in the study of regulation of the phase variable antigen 43 adhesin, PLoS ONE, vol.8, p.73568, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385431

P. Chavant, B. Gaillard-martinie, and M. Hébraud, Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase, FEMS Microbiol. Lett, vol.236, pp.241-248, 2004.

P. Chavant, B. Martinie, T. Meylheuc, M. Bellon-fontaine, and M. Hebraud, Listeria monocytogenes L028: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases, Appl. Environ. Microbiol, vol.68, pp.728-737, 2002.

C. Chen, V. Krishnan, K. Macon, K. Manne, S. V. Narayana et al., Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus, J. Biol. Chem, vol.288, pp.29440-29452, 2013.

L. H. Chen, V. K. Köseo?lu, Z. T. Guvener, T. Myers-morales, J. M. Reed et al., Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes, PLoS Pathog, vol.10, p.1004301, 2014.

S. C. Chew, B. Kundukad, T. Seviour, J. R. Van-der-maarel, L. Yang et al., Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides, MBio, vol.5, pp.1536-1550, 2014.

R. A. Chmielewski and J. F. Frank, Biofilm formation and control in food processing facilities, Compr. Rev. Food Sci. Food Saf, vol.2, pp.22-32, 2003.

N. G. Chorianopoulos, E. D. Giaouris, Y. Kourkoutas, and G. Nychas, Inhibition of the early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alvei culture, Appl. Environ. Microbiol, vol.76, 2010.

N. G. Chorianopoulos, E. D. Giaouris, P. N. Skandamis, S. A. Haroutounian, and G. Nychas, Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers, J. Appl. Microbiol, vol.104, pp.1586-1596, 2008.

B. B. Christensen, C. Sternberg, J. B. Andersen, L. Eberl, S. Moller et al., Establishment of new genetic traits in a microbial biofilm community, Appl. Environ. Microbiol, vol.64, pp.2247-2255, 1998.

T. Coenye, Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation, FEMS Immunol. Med. Microbiol, vol.59, pp.239-252, 2010.

D. G. Conrady, C. C. Brescia, K. Horii, A. A. Weiss, D. J. Hassett et al., A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.19456-19461, 2008.

D. G. Conrady, J. J. Wilson, and A. B. Herr, Structural basis for Zn 2+ -dependent intercellular adhesion in staphylococcal biofilms, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.202-211, 2013.

R. M. Corrigan, D. Rigby, P. Handley, and T. J. Foster, The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation, Microbiology, vol.153, pp.2435-2446, 2007.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.19484-19491, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650692

R. W. Crawford, D. L. Gibson, W. W. Kay, and J. S. Gunn, Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces, Infect. Immun, vol.76, pp.5341-5349, 2008.

M. A. Croxen, R. J. Law, R. Scholz, K. M. Keeney, M. Wlodarska et al., Recent advances in understanding enteric pathogenic Escherichia coli, Clin. Microbiol. Rev, vol.26, pp.822-880, 2013.

C. Cucarella, C. Solano, J. Valle, B. Amorena, I. Lasa et al., , 2001.

. Bap, Staphylococcus aureus surface protein involved in biofilm formation, J. Bacteriol, vol.183, pp.2888-2896

D. Cue, M. G. Lei, and C. Y. Lee, Genetic regulation of the intercellular adhesion locus in staphylococci, Front. Cell. Infect. Microbiol, vol.2, p.38, 2012.

D. Cue, M. G. Lei, T. T. Luong, L. Kuechenmeister, P. M. Dunman et al., Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC, J. Bacteriol, vol.191, pp.6363-6373, 2009.

J. R. Czeczulin, S. Balepur, S. Hicks, A. Phillips, R. Hall et al., Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli, Infect. Immun, vol.65, pp.4135-4145, 1997.

P. N. Danese, L. A. Pratt, S. L. Dove, and R. Kolter, The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms, Mol. Microbiol, vol.37, pp.424-432, 2000.

H. E. Daneshvar-alavi, T. Hansen, and L. , Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans, or Shewanella baltica on food-grade stainless steel surfaces, Biofouling, vol.29, pp.1253-1268, 2013.

S. Da-re, J. Valle, N. Charbonnel, C. Beloin, P. Latour-lambert et al., Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization, PLoS ONE, vol.8, p.61628, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385430

E. P. Da-silva, D. Martinis, and E. C. , Current knowledge and perspectives on biofilm formation: the case of Listeria monocytogenes, Appl. Microbiol. Biotechnol, vol.97, pp.957-968, 2013.

J. K. Das, D. Mishra, P. Ray, P. Tripathy, T. K. Beuria et al., In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis, Gut Pathog, vol.5, p.11, 2013.

T. Das, S. Sehar, and M. Manefield, The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development, Environ. Microbiol. Rep, vol.5, pp.778-786, 2013.

D. G. Davies and C. N. Marques, A fatty acid messenger is responsible for inducing dispersion in microbial biofilms, J. Bacteriol, vol.191, pp.1393-1403, 2009.

D. G. Davies, M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, vol.280, pp.295-298, 1998.

T. Defoirdt, G. Brackman, C. , and T. , Quorum sensing inhibitors: how strong is the evidence?, Trends Microbiol, vol.21, pp.619-624, 2013.

A. De-lima-pimenta, L. D. Chiaradia-delatorre, A. Mascarello, K. A. De-oliveira, P. C. Leal et al., Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing, Int. J. Antimicrob. Agents, vol.42, pp.519-523, 2013.

M. P. Delisa, C. F. Wu, L. Wang, J. J. Valdes, and W. E. Bentley, DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli, J. Bacteriol, vol.183, pp.5239-5247, 2001.

L. Demuyser, M. A. Jabra-rizk, and P. Van-dijck, Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms, Pathog. Dis, vol.70, pp.219-230, 2014.

M. Desvaux, N. J. Parham, and I. R. Henderson, The autotransporter secretion system, Res. Microbiol, vol.155, pp.53-60, 2004.

M. Desvaux, N. J. Parham, and I. R. Henderson, Type V protein secretion: simplicity gone away? Curr, Issues Mol. Biol, vol.6, pp.111-124, 2004.

A. Dheilly, E. Soum-soutéra, G. L. Klein, A. Bazire, C. Compère et al., Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6, Appl. Environ. Microbiol, vol.76, pp.3452-3461, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00846211

P. I. Diaz, Microbial diversity and interactions in subgingival biofilm communities, Front. Oral Biol, vol.15, pp.17-40, 2012.

D. Bonaventura, G. Piccolomini, R. Paludi, D. D'orio, V. Vergara et al., Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity, J. Appl. Microbiol, vol.104, pp.1552-1561, 2008.

B. Diderichsen, flu, a metastable gene controlling surface properties of Escherichia coli, J. Bacteriol, vol.141, pp.858-867, 1980.

D. Djordjevic, A. Wiedmann, and L. A. Mclandsborough, Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation, Appl. Environ. Microbiol, vol.68, pp.2950-2958, 2002.

C. Dorel, P. Lejeune, and A. Rodrigue, The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities?, Res. Microbiol, vol.157, pp.306-314, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01667547

E. G. Dudley, C. Abe, J. M. Ghigo, P. Latour-lambert, J. C. Hormazabal et al., An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces, Infect. Immun, vol.74, pp.2102-2114, 2006.

G. M. Dunny, T. J. Brickman, and M. Dworkin, Multicellular behavior in bacteria: communication, cooperation, competition and cheating, Bioessays, vol.30, pp.296-298, 2008.

Y. Du, T. Li, Y. Wan, Q. Long, and P. Liao, Signal moleculedependent quorum-sensing and quorum-quenching enzymes in bacteria, Crit. Rev. Eukaryot. Gene Expr, vol.24, pp.117-132, 2014.

K. E. Eboigbodin, J. R. Newton, A. F. Routh, and C. A. Biggs, Bacterial quorum sensing and cell surface electrokinetic properties, Appl. Microbiol. Biotechnol, vol.73, pp.669-675, 2006.

K. E. Eboigbodin, J. J. Ojeda, and C. A. Biggs, Investigating the surface properties of Escherichia coli under glucose controlled conditions and its effect on aggregation, Langmuir, vol.23, pp.6691-6697, 2007.

S. Elias and E. Banin, Multi-species biofilms: living with friendly neighbors, FEMS Microbiol. Rev, vol.36, pp.990-1004, 2012.

C. L. Esteves, B. D. Jones, and S. Clegg, Biofilm formation by Salmonella enterica serovar Typhimurium and Escherichia coli on epithelial cells following mixed inoculations, Infect. Immun, vol.73, pp.5198-5203, 2005.

A. Fàbrega, S. M. Soto, C. Ballesté-delpierre, D. Fernández-orth, M. T. Jiménez-de-anta et al., Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica, J. Antimicrob. Chemother, vol.69, pp.1815-1824, 2014.

P. Fatemi and J. F. Frank, Inactivation of Listeria monocytogenes/Pseudomonas biofilms by peracid sanitizers, J. Food Prot, vol.62, pp.761-765, 1999.

I. Fedtke, D. Mader, T. Kohler, H. Moll, G. Nicholson et al., A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity, Mol. Microbiol, vol.65, pp.1078-1091, 2007.

C. Fehrmann, K. Jurk, A. Bertling, G. Seidel, W. Fegeler et al., Role for the fibrinogen-binding proteins coagulase and Efb in the Staphylococcus aureus-Candida interaction, Int. J. Med. Microbiol, vol.303, pp.230-238, 2013.

S. L. Foley, T. J. Johnson, S. C. Ricke, R. Nayak, and J. Danzeisen, Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol, Mol. Biol. Rev, vol.77, pp.582-607, 2013.

T. J. Foster, J. A. Geoghegan, V. K. Ganesh, and M. Höök, Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus, Nat. Rev. Microbiol, vol.12, pp.49-62, 2014.

E. M. Fox, K. Solomon, J. E. Moore, P. G. Wall, and S. Fanning, Phylogenetic profiles of in-house microflora in drains at a food production facility: comparison and biocontrol implications of Listeria-positive andnegative bacterial populations, Appl. Environ. Microbiol, vol.80, pp.3369-3374, 2014.

A. Fugère, D. Lalonde-séguin, G. Mitchell, E. Déziel, V. Dekimpe et al., Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients, PLoS ONE, vol.9, p.86705, 2014.

S. I. Galkina, J. M. Romanova, E. E. Bragina, I. G. Tiganova, V. I. Stadnichuk et al., Membrane tubules attach Salmonella Typhimurium to eukaryotic cells and bacteria, FEMS Immunol. Med. Microbiol, vol.61, pp.114-124, 2011.

M. Gandhi and M. L. Chikindas, Listeria: a foodborne pathogen that knows how to survive, Int. J. Food Microbiol, vol.113, pp.1-15, 2007.

D. Garmyn, L. Gal, J. Lemaitre, A. Hartmann, and P. Piveteau, Communication and autoinduction in the species Listeria monocytogenes: a central role for the agr system, Commun. Integr. Biol, vol.2, pp.371-374, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01789698

J. A. Garnett, V. I. Martinez-santos, Z. Saldana, T. Pape, W. Hawthorne et al., Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.3950-3955, 2012.

J. A. Garnett and S. Matthews, Interactions in bacterial biofilm development: a structural perspective, Curr. Protein Pept. Sci, vol.13, pp.739-755, 2012.

J. A. Geoghegan, R. M. Corrigan, D. T. Gruszka, P. Speziale, J. P. O'gara et al., Role of surface protein SasG in biofilm formation by Staphylococcus aureus, J. Bacteriol, vol.192, pp.5663-5673, 2010.

U. Gerstel and U. Römling, The csgD promoter, a control unit for biofilm formation in Salmonella Typhimurium, Res. Microbiol, vol.154, pp.659-667, 2003.

J. M. Ghigo, Natural conjugative plasmids induce bacterial biofilm development, Nature, vol.412, pp.442-445, 2001.

E. Giaouris, N. Chorianopoulos, A. Doulgeraki, and G. Nychas, Coculture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride, PLoS ONE, vol.8, p.77276, 2013.

E. Giaouris and L. L. Nesse, Attachment of Salmonella spp. to food contact and product surfaces and biofilm formation on them as stress adaptation and survival strategies, Salmonella: Prevalence, Risk Factors and Treatment Options, pp.111-136, 2015.

V. Girard, J. P. Cote, M. E. Charbonneau, M. Campos, F. Berthiaume et al., Conformation change in a self-recognizing autotransporter modulates bacterial cell-cell interaction, J. Biol. Chem, vol.285, pp.10616-10626, 2010.

B. Girennavar, M. L. Cepeda, K. A. Soni, A. Vikram, P. Jesudhasan et al., Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria, Int. J. Food Microbiol, vol.125, pp.204-208, 2008.

N. Goessweiner-mohr, K. Arends, W. Keller, and E. Grohmann, , 2013.

, Conjugative type IV secretion systems in Gram-positive bacteria, Plasmid, vol.70, pp.289-302

J. M. Gómez-gómez, A. , and R. , Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona, BMC Res. Notes, vol.7, p.108, 2014.

G. Barrios, A. F. Zuo, R. Hashimoto, Y. Yang, L. Bentley et al., Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022), J. Bacteriol, vol.188, pp.305-316, 2006.

F. Götz, Staphylococcus and biofilms, Mol. Microbiol, vol.43, pp.1367-1378, 2002.

R. M. Goulter, I. R. Gentle, and G. A. Dykes, Characterisation of curli production, cell surface hydrophobicity, autoaggregation and attachment behaviour of Escherichia coli O157, Curr. Microbiol, vol.61, pp.157-162, 2010.

M. Gross, S. E. Cramton, F. Götz, and A. Peschel, Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces, Infect. Immun, vol.69, pp.3423-3426, 2001.

H. Gu, S. Hou, C. Yongyat, S. De-tore, and D. Ren, Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms, Langmuir, vol.29, pp.11145-11153, 2013.

L. Gualdi, L. Tagliabue, S. Bertagnoli, T. Ierano, C. De-castro et al., Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli, Microbiology, vol.154, pp.2017-2024, 2008.

S. Gudmundsdottir, B. Gudbjornsdottir, H. L. Lauzon, H. Einarsson, K. G. Kristinsson et al., Tracing Listeria monocytogenes isolates from cold-smoked salmon and its processing environment in Iceland using pulsed-field gel electrophoresis, Int. J. Food Microbiol, vol.101, pp.41-51, 2005.

L. Guillier, V. Stahl, B. Hezard, E. Notz, and R. Briandet, Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves, Int. J. Food Microbiol, vol.128, pp.51-57, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01606918

L. Guo, X. He, and W. Shi, Intercellular communications in multispecies oral microbial communities, Front. Microbiol, vol.5, p.328, 2014.

O. Habimana, L. Guillier, S. Kulakauskas, and R. Briandet, Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth, Biofouling, vol.27, pp.1065-1072, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000632

O. Habimana, E. Heir, S. Langsrud, A. W. Asli, and T. Moretro, Enhanced surface colonization by Escherichia coli O157:H7 in biofilms formed by an Acinetobacter calcoaceticus isolate from meat-processing environments, Appl. Environ. Microbiol, vol.76, pp.4557-4559, 2010.

O. Habimana, T. Møretrø, S. Langsrud, L. K. Vestby, L. L. Nesse et al., Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains, BMC Vet. Res, vol.6, p.48, 2010.

O. Habimana, M. Meyrand, T. Meylheuc, S. Kulakauskas, and R. Briandet, Genetic features of resident biofilms determine attachment of Listeria monocytogenes, Appl. Environ. Microbiol, vol.75, pp.7814-7821, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663398

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol, vol.2, pp.95-108, 2004.

M. Hammar, A. Arnqvist, Z. Bian, A. Olsén, and S. Normark, Expression of two csg operons is required for production of fibronectin-and congo redbinding curli polymers in Escherichia coli K-12, Mol. Microbiol, vol.18, pp.661-670, 1995.

M. Harmsen, M. Lappann, S. Knøchel, and S. Molin, Role of extracellular DNA during biofilm formation by Listeria monocytogenes, Appl. Environ. Microbiol, vol.76, pp.2271-2279, 2010.

M. M. Harriott and M. C. Noverr, Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance, Antimicrob. Agents Chemother, vol.53, pp.3914-3922, 2009.

M. M. Harriott and M. C. Noverr, Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation, Antimicrob. Agents Chemother, vol.54, pp.3746-3755, 2010.

A. N. Hassan, D. M. Birt, and J. F. Frank, Behavior of Listeria monocytogenes in a Pseudomonas putida biofilm on a condensate-forming surface, J. Food Prot, vol.67, pp.322-327, 2004.

C. S. Hayes, S. K. Aoki, and D. A. Low, Bacterial contact-dependent delivery systems, Annu. Rev. Genet, vol.44, pp.71-90, 2010.

C. S. Hayes, S. Koskiniemi, Z. C. Ruhe, S. J. Poole, and D. A. Low, Mechanisms and biological roles of contact-dependent growth inhibition systems, Cold Spring Harb. Perspect. Med, vol.4, 2014.

C. S. Hayes and D. A. Low, Signals of growth regulation in bacteria, Curr. Opin. Microbiol, vol.12, pp.667-673, 2009.

M. A. Hefford, S. D'-aoust, T. D. Cyr, J. W. Austin, G. Sanders et al., Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568, Can. J. Microbiol, vol.51, pp.197-208, 2005.

C. Heilmann, Adhesion mechanisms of staphylococci, Adv. Exp. Med. Biol, vol.715, pp.105-123, 2011.

I. R. Henderson, M. Meehan, and P. Owen, Antigen 43, a phasevariable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12, FEMS Microbiol. Lett, vol.149, pp.115-120, 1997.

I. R. Henderson, F. Navarro-garcia, M. Desvaux, R. C. Fernandez, and D. Ala'-aldeen, Type V protein secretion pathway: the autotransporter story. Microbiol, Mol. Biol. Rev, vol.68, pp.692-744, 2004.

I. R. Henderson and P. Owen, The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR, J. Bacteriol, vol.181, pp.2132-2141, 1999.

I. R. Henderson, P. Owen, and J. P. Nataro, Molecular switches: the ON and OFF of bacterial phase variation, Mol. Microbiol, vol.33, pp.919-932, 1999.

J. A. Hennekinne, M. L. De-buyser, and S. Dragacci, Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation, FEMS Microbiol. Rev, vol.36, pp.815-836, 2012.

B. Heras, M. Totsika, K. M. Peters, J. J. Paxman, C. L. Gee et al., The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.457-462, 2014.

R. T. Hernandes, M. A. De-la-cruz, D. Yamamoto, J. A. Girón, and T. A. Gomes, Dissection of the role of pili and type 2 and 3 secretion systems in adherence and biofilm formation of an atypical enteropathogenic Escherichia coli strain, Infect. Immun, vol.81, pp.3793-3802, 2013.

L. R. Hoffman, E. Déziel, D. A. D'-argenio, F. Lépine, J. Emerson et al., Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A, vol.103, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00820015

K. Hojo, S. Nagaoka, T. Ohshima, and N. Maeda, Bacterial interactions in dental biofilm development, J. Dent. Res, vol.88, pp.982-990, 2009.

A. Houry, M. Gohar, J. Deschamps, E. Tischenko, S. Aymerich et al., Bacterial swimmers that infiltrate and take over the biofilm matrix, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.13088-13093, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004132

R. Huang, M. Li, and R. L. Gregory, Bacterial interactions in dental biofilm, Virulence, vol.2, pp.435-444, 2011.

Y. Huang, C. Shi, S. Yu, K. Li, and X. Shi, A putative MerR family regulator involved in biofilm formation in Listeria monocytogenes 4b G, Foodborne Pathog. Dis, vol.9, pp.767-772, 2012.

M. Hussain, A. Haggar, G. Peters, G. S. Chhatwal, M. Herrmann et al., More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host cell invasion but not for leukocyte activation, Infect. Immun, vol.76, pp.5615-5623, 2008.

N. Imuta, J. Nishi, K. Tokuda, R. Fujiyama, K. Manago et al., The Escherichia coli efflux pump TolC promotes aggregation of enteroaggregative E. coli 042, Infect. Immun, vol.76, pp.1247-1256, 2008.

Y. Irie and M. R. Parsek, Quorum sensing and microbial biofilms, Curr. Top. Microbiol. Immunol, vol.322, pp.67-84, 2008.

T. Iwase, Y. Uehara, H. Shinji, A. Tajima, H. Seo et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization, Nature, vol.465, pp.346-349, 2010.

E. A. Izano, M. A. Amarante, W. B. Kher, and J. B. Kaplan, Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms, Appl. Environ. Microbiol, vol.74, pp.470-476, 2008.

Z. Jaglic, M. Desvaux, A. Weiss, L. L. Nesse, R. L. Meyer et al., Surface adhesins and exopolymers of selected foodborne pathogens, Microbiology, vol.160, pp.2561-2582, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639423

I. K. Jahid and S. Ha, The paradox of mixed-species biofilms in the context of food safety, Compr. Rev. Food Sci. Food Saf, vol.13, pp.990-1011, 2014.

S. Jain, C. , and J. , Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis, J. Food Prot, vol.70, pp.2473-2479, 2007.

G. A. James, L. Beaudette, and J. W. Costerton, Interspecies bacterial interactions in biofilms, J. Ind. Microbiol, vol.15, pp.257-262, 1995.

J. C. Janssens, H. Steenackers, S. Robijns, E. Gellens, J. Levin et al., Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium, Appl. Environ. Microbiol, vol.74, pp.6639-6648, 2008.

K. K. Jefferson and N. Cerca, Bacterial-bacterial cell interactions in biofilms: detection of polysaccharide intercellular adhesins by blotting and confocal microscopy, Methods Mol. Biol, vol.341, pp.119-126, 2006.

K. K. Jefferson, D. B. Pier, D. A. Goldmann, and G. B. Pier, The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus, J. Bacteriol, vol.186, pp.2449-2456, 2004.

M. E. Jennings, L. N. Quick, N. Ubol, S. Shrom, N. Dollahon et al., Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation, PLoS ONE, vol.7, p.33080, 2012.

P. R. Jesudhasan, M. L. Cepeda, K. Widmer, S. E. Dowd, K. A. Soni et al., , 2010.

, in Salmonella enterica serovar Typhimurium, Foodborne Pathog. Dis, vol.7, pp.399-410

P. Jiang, J. Li, F. Han, G. Duan, X. Lu et al., Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101, PLoS ONE, vol.6, p.18514, 2011.

K. Jonas, H. Tomenius, A. Kader, S. Normark, U. Römling et al., Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy, BMC Microbiol, vol.7, p.70, 2007.

K. Jones and S. B. Bradshaw, Synergism in biofilm formation between Salmonella enteritidis and a nitrogen-fixing strain of Klebsiella pneumoniae, J. Appl. Microbiol, vol.82, pp.663-668, 1997.

S. R. Kadam, H. M. Den-besten, S. Van-der-veen, M. H. Zwietering, R. Moezelaar et al., Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin, Int. J. Food Microbiol, vol.165, pp.259-264, 2013.

J. B. Kaper, J. P. Nataro, and H. L. Mobley, Pathogenic Escherichia coli, Nat. Rev. Microbiol, vol.2, pp.123-140, 2004.

Y. Kim, J. W. Lee, S. G. Kang, S. Oh, and M. W. Griffiths, Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7, Anaerobe, vol.18, pp.539-545, 2012.

Y. Kim, S. Oh, and S. H. Kima, Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun, vol.379, pp.324-329, 2009.

S. Kjelleberg and S. Molin, Is there a role for quorum sensing signals in bacterial biofilms?, Curr. Opin. Microbiol, vol.5, pp.325-334, 2002.

B. J. Klayman, P. A. Volden, P. S. Stewart, and A. K. Camper, Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell, Environ. Sci. Technol, vol.43, pp.2105-2111, 2009.

P. Klemm, L. Hjerrild, M. Gjermansen, and M. A. Schembri, Structurefunction analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli, Mol. Microbiol, vol.51, pp.283-296, 2004.

P. Klemm, R. M. Vejborg, and O. Sherlock, Self-associating autotransporters, SAATs: functional and structural similarities, Int. J. Med. Microbiol, vol.296, pp.187-195, 2006.

J. R. Knowles, S. Roller, D. B. Murray, and A. S. Naidu, Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium, Appl. Environ. Microbiol, vol.71, pp.797-803, 2005.

P. E. Kolenbrander, R. J. Palmer, . Jr, A. H. Rickard, N. S. Jakubovics et al., Bacterial interactions and successions during plaque development, Periodontol, vol.42, pp.47-79, 2000.

K. F. Kong, C. Vuong, and M. Otto, Staphylococcus quorum sensing in biofilm formation and infection, Int. J. Med. Microbiol, vol.296, pp.133-139, 2006.

M. Kostaki, N. Chorianopoulos, E. Braxou, G. Nychas, and E. Giaouris, Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-Species (with Salmonella enterica) conditions, Appl. Environ. Microbiol, vol.78, pp.2586-2595, 2012.

S. Kumar, A. Parvathi, J. George, G. Krohne, I. Karunasagar et al., A study on the effects of some laboratory-derived genetic mutations on biofilm formation by Listeria monocytogenes, World J. Microbiol. Biotechnol, vol.25, pp.527-531, 2009.

H. K. Kuramitsu, X. He, R. Lux, M. H. Anderson, and W. Shi, Interspecies interactions within oral microbial communities. Microbiol, Mol. Biol. Rev, vol.71, pp.653-670, 2007.

M. Kuroda, R. Ito, Y. Tanaka, M. Yao, K. Matoba et al., Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus, Biochem. Biophys. Res. Commun, vol.377, pp.1102-1106, 2008.

M. V. Kuznetsova, I. L. Maslennikova, T. I. Karpunina, L. Y. Nesterova, and V. A. Demakov, Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro, Can. J. Microbiol, vol.59, pp.604-610, 2013.

J. Lafleur, M. Yasuda, and M. Shiaris, Induction of resistance to Staphylococcus aureus in an environmental marine biofilm, J. Microbiol. Methods, vol.93, pp.68-71, 2013.

M. A. Lasaro, N. Salinger, J. Zhang, Y. Wang, Z. Zhong et al., F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917, Appl. Environ. Microbiol, vol.75, pp.246-251, 2009.

C. Latasa, A. Roux, A. Toledo-arana, J. M. Ghigo, C. Gamazo et al., BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis, Mol. Microbiol, vol.58, pp.1322-1339, 2005.

G. Laverty, S. P. Gorman, and B. F. Gilmore, Biomolecular mechanisms of staphylococcal biofilm formation, Future Microbiol, vol.8, pp.509-524, 2013.

V. Lazar, Quorum sensing in biofilms-how to destroy the bacterial citadels or their cohesion/power?, Anaerobe, vol.17, pp.280-285, 2011.

N. A. Ledeboer, J. G. Frye, M. Mcclelland, and B. D. Jones, Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium, Infect. Immun, vol.74, pp.3156-3169, 2006.

N. A. Ledeboer and B. D. Jones, Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium, J. Bacteriol, vol.187, pp.3214-3226, 2005.

J. Lee, A. Jayaraman, and T. K. Wood, Indole is an inter-species biofilm signal mediated by SdiA, BMC Microbiol, vol.7, p.42, 2007.

J. H. Lee, Y. G. Kim, H. S. Cho, S. Y. Ryu, M. H. Cho et al., Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7, Phytomedicine, vol.21, pp.1037-1042, 2014.

K. W. Lee, S. Periasamy, M. Mukherjee, C. Xie, S. Kjelleberg et al., Biofilm development and enhanced stress resistance of a model, mixedspecies community biofilm, ISME J, vol.8, pp.894-907, 2014.

S. Le-guyon, R. Simm, M. Rhen, and U. Römling, Dissecting the cyclic di-guanylate monophosphate signaling network regulating motility in Salmonella enterica serovar Typhimurium, Environ. Microbiol, vol.17, pp.1310-1320, 2015.

K. P. Lemon, N. E. Freitag, and R. Kolter, The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes, J. Bacteriol, vol.192, pp.3969-3976, 2010.

K. P. Lemon, D. E. Higgins, and R. Kolter, Flagellar motility is critical for Listeria monocytogenes biofilm formation, J. Bacteriol, vol.189, pp.4418-4424, 2007.

L. L. Lenz, S. Mohammadi, A. Geissler, and D. A. Portnoy, SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.12432-12437, 2003.

L. L. Lenz and D. A. Portnoy, Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype, Mol. Microbiol, vol.45, pp.1043-1056, 2002.

V. Leriche and B. Carpentier, Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms, J. Appl. Microbiol, vol.88, pp.594-605, 2000.

Y. Lim, M. Jana, T. T. Luong, and C. Y. Lee, Control of glucose-and NaCl-induced biofilm formation by rbf in Staphylococcus aureus, J. Bacteriol, vol.186, pp.722-729, 2004.

N. T. Liu, A. M. Lefcourt, X. Nou, D. R. Shelton, G. Zhang et al., Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation, J. Food Prot, vol.76, pp.827-832, 2013.

N. T. Liu, X. Nou, A. M. Lefcourt, D. R. Shelton, and Y. M. Lo, Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities, Int. J. Food Microbiol, vol.171, pp.15-20, 2014.

Y. H. Li and X. Tian, Quorum sensing and bacterial social interactions in biofilms, Sensors (Basel), vol.12, pp.2519-2538, 2012.

S. P. Lopes, I. Machado, and M. O. Pereira, Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships, J. Ind. Microbiol. Biotechnol, vol.38, pp.133-140, 2011.

Q. Ma, G. Zhang, and T. K. Wood, Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti, BMC Res. Notes, vol.4, p.447, 2011.

S. Machata, T. Hain, M. Rohde, and T. Chakraborty, Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in Listeria monocytogenes, J. Bacteriol, vol.187, pp.8385-8394, 2005.

D. Mack, P. Becker, I. Chatterjee, S. Dobinsky, J. K. Knobloch et al., Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses, Int. J. Med. Microbiol, vol.294, pp.203-212, 2004.

J. S. Madsen, M. Burmølle, L. H. Hansen, and S. J. Sørensen, The interconnection between biofilm formation and horizontal gene transfer, FEMS Immunol. Med. Microbiol, vol.65, pp.183-195, 2012.

M. Malcova, H. Hradecka, R. Karpiskova, and I. Rychlik, Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation, Vet. Microbiol, vol.129, pp.360-366, 2008.

S. Malic, K. E. Hill, R. Playle, D. W. Thomas, and D. W. Williams, In vitro interaction of chronic wound bacteria in biofilms, J. Wound Care, vol.20, pp.574-577, 2011.

S. L. Marcus, J. H. Brumell, C. G. Pfeifer, and B. B. Finlay, Salmonella pathogenicity islands: big virulence in small packages, Microbes Infect, vol.2, pp.145-156, 2000.

N. Marouani-gadri, G. Augier, and B. Carpentier, Characterization of bacterial strains isolated from a beef-processing plant following cleaning and disinfection-Influence of isolated strains on biofilm formation by Sakai and EDL 933 E. coli O157:H7, Int. J. Food Microbiol, vol.133, pp.62-67, 2009.

E. J. Marsh, H. Luo, W. , and H. , A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities, FEMS Microbiol. Lett, vol.228, pp.203-210, 2003.

T. May and S. Okabe, Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli, J. Bacteriol, vol.190, pp.7479-7490, 2008.

J. Mccourt, D. P. O'halloran, H. Mccarthy, J. P. O'gara, and J. A. Geoghegan, Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC, FEMS Microbiol. Lett, vol.353, pp.157-164, 2014.

R. J. Mclean and K. S. Kakirde, Enhancing metagenomics investigations of microbial interactions with biofilm technology, Int. J. Mol. Sci, vol.14, pp.22246-22257, 2013.

O. Melter and B. Radojevi?, Small colony variants of Staphylococcus aureus-review, Folia Microbiol. (Praha), vol.55, pp.548-558, 2010.

N. Merino, A. Toledo-arana, M. Vergara-irigaray, J. Valle, C. Solano et al., Protein A-mediated multicellular behavior in Staphylococcus aureus, J. Bacteriol, vol.191, pp.832-843, 2009.

K. W. Millsap, R. Bos, H. C. Van-der-mei, and H. J. Busscher, Adhesive interactions between voice prosthetic yeast and bacteria on silicone rubber in the absence and presence of saliva, Antonie Van Leeuwenhoek, vol.79, pp.337-343, 2001.

C. C. Minei, B. C. Gomes, R. P. Ratti, C. E. D'-angelis, D. Martinis et al., Influence of peroxyacetic acid and nisin and coculture with Enterococcus faecium on Listeria monocytogenes biofilm formation, J. Food Prot, vol.71, pp.634-638, 2008.

S. Mitri, J. B. Xavier, and K. R. Foster, Social evolution in multispecies biofilms, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.10839-10846, 2011.

Y. Miyazaki, S. Kamiya, T. Hanawa, M. Fukuda, H. Kawakami et al., Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli, J. Infect. Chemother, vol.16, pp.10-18, 2010.

M. Mliji-el, F. Hamadi, H. Latrache, N. Cohen, A. El-ghmari et al., Association between plasmid carrying an expanded-spectrum cephalosporin resistance and biofilm formation in Escherichia coli, New Microbiol, vol.30, pp.19-27, 2007.

S. Molin and T. Tolker-nielsen, Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure, Curr. Opin. Biotechnol, vol.14, pp.255-261, 2003.

S. Møller, C. Sternberg, J. B. Andersen, B. B. Christensen, J. L. Ramos et al., In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members, Appl. Environ. Microbiol, vol.64, pp.721-732, 1998.

I. R. Monk, G. M. Cook, B. C. Monk, and P. J. Bremer, Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates, Appl. Environ. Microbiol, vol.70, pp.6686-6694, 2004.

P. Moons, C. W. Michiels, A. , and A. , Bacterial interactions in biofilms, Crit. Rev. Microbiol, vol.35, pp.157-168, 2009.

P. Moons, R. Van-houdt, A. Aertsen, K. Vanoirbeek, Y. Engelborghs et al., Role of quorum sensing and antimicrobial component production by Serratia plymuthica in formation of biofilms, including mixed biofilms with Escherichia coli, Appl. Environ. Microbiol, vol.72, 2006.

C. G. Moreira, K. Palmer, M. Whiteley, M. P. Sircili, L. R. Trabulsi et al., Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli, J. Bacteriol, vol.188, pp.3952-3961, 2006.

T. Møretrø and S. Langsrud, Listeria monocytogenes: biofilm formation and persistence in food processing environments, Biofilms, vol.1, pp.107-121, 2004.

L. N. Mrak, A. K. Zielinska, K. E. Beenken, I. N. Mrak, D. N. Atwood et al., saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus, PLoS ONE, vol.7, p.38453, 2012.

C. D. Nadell, J. B. Xavier, and K. R. Foster, The sociobiology of biofilms, FEMS Microbiol. Rev, vol.33, pp.206-224, 2009.

R. Nakao, M. Ramstedt, S. N. Wai, and B. E. Uhlin, Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis, PLoS ONE, vol.7, p.51241, 2012.

J. P. Nataro and J. B. Kaper, Diarrheagenic Escherichia coli, Clin. Microbiol. Rev, vol.11, pp.142-201, 1998.

T. R. Neu, B. Manz, F. Volke, J. J. Dynes, A. P. Hitchcock et al., Advanced imaging techniques for assessment of structure, composition and function in biofilm systems, FEMS Microbiol. Ecol, vol.72, pp.1-21, 2010.

U. T. Nguyen and L. L. Burrows, DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms, Int. J. Food Microbiol, vol.187, pp.26-32, 2014.

L. Nicholls, T. H. Grant, and R. M. Robins-browne, Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells, Mol. Microbiol, vol.35, pp.275-288, 2000.

A. Norman, L. H. Hansen, Q. She, and S. J. Sørensen, Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux, Plasmid, vol.60, pp.59-74, 2008.

D. E. Norwood and A. Gilmour, The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm, J. Appl. Microbiol, vol.88, pp.512-520, 2000.

D. E. Norwood and A. Gilmour, The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature, Lett. Appl. Microbiol, vol.33, pp.320-324, 2001.

J. P. O'gara, ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus, FEMS Microbiol. Lett, vol.270, pp.179-188, 2007.

M. Okshevsky and R. L. Meyer, The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms, Crit. Rev. Microbiol, vol.41, pp.341-352, 2015.

M. Okshevsky, V. R. Regina, and R. L. Meyer, Extracellular DNA as a target for biofilm control, Curr. Opin. Biotechnol, vol.33, pp.73-80, 2014.

E. O'neill, C. Pozzi, P. Houston, H. Humphreys, D. A. Robinson et al., A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB, J. Bacteriol, vol.190, pp.3835-3850, 2008.

C. Y. Ong, S. A. Beatson, A. G. Mcewan, and M. A. Schembri, , 2009.

, Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm, Appl. Environ. Microbiol, vol.75, pp.6783-6791

M. Otto, Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity, Annu. Rev. Med, vol.64, pp.175-188, 2013.

Y. Ouyang, J. Li, Y. Dong, L. V. Blakely, and M. Cao, Genome wide screening of genes required for Listeria monocytogenes biofilm formation, J. Biotech. Res, vol.4, pp.13-25, 2012.

Y. Pan, F. Breidt, and S. Kathariou, Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment, Appl. Environ. Microbiol, vol.72, pp.7711-7717, 2006.

Y. Pan, F. Breidt, and S. Kathariou, Competition of Listeria monocytogenes serotype 1/2a and 4b strains in mixed-culture biofilms, Appl. Environ. Microbiol, vol.75, pp.5846-5852, 2009.

I. Pastar, A. G. Nusbaum, J. Gil, S. B. Patel, J. Chen et al., Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PLoS ONE, vol.8, p.56846, 2013.

A. L. Pereira, T. N. Silva, A. C. Gomes, A. C. Araujo, and L. G. Giugliano, Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: a consortium mediated by putative F pili, BMC Microbiol, vol.10, p.57, 2010.

M. Perez-ibarreche, P. Castellano, and G. Vignolo, Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces, Meat Sci, vol.96, pp.295-303, 2014.

S. Periasamy, H. S. Joo, A. C. Duong, T. H. Bach, V. Y. Tan et al., How Staphylococcus aureus biofilms develop their characteristic structure, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.1281-1286, 2012.

B. M. Peters, M. A. Jabra-rizk, G. A. O'may, J. W. Costerton, and M. E. Shirtliff, Polymicrobial interactions: impact on pathogenesis and human disease, Clin. Microbiol. Rev, vol.25, pp.193-213, 2012.

B. M. Peters, E. S. Ovchinnikova, B. P. Krom, L. M. Schlecht, H. Zhou et al., Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p, Microbiology, vol.158, pp.2975-2986, 2012.

B. M. Peters, M. A. Jabra-rizk, M. A. Scheper, J. G. Leid, J. W. Costerton et al., Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms, FEMS Immunol. Med. Microbiol, vol.59, pp.493-503, 2010.

C. Prigent-combaret, G. Prensier, T. T. Le-thi, O. Vidal, P. Lejeune et al., Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid, Environ. Microbiol, vol.2, pp.450-464, 2000.

A. M. Prouty, W. H. Schwesinger, and J. S. Gunn, Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp, Infect. Immun, 2002.

B. Purevdorj, J. W. Costerton, and P. Stoodley, Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol, vol.68, pp.4457-4464, 2002.

S. Rachid, K. Ohlsen, U. Wallner, J. Hacker, M. Hecker et al., Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate, J. Bacteriol, vol.182, pp.6824-6826, 2000.

D. Raghunathan, T. J. Wells, F. C. Morris, R. K. Shaw, S. Bobat et al., SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection, Infect. Immun, vol.79, pp.4342-4352, 2011.

T. B. Rasmussen and M. Givskov, Quorum sensing inhibitors: a bargain of effects, Microbiology, vol.152, pp.895-904, 2006.

K. A. Reed, M. A. Clark, T. A. Booth, C. J. Hueck, S. I. Miller et al., Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1, Infect. Immun, vol.66, pp.2007-2017, 1998.

A. Reisner, B. M. Höller, S. Molin, and E. L. Zechner, Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion, J. Bacteriol, vol.188, pp.3582-3588, 2006.

O. Rendueles and J. M. Ghigo, Multi-species biofilms: how to avoid unfriendly neighbors, FEMS Microbiol. Rev, vol.36, pp.972-989, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02613136

O. Rendueles, L. Travier, P. Latour-lambert, T. Fontaine, J. Magnus et al., Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides, vol.2, pp.43-54, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02017407

S. Renier, C. Chagnot, J. Deschamps, N. Caccia, J. Szlavik et al., Inactivation of the SecA2 protein export pathway in Listeria monocytogenes promotes cell aggregation, impacts biofilm architecture and induces biofilm formation in environmental conditions, Environ. Microbiol, vol.16, pp.1176-1192, 2014.

S. Renier, C. Chambon, D. Viala, C. Chagnot, M. Hébraud et al., Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e, J. Proteomics, vol.80, pp.183-195, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649471

S. Renier, M. Hébraud, and M. Desvaux, Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of a Gram-positive foodborne pathogen, Environ. Microbiol, vol.13, pp.835-850, 2011.

T. T. Ren, X. Y. Li, and H. Q. Yub, Effect of N-acy-l-homoserine lactoneslike molecules from aerobic granules on biofilm formation by Escherichia coli K12, Bioresour. Technol, vol.129, pp.655-658, 2013.

A. H. Rickard, P. Gilbert, N. J. High, P. E. Kolenbrander, and P. S. Handley, Bacterial coaggregation: an integral process in the development of multi-species biofilms, Trends Microbiol, vol.11, pp.34-37, 2003.

C. U. Riedel, I. E. Monk, P. G. Casey, M. S. Waidmann, C. G. Gahan et al., AgrD-dependent quorum sensing affect biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes, Mol. Microbiol, vol.71, pp.1177-1189, 2009.

A. Rieu, R. Briandet, O. Habimana, D. Garmyn, J. Guzzo et al., Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains, Appl. Environ. Microbiol, vol.74, pp.4491-4497, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00453479

A. Rieu, J. Lemaître, J. Guzzo, and P. Piveteau, Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus, Int. J. Food Microbiol, vol.126, pp.76-82, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00453478

A. Rieu, S. Weidmann, D. Garmyn, P. Piveteau, and J. Guzzo, agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern, Appl. Environ. Microbiol, vol.73, pp.6125-6133, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00441284

H. L. Røder, L. H. Hansen, S. J. Sørensen, and M. Burmølle, The impact of the conjugative IncP-1 plasmid pKJK5 on multispecies biofilm formation is dependent on the plasmid host, FEMS Microbiol. Lett, vol.344, pp.186-192, 2013.

U. Römling, Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae, Cell. Mol. Life Sci, vol.62, pp.1234-1246, 2005.

U. Römling, Z. Bian, M. Hammar, W. D. Sierralta, and S. Normark, Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation, J. Bacteriol, vol.180, pp.722-731, 1998.

U. Römling and M. Rohde, Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level, FEMS Microbiol. Lett, vol.180, pp.91-102, 1999.

N. J. Rowan, A. A. Candlish, A. Bubert, J. G. Anderson, K. Kramer et al., Virulent rough filaments of Listeria monocytogenes from clinical and food samples secreting wild-type levels of cell-free p60 protein, J. Clin. Microbiol, vol.38, pp.2643-2648, 2000.

T. Ruby, L. Mclaughlin, S. Gopinath, and D. Monack, Salmonella's long-term relationship with its host, FEMS Microbiol. Rev, vol.36, pp.600-615, 2012.

J. H. Ryu, H. Kim, and L. R. Beuchat, Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature, J. Food Prot, vol.67, pp.2123-2131, 2004.

J. H. Ryu, H. Kim, J. F. Frank, and L. R. Beuchat, Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production, Lett. Appl. Microbiol, vol.39, pp.359-362, 2004.

P. Saa-ibusquiza, J. J. Herrera, D. Vazquez-sanchez, and M. L. Cabo, Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida, Food Control, vol.25, pp.202-210, 2012.

B. Sadowska, E. Walencka, M. Wieckowska-szakiel, and B. Ró?alska, Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus, Folia Microbiol. (Praha), vol.55, pp.497-501, 2010.

Z. Saldaña, J. Xicohtencatl-cortes, F. Avelino, A. D. Phillips, J. B. Kaper et al., Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli, Environ. Microbiol, vol.11, pp.992-1006, 2009.

K. Sambanthamoorthy, A. Schwartz, V. Nagarajan, and M. O. Elasri, The role of msa in Staphylococcus aureus biofilm formation, BMC Microbiol, vol.8, p.221, 2008.

C. J. Sanchez, P. Shivshankar, K. Stol, S. Trakhtenbroit, P. M. Sullam et al., The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms, PLoS Pathog, vol.6, p.1001044, 2010.

K. C. Sasahara and E. A. Zottola, Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing system, J. Food Prot, vol.56, pp.1022-1028, 1993.

L. M. Schaefer, V. S. Brözel, and S. N. Venter, Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms, J. Water Health, vol.11, pp.629-635, 2013.

K. Scher, U. Römling, Y. , and S. , Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interphase, Appl. Environ. Microbiol, vol.71, pp.1163-1168, 2005.

K. Schroeder, M. Jularic, S. M. Horsburgh, N. Hirschhausen, C. Neumann et al., Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation, PLoS ONE, vol.4, p.7567, 2009.

K. Schwartz, A. K. Syed, R. E. Stephenson, A. H. Rickard, and B. R. Boles, Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms, PLoS Pathog, vol.8, p.1002744, 2012.

O. Sherlock, M. A. Schembri, A. Reisner, and P. Klemm, Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation, J. Bacteriol, vol.186, pp.8058-8065, 2004.

O. Sherlock, R. M. Vejborg, and P. Klemm, The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation, Infect. Immun, vol.73, pp.1954-1963, 2005.

M. E. Shirtliff, J. T. Mader, and A. K. Camper, Molecular interactions in biofilms, Chem. Biol, vol.9, pp.859-871, 2002.

M. E. Shirtliff, B. M. Peters, and M. A. Jabra-rizk, Cross-kingdom interactions: Candida albicans and bacteria, FEMS Microbiol. Lett, vol.299, pp.1-8, 2009.

M. J. Sibbald, X. M. Yang, E. Tsompanidou, D. Qu, M. Hecker et al., Partially overlapping substrate specificities of staphylococcal group A sortases, Proteomics, vol.12, pp.3049-3062, 2012.

K. Silagyi, S. Kim, Y. M. Lo, and C. Wei, Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products, Food Microbiol, vol.26, pp.514-519, 2009.

R. Simm, A. Lusch, A. Kader, M. Andersson, and U. Römling, Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium, J. Bacteriol, vol.189, pp.3613-3623, 2007.

M. Simões, L. C. Simões, and M. J. Vieira, Species association increases biofilm resistance to chemical and mechanical treatments, Water Res, vol.43, pp.229-237, 2009.

R. Singh, P. Ray, A. Das, and M. Sharma, Enhanced production of exopolysaccharide matrix and biofilm by a menadione-auxotrophic Staphylococcus aureus small-colony variant, J. Med. Microbiol, vol.59, pp.521-527, 2010.

L. C. Skillman, I. W. Sutherland, M. V. Jones, and A. Goulsbra, Green fluorescent protein as a novel species-specific marker in enteric dual-species biofilms, Microbiology, vol.144, pp.2095-2101, 1998.

C. Solano, B. García, J. Valle, C. Berasain, J. M. Ghigo et al., Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose, Mol. Microbiol, vol.43, pp.793-808, 2002.

H. T. Solheim, C. Sekse, A. M. Urdahl, Y. Wasteson, and L. L. Nesse, Biofilm as an environment for dissemination of stx genes by transduction, Appl. Environ. Microbiol, vol.79, pp.896-900, 2013.

E. B. Solomon, B. A. Niemira, G. M. Sapers, and B. A. Annous, Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources, J. Food Prot, vol.68, pp.906-912, 2005.

P. Speziale, G. Pietrocola, T. J. Foster, and J. A. Geoghegan, Proteinbased biofilm matrices in Staphylococci, Front. Cell. Infect. Microbiol, vol.4, p.171, 2014.

H. Steenackers, K. Hermans, J. Vanderleyden, D. Keersmaecker, and S. C. , Salmonella biofilms: an overview on occurrence, structure, regulation and eradication, Food Res. Int, vol.45, pp.502-531, 2012.

P. S. Stewart and J. W. Costerton, Antibiotic resistance of bacteria in biofilms, Lancet, vol.358, pp.135-138, 2001.

P. S. Stewart and M. J. Franklin, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol, vol.6, pp.199-210, 2008.

P. Stoodley, I. Dodds, J. D. Boyle, and H. M. Scott, Influence of hydrodynamics and nutrients on biofilm structure, J. Appl. Microbiol, vol.85, pp.19-28, 1998.

P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as complex differentiated communities, Annu. Rev. Microbiol, vol.56, pp.187-209, 2002.

S. Sugimoto, T. Iwamoto, K. Takada, K. Okuda, A. Tajima et al., Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction, J. Bacteriol, vol.195, pp.1645-1655, 2013.

E. Tampakakis, A. Y. Peleg, and E. Mylonakis, Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium, Eukaryot. Cell, vol.8, pp.732-737, 2009.

K. M. Thompson, N. Abraham, J. , and K. K. , Staphylococcus aureus extracellular adherence protein contributes to biofilm formation in the presence of serum, FEMS Microbiol. Lett, vol.305, pp.143-147, 2010.

T. Todhanakasem, Y. , and G. M. , Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms, J. Bacteriol, vol.190, pp.6030-6034, 2008.

A. Toledo-arana, N. Merino, M. Vergara-irigaray, M. Débarbouillé, J. R. Penadés et al., Staphylococcus aureus develops an alternative, icaindependent biofilm in the absence of the arlRS two-component system, J. Bacteriol, vol.187, pp.5318-5329, 2005.

M. A. Tormo, C. Ubeda, M. Martí, E. Maiques, C. Cucarella et al., Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus, Microbiology, vol.153, pp.1702-1710, 2007.

A. G. Torres, N. T. Perna, V. Burland, A. Ruknudin, F. R. Blattner et al., Characterization of Cah, a calcium-binding and heat-extractable autotransporter protein of enterohaemorrhagic Escherichia coli, Mol. Microbiol, vol.45, pp.951-966, 2002.

L. Travier, S. Guadagnini, E. Gouin, A. Dufour, V. Chenal-francisque et al., ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage, PLoS Pathog, vol.9, p.1003131, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02017492

L. Travier and M. Lecuit, Listeria monocytogenes ActA: a new function for a "classic" virulence factor, Curr. Opin. Microbiol, vol.17, pp.53-60, 2014.

J. J. Tree, G. C. Ulett, J. L. Hobman, C. Constantinidou, N. L. Brown et al., The multicopper oxidase (CueO) and cell aggregation in Escherichia coli, Environ. Microbiol, vol.9, pp.2110-2116, 2007.

O. Tresse, V. Lebret, T. Benezech, and C. Faille, Comparative evaluation of adhesion, surface properties, and surface protein composition of Listeria monocytogenes strains after cultivation at constant pH of 5 and 7, J. Appl. Microbiol, vol.101, pp.53-62, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02658672

O. Tresse, V. Lebret, D. Garmyn, and O. Dussurget, The impact of growth history and flagellation on the adhesion of various Listeria monocytogenes strains to polystyrene, Can. J. Microbiol, vol.55, pp.189-196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667361

M. P. Trotonda, A. C. Manna, A. L. Cheung, I. Lasa, and J. R. Penadés, SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus, J. Bacteriol, vol.187, pp.5790-5798, 2005.

G. A. Uhlich, P. H. Cooke, and E. B. Solomon, Analyses of the red-dryrough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents, Appl. Environ. Microbiol, vol.72, pp.2564-2572, 2006.

G. A. Uhlich, D. P. Rogers, and D. A. Mosier, Escherichia coli serotype O157:H7 retention on solid surfaces and peroxide resistance is enhanced by dual-strain biofilm formation, Foodborne Pathog. Dis, vol.7, pp.935-943, 2010.

G. C. Ulett, A. N. Mabbett, K. C. Fung, R. I. Webb, and M. A. Schembri, The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation, Microbiology, vol.153, pp.2321-2331, 2007.

A. Vacheva, R. Ivanova, T. Paunova-krasteva, and S. Stoitsova, Released products of pathogenic bacteria stimulate biofilm formation by Escherichia coli K-12 strains, Antonie Van Leeuwenhoek, vol.102, pp.105-119, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00748274

W. B. Valderrama and C. N. Cutter, An ecological perspective of Listeria monocytogenes biofilms in food processing facilities, Crit. Rev. Food Sci. Nutr, vol.53, pp.801-817, 2013.

J. Valle, S. Da-re, N. Henry, T. Fontaine, D. Balestrino et al., Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.12558-12563, 2006.

J. Valle, A. Toledo-arana, C. Berasain, J. M. Ghigo, B. Amorena et al., Mixed species biofilms of Listeria monocytogenes and Lactobacillus plantarum show enhanced resistance to benzalkonium chloride and peracetic acid, Int. J. Food Microbiol, vol.48, pp.421-431, 2003.

M. W. Van-der-woude and I. R. Henderson, Regulation and function of Ag43 (flu), Annu. Rev. Microbiol, vol.62, pp.153-169, 2008.

R. Van-houdt, A. Aertsen, A. Jansen, A. L. Quintana, and C. W. Michiels, Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment, J. Appl. Microbiol, vol.96, pp.177-184, 2004.

R. Van-houdt and C. W. Michiels, Role of bacterial cell surface structures in Escherichia coli biofilm formation, Res. Microbiol, vol.156, pp.626-633, 2005.

E. Van-meervenne, R. De-weirdt, E. Van-coillie, F. Devlieghere, L. Herman et al., Biofilm models for the food industry: hot spots for plasmid transfer?, Pathog. Dis, vol.70, pp.332-338, 2014.

S. Vatanyoopaisarn, A. Nazli, C. E. Dodd, C. E. Rees, and W. M. Waites, Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel, Appl. Environ. Microbiol, vol.66, pp.860-863, 2000.

R. M. Vejborg and P. Klemm, Cellular chain formation in Escherichia coli biofilms, Microbiology, vol.155, pp.1407-1417, 2009.

M. Vergara-irigaray, T. Maira-litrán, N. Merino, G. B. Pier, J. R. Penadés et al., Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface, Microbiology, vol.154, pp.865-877, 2008.

L. K. Vestby, K. C. Johannesen, I. L. Witsø, O. Habimana, A. A. Scheie et al., Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces, J. Appl. Microbiol, vol.116, pp.258-268, 2014.

L. K. Vestby, J. Lönn-stensrud, T. Møretrø, S. Langsrud, A. Aamdal-scheie et al., A synthetic furanone potentiates the effect of disinfectants on Salmonella in biofilm, J. Appl. Microbiol, vol.108, pp.771-778, 2010.

A. Vikram, G. K. Jayaprakasha, P. R. Jesudhasan, S. D. Pillai, and B. S. Patil, Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids, J. Appl. Microbiol, vol.109, pp.515-527, 2010.

A. Vikram, P. R. Jesudhasan, G. K. Jayaprakasha, B. S. Pillai, and B. S. Patil, Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm, Int. J. Food Microbiol, vol.140, pp.109-116, 2010.

C. Vuong, C. Gerke, G. A. Somerville, E. R. Fischer, and M. Otto, Quorum-sensing control of biofilm factors in Staphylococcus epidermidis, J. Infect. Dis, vol.188, pp.706-718, 2003.

C. Wagner and M. Hensel, Adhesive mechanisms of Salmonella enterica, Adv. Exp. Med. Biol, vol.715, pp.17-34, 2011.

E. Walencka, S. Rózalska, B. Sadowska, and B. Rózalska, The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation, Folia Microbiol. (Praha), vol.53, pp.61-66, 2008.

H. Wang, Y. Huang, S. Wu, Y. Li, Y. Ye et al., Extracellular DNA inhibits Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi biofilm development on abiotic surfaces, Curr. Microbiol, vol.68, pp.262-268, 2014.

R. Wang, N. Kalchayanand, J. W. Schmidt, and D. M. Harhay, Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances, J. Food Prot, vol.76, pp.1513-1522, 2013.

C. M. Waters and B. L. Bassler, Quorum sensing: cell-to-cell communication in bacteria, Ann. Rev. Cell Dev. Biol, vol.21, pp.319-346, 2005.

P. Watnick and R. Kolter, Biofilm, city of microbes, J. Bacteriol, vol.182, pp.2675-2679, 2000.

J. S. Webb, M. Givskov, and S. Kjelleberg, Bacterial biofilms: prokaryotic adventures in multicellularity, Curr. Opin. Microbiol, vol.6, pp.578-585, 2003.

C. Weiler, A. Ifland, A. Naumann, S. Kleta, and M. Noll, Incorporation of Listeria monocytogenes strains in raw milk biofilms, Int. J. Food Microbiol, vol.161, pp.61-68, 2013.

T. J. Wells, O. Sherlock, L. Rivas, A. Mahajan, S. A. Beatson et al., EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation, Environ. Microbiol, vol.10, pp.589-604, 2008.

A. P. White, D. L. Gibson, S. K. Collinson, P. A. Banser, and W. W. Kay, Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis, J. Bacteriol, vol.185, pp.5398-5407, 2003.

A. P. White, A. M. Weljie, D. Apel, P. Zhang, R. Shaykhutdinov et al., A global metabolic shift is linked to Salmonella multicellular development, PLoS ONE, vol.5, p.11814, 2010.

M. S. Wollenberg, J. Claesen, I. F. Escapa, K. L. Aldridge, M. A. Fischbach et al., Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation, mBio, vol.5, pp.1286-1300, 2014.

J. Woo, A. , and J. , Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens, Lett. Appl. Microbiol, vol.56, pp.307-313, 2013.

S. Wuertz, S. Okabe, and M. Hausner, Microbial communities and their interactions in biofilm systems: an overview, Water Sci. Technol, vol.49, pp.327-336, 2004.

B. Xayarath and N. E. Freitag, Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocytogenes, Future Microbiol, vol.7, pp.839-852, 2012.

L. Yang, Y. Liu, T. Markussen, N. Høiby, T. Tolker-nielsen et al., Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa, FEMS Immunol. Med. Microbiol, vol.62, pp.339-347, 2011.

L. Yang, Y. Liu, H. Wu, N. Hoiby, S. Molin et al., Current understanding of multi-species biofilms, Int. J. Oral Sci, vol.3, pp.74-81, 2011.

J. M. Yarwood, D. J. Bartels, E. M. Volper, and E. P. Greenberg, Quorum sensing in Staphylococcus aureus biofilms, J. Bacteriol, vol.186, pp.1838-1850, 2004.

Y. Yoon and J. N. Sofos, Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation, J. Food Sci, vol.73, pp.140-147, 2008.

Y. Yoon and J. N. Sofos, Conditions affecting autoinducer-2-based quorum-sensing of Escherichia coli O157:H7 on fresh beef, J. Food Saf, vol.28, pp.587-600, 2008.

Y. You, T. Xue, L. Cao, L. Zhao, H. Sun et al., Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner, Int. J. Med. Microbiol, vol.304, pp.603-612, 2014.

D. Yu, L. Zhao, T. Xue, and B. Sun, Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner, BMC Microbiol, vol.12, p.288, 2012.

H. S. Yun, Y. Kim, S. Oh, W. M. Jeon, J. F. Frank et al., Susceptibility of Listeria monocytogenes biofilms and planktonic cultures to hydrogen peroxide in food processing environments, Biosci. Biotechnol. Biochem, vol.76, 2008.

F. Zameer, S. Gopal, G. Krohne, and J. Kreft, Development of a biofilm model for Listeria monocytogenes EGD-e, World J. Microbiol. Biotechnol, vol.26, pp.1143-1147, 2010.

X. S. Zhang, R. Garcia-contreras, and T. K. Wood, YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity, J. Bacteriol, vol.189, pp.3051-3062, 2007.

T. Zhao, M. P. Doyle, and P. Zhao, Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms, Appl. Environ. Microbiol, vol.70, pp.3996-4003, 2004.

T. Zhao, T. C. Podtburg, P. Zhao, D. Chen, D. A. Baker et al., Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant, J. Food Prot, vol.76, pp.601-607, 2013.

T. Zhao, T. C. Podtburg, P. Zhao, B. E. Schmidt, D. A. Baker et al., Control of Listeria spp. by competitive-exclusion bacteria in floor drains of a poultry processing plant, Appl. Environ. Microbiol, vol.72, pp.3314-3320, 2006.

M. Zhou, Z. Guo, Y. Yang, Q. Duan, Q. Zhang et al., Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli, Vet. Microbiol, vol.168, pp.148-153, 2014.

Q. Zhou, F. Feng, L. Wang, X. Feng, X. Yin et al., Virulence factor PrfA is essential for biofilm formation in Listeria monocytogenes but not in Listeria innocua, Curr. Microbiol, vol.63, pp.186-192, 2011.

Y. Zhou, D. Smith, B. J. Leong, K. Brännström, F. Almqvist et al., Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms, J. Biol. Chem, vol.287, pp.35092-35103, 2012.

X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, and U. Römling, The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix, Mol. Microbiol, vol.39, pp.1452-1463, 2001.