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Abstract  

This study presents the potential of infrared diffuse reflectance spectroscopy (DRS) to predict soil 

organic carbon (SOC) content. A large national soil library was used, including about 3800 

samples collected at two soil depths (0-30 and 30-50 cm) using a 16 × 16 km plot grid over the 

French metropolitan territory (552,000 km
2
). Reflectance spectra were collected in the laboratory 

using visible and near infrared (VNIR), near infrared (NIR) and mid infrared (MIR) 

spectrophotometers. The soil data library was broken down into calibration and validation sets 

through sample selection at random or based on spectral representativeness. The calibration 

intensity was investigated in order to assess the optimum number of calibration samples required 

to obtain accurate models. Predictions were achieved using global or local partial least square 

regression (PLSR) built using VNIR, NIR and MIR spectra separately or in combination. Local 

PLSR uses only calibration samples that are spectral neighbors of each validation sample, thus 

builds one model per validation sample. Model performance was evaluated on the validation set 

based on the standard error of prediction (SEP), the ratio of performance to deviation (RPDv), and 

the ratio of performance to interquartile range (RPIQv).  

Using all calibration samples, the global PLSR model provided the most precise predictions of 

SOC content with the MIR spectra, then with the NIR spectra, and less accurate predictions with 

the VNIR spectra (SEP = 2.6, 4.4 and 4.8 g kg
-1

, RPDv = 2.7, 2.3 and 1.5, and RPIQv = 3.3, 2.2 
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and 1.9, respectively). The combination of spectral libraries did not improve model performance 

noticeably. Local PLSR provided better models than global PLSR, allowing accurate predictions 

with only 30% of the calibration set, whatever the spectral library (RPDv and RPIQv > 2.0). 

Optimum calibration intensity was estimated at about 60% for MIR spectra with both global and 

local PLSR, 30-40% for VNIR and NIR spectra with global PLSR, but 50% for VNIR spectra 

and 70% for NIR spectra with local PLSR. The most accurate models, which were obtained using 

the MIR spectra and local PLSR with calibration intensity higher than 50%, allowed very good 

SOC determination for the most frequent French soils (SEP < 2 g kg
-1

). This highlights the 

potential of infrared DRS for national SOC monitoring, provided that calibration database is 

strengthened with samples from less frequent soil types. 

 

Keywords: Soil organic carbon; Near infrared reflectance spectroscopy (NIRS); Mid infrared 

reflectance spectroscopy (MIRS); Global regression; Local regression. 

 

Highlights 

 Infrared spectroscopy was used to predict SOC content in a national soil database 

 Spectral range and calibration sampling intensity and procedure were investigated 

 For the samples and spectrometers studied, mid infrared was the most informative 

 Optimum calibration intensity was 50% on average, regardless of the spectral range 

 Local calibration provided the most accurate predictions, with error < 2 g C kg
-1

 

 

1. Introduction 

Organic carbon is a key component in soil, where it plays a central role in essential functions. 

Soil organic carbon (SOC) quantification enables to assess soil quality through its structural 

stability, water retention, as well as chemical and biological fertility (Vaughan and Malcolm, 

1985; Reeves, 1997). In addition, as the greatest terrestrial carbon pool, SOC is involved in 

global carbon cycling, thus in global warming (Batjes, 1996; Lal, 2004), with, for instance, an 

estimated amount of about 75 Mt SOC in the EU-27 (Schils et al., 2008). However, SOC declines 

across Europe to such an extent that it has become a dramatic threat (Lugato et al., 2014; de 

Brogniez et al., 2015). 
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With its ease to use, fast implementation and low cost, infrared diffuse reflectance spectroscopy 

(DRS) has become increasingly popular these last decades to estimate SOC (Gholizadeh et al., 

2013; Soriano-Disla et al., 2014). In comparison with the traditional laboratory methods, infrared 

DRS does not require chemical reagents and tedious sample preparation, therefore, it can be 

quickly implemented in both laboratory and field conditions (Gras et al., 2014). The first studies 

demonstrating the capability of infrared DRS to determine SOC were based on visible and near 

infrared (VNIR), or only near infrared (NIR) spectral ranges (Ben-Dor and Banin, 1995; 

Shepherd and Walsh, 2002; Brown et al., 2005). Infrared DRS based on the mid infrared (MIR) 

spectral range has also demonstrated its ability to quantify SOC (Janik and Skjemstad, 1995; 

Grinand et al., 2012). Regarding information related to the chemical structure, the visible range is 

dominated by electronics transitions, the NIR range by the weak overtones and combinations of 

fundamental vibrations bands, and the MIR range by the fundamental vibrational bands for H-C, 

N-H and O-H bonds (Reeves, 2010).  

Infrared DRS is generally based on calibrations, which require samples that have been 

characterized both conventionally (in the laboratory) and spectrally. Calibration models valid for 

large regions require large soil data libraries, and such libraries require demanding and expensive 

sampling and analysis campaigns (Nocita et al., 2015). Hence, calibration of soil properties has 

often been built from the scan of archived soil libraries (e.g., Genot et al., 2011; Viscarra Rossel 

and Webster, 2012; Shi et al., 2015). At the global scale, the ICRAF-ISRIC soil spectral library is 

composed of 4438 samples originating from Africa, Asia, Europe and America (Reeuwijk, 1992). 

At the continental scale, there are several large soil spectral libraries, regarding Australia (21,500 

spectra from samples collected during a lot of surveys; Viscarra Rossel and Webster, 2012), the 

United States (144,833 spectra from samples collected under the Rapid Carbon Assessment 

project; USDA, 2013), and Europe (20,000 spectra from samples collected under the Land 

Use/Cover Area Frame Statistical Survey – so-called LUCAS; Stevens et al., 2013). These large 

global- and continental-scale soil libraries were scanned in the VNIR range. There is also a 

French national-scale soil library, which has been scanned in both the VNIR (Gogé et al., 2012) 

and MIR (Grinand et al., 2012). Several studies have addressed the question of the spectral range 

most appropriate for predicting SOC concentration, considering VNIR, NIR and/or MIR 

(Viscarra Rossel et al., 2006; Brunet et al., 2008; Rabenarivo et al., 2013). However, the spectral 

libraries used in these comparisons included rather limited numbers of samples, and had local or 
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regional application domains. Thus comparative studies based on large national soil libraries are 

scarce.  

The scope of the present study was to assess the performances of SOC predictions made with a 

national soil spectral library, using VNIR, NIR and MIR spectra acquired with different 

spectrophotometers, individually or in combination. These instruments differed in terms of 

spectral range but also in terms of conception (e.g. more or less sophisticated dispersive 

elements); thus performances and comparisons did not refer strictly to spectral ranges, but rather, 

to spectral ranges and technologies. Moreover, different calibration strategies were tested: 

- the proportion of calibration samples was varied for optimization purposes; 

- calibration samples were either selected at random or according to their spectral 

representativeness; 

- and calibration was either global (one unique model was built using all calibration samples) or 

local (one individual model was built for each validation sample, using calibration samples 

that were its spectral neighbors). 

 

2. Materials and methods 

2.1. The soil library 

The studied soil samples belong to a large national soil library provided by the French national 

soil quality monitoring network (RMQS, Réseau de mesures de la qualité des sols). The RMQS 

aims at providing a national overview of soil quality, identifying gradients, monitoring the 

evolution of soil quality over time (with a frequency of a decade), and building a bank of soil 

samples (Arrouays et al., 2002). This soil library was built over a 10-year sampling campaign 

over the 552,000 km
2
 of the French metropolitan territory. The sample design is based upon a 

square grid with spacing of 16 km (Figure 1). At the center of each square, 25 individual core 

samples were taken at 0-30 and 30-50 cm depth using an unaligned sampling design within a 

20 × 20 m area, and were then bulked to obtain composite samples (Arrouays et al., 2002). In 

total, the RMQS national soil library is composed by more than 2200 sites and 3800 samples 

covering numerous soil types: Cambisols, Calcosols, Luvisols, Leptosols, Andosols, 

Albeluvisols, etc. (FAO, 2014). 
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2.2. Reference analyses 

Reference determinations were achieved in a single ISO/CEI 17025:2005 accredited laboratory 

(INRA soil analysis laboratory, Arras, France), according to the standard French procedure NF 

ISO 10694 (ISO, 1995a). In brief, the method consists in a dry combustion of the air dried, 2-mm 

sieved then finely ground (< 0.25 mm) sample at circa 1200°C in an oxygen-rich atmosphere. 

Thus, carbon is converted into carbon dioxide, and quantified using a thermal conductivity 

detector (TCD). This was done using a CHN elemental analyzer (Flash 2000, Thermo Scientific, 

Bremen, Germany). This analysis leads to the determination of total carbon content (g kg
-1

), 

which was then corrected for inorganic carbon possibly present in the sample as carbonates. This 

was done according to the French procedure NF ISO 10693 (ISO, 1995b), which consists of 

measuring the volume of carbon dioxide produced after the addition of chlorhydric acid (Pansu 

and Gautheyrou, 2006). In order to not unduly influence the prediction models, samples with 

SOC content higher than the mean plus 10 times the standard deviation were considered outliers 

and removed from the studied sample population. This led to the removal from the soil library of 

three samples with SOC > 200 g kg
-1

. The SOC content of the library then ranged from 0.6 to 

177 g kg
-1

, averaged 18.9 g kg
-1

, and had a skewness value close to 3 (Figure 2). 

 

2.3. Spectral analysis 

The soils were air dried, 2-mm sieved then finely ground (< 0.2 mm), and oven dried overnight at 

40°C before spectral analysis. Three spectrophotometers were used in this study. Reflectance 

spectra in the VNIR region were acquired between 350 and 2500 nm (ca. 28,500 and 4000 cm
-1

, 

respectively) at 1 nm interval using a portable system LabSpec 2500 (Analytical Spectral 

Devices, Boulder, CO, USA). This spectrophotometer is equipped with a halogen lamp source, a 

fixed diffraction grating, and a diode array detector. Soil samples were scanned manually with a 

contact probe (surface area scanned: 80 mm
2
). Each VNIR spectrum resulted from the averaging 

of 32 co-added scans, and absorbance zeroing was carried out every hour using a reference 

standard (Spectralon, i.e. polytetrafluoroethylene). VNIR spectra were used in the range from 400 

to 2500 nm (25,000 and 4000 cm
-1

, respectively), due to frequent noise at the spectrum lower 

end. Reflectance spectra in the NIR region were acquired between 1100 and 2500 nm (ca. 9091 

and 4000 cm
-1

, respectively) at 2 nm interval using a Foss NIRSystems 5000 (Laurel, MD, USA). 

This spectrophotometer is equipped with a halogen lamp source, a scanning grating as dispersive 
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element and a PbS (lead sulfide) detector. Soil samples were placed in a ring cup with a quartz 

bottom, gently packed using a specific round cardboard, then scanned through the quartz window 

using a feeder for ring cups (soil surface area scanned: 42 mm
2
). Each NIR spectrum resulted 

from 32 co-added scans, and internal reference standard was scanned automatically before each 

sample. Finally, reflectance spectra in the MIR region were acquired between 4000 and 400 cm
-1

 

(2500 and 25,000 nm, respectively) at 3.86 cm
-1

 interval using a Fourier transform Nicolet 6700 

(Thermo Fischer Scientific, Madison, WI, USA). This spectrophotometer is equipped with a 

silicon carbide source, a Michelson interferometer as dispersive element, and a DTGS (deuterated 

triglycine sulfate) detector. Soil samples were placed in a 17-well plate, where their surface was 

flattened with the flat section of a glass cylinder, and they were then scanned using an auto-

sampler (soil surface area scanned: ca. 10 mm
2
). Each MIR spectrum resulted from 32 co-added 

scans, and the body of the plate (beside wells) was used as reference standard and scanned once 

per plate (i.e. every 17 samples). MIR spectra were used in the range from 4000 to 450 cm
-1

 

(2500 and ca. 22,000 nm, respectively) because the spectrum end was often noisy. According to 

suppliers' recommendations, spectrometer warm-up was generally 30 min for the VNIR 

instrument, 60 min for the NIR instrument, while the MIR instrument was always turned on. To a 

wider extent, the spectrum acquisition procedure was kept as constant as possible for a given 

instrument, to limit the nonsystematic noise effects (Pimstein et al., 2011). Moreover, during the 

full scanning process, the spectrometers and associated accessories (e.g. the contact probe of the 

VNIR instrument) were not substituted and were properly maintained, in order to minimize the 

systematic noise effects (Pimstein et al., 2011; Ben-Dor et al., 2015).The reflectance spectra were 

converted into absorbance spectra [log10(1/R)] and gathered to form one global library (GL) per 

spectral range. In addition to the three GLs created using the different spectrophotometers, the 

spectra were combined to form extended spectral libraries. The NIR spectra acquired with the 

Foss instrument and the MIR spectra were combined to create an extended library called 

hereinafter NIR+MIR. In the same way, another extended library composed by the so-called 

"visible" region of the VNIR (400 to 1100 nm), the NIR spectra acquired with the Foss 

instrument (1100 to 2500 nm) and the MIR region (2500 to 22,000 nm) was formed and called 

VIS+NIR+MIR.  
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Once the three outliers removed (cf. section 2.2), sample number varied from 3781 to 3844 

according to the GL considered, depending on the possible removal of replicated samples used 

for controlling reference analyses or exhaustion of some samples between scanning campaigns. 

 

2.4. Selection and number of calibration samples 

2.4.1. Selection of a tuning set 

Based on spectral representativeness, each GL was divided into calibration, validation and tuning 

sets, hereinafter referred to as CAL.set, VAL.set, and TUN.set, respectively. Sample selection 

was based on the Kennard-Stone algorithm (Kennard and Stone, 1969), which was implemented 

in R 3.1.0 (R Development Core Team, 2011) together with the package “prospectr” (Stevens and 

Ramirez-Lopez, 2013). CAL.set included the 80% most representative spectra, VAL.set the 10% 

best represented ones (i.e least representative), and TUN.set the 10% remaining ones (Figure 3). 

This first operation aimed at single out the TUN.set required for the tuning stage of the local 

regression. 

 

2.4.2. Optimal calibration intensity 

The aim of this stage was to determine the minimum number of calibration samples required to 

ensure correct predictions. This was done by varying the number of calibration samples, 

following two selection strategies: random selection and selection based on spectral 

representativeness.  

 For random selection, CAL.set and VAL.set were merged to form a secondary library (SL; 

cf. Figure 3) and 380 samples were randomly selected (out of more than 3400) to create a 

new validation set, referred to as val.set. Then, the calibration intensity was investigated by 

selecting randomly from 10% to 90% of the samples within the remaining calibration set, 

referred to as cal.set; and finally, the highest calibration intensity was achieved using 100% 

of cal.set. Random selection was performed 10 times for each calibration intensity between 

10% and 90%. In order to mitigate the influence of the initial val.set selection, the whole 

operation was carried out 10 times (i.e. with 10 different val.set). 

 When based on spectral representativeness, sample selection involved the Kennard-Stone 

algorithm (Kennard and Stone, 1969). VAL.set was used for validation, while an increasing 

number of calibration samples was selected from CAL.set (from 10% to 100%). 
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Calibration intensity with random selection of calibration samples was investigated in Grinand et 

al. (2012), but with the substantial difference that samples not used for calibration were 

transferred to the validation set, making its composition different at each calibration intensity 

level. Here, whatever the calibration set selection and size, the size of the validation set was 

constant (380 samples). However, the VAL.set composition changed according to the spectral 

library considered, because composition depended on spectral representativeness, which 

depended on the spectral range. 

The SOC content in CAL.set ranged from 0.6 g kg
-1

 to 177 g kg
-1

, with an average (ca. 20 g kg
-1

) 

and a standard deviation (SD; ca. 19.5 g kg
-1

) nearly constant whatever the spectral library 

considered (Table 1). There were small differences in mean and SD between the different 

CAL.set because the set size was not exactly the same and because the most representative 

samples were not necessarily the same. In contrast, the mean and SD of TUN.set and, to a greater 

extent, VAL.set, varied noticeably according to the spectral library. 

 

2.5. Regression procedures 

Partial least squares regression (PLSR) was used to infer SOC content from the spectra. This was 

done using either global or local PLSR. Global PLSR, which is the common PLSR procedure, 

uses all calibration samples to be used (depending on the calibration intensity) for building a 

unique model that will be applied on all validation samples (Shenk and Westerhaus, 1991). The 

number of latent variables that minimized the root mean square error of cross-validation 

(RMSECV) was retained for the prediction model. The cross-validation was carried out by 

dividing the calibration set into six groups composed of a nearly equal number of randomly 

selected samples. Global PLSR was implemented in R together with the package “pls” (Mevik 

and Wehrens, 2007). 

In contrast, local PLSR makes prediction for each sample individually, only using calibration 

samples that are its spectral neighbors (Shenk et al., 1997). These neighbors were selected 

according to two metrics: the correlation coefficient between spectra and the Mahalanobis 

distance H (i.e. in the principal component space; Mark and Tunnell, 1985). The distance H was 

calculated on the number of principal components that minimized the root mean square (RMS) 

deviation of SOC difference between every calibration sample and its closest spectral neighbor, 

so that spectral neighbors also tended to be "SOC neighbors", according to Ramirez-Lopez et al. 
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(2013a). Moreover, the number of latent variables was not determined through cross-validation, 

which would require long calculation. Instead, each prediction was calculated as the weighted 

average of the predicted values generated with 7 to 25 latent variables (different maximums were 

tested), each weight being calculated as the inverse of the product of the RMS of X-residuals (i.e. 

the difference between the actual spectrum and the spectrum approximated using the considered 

number of latent variables) and RMS of the regression coefficients (Shenk et al., 1997; Zhang et 

al., 2004). 

In order to not over-fit local PLSR, the optimum number of neighbors and optimum distance 

metric were determined on TUN.set (Figure 3). Then, these optimum parameters were used to 

predict SOC content on VAL.set. As local PLSR requires a lot of computational time to build one 

model per sample to predict, it was only carried out when the calibration samples were selected 

based on their spectral representativeness. Local PLSR was implemented in R together with the 

spectrum-based learner algorithms from the package “resemble” (Ramirez-Lopez et al., 2013b).  

For both global and local PLSR and each spectral library, different and common spectrum pre-

processing methods were tested, in order to identify the most appropriate: mean centering, 

variance scaling, moving average, standard normal variate (SNV, i.e. mean centering and 

variance scaling), Savitzky-Golay smoothing and derivative, and continuum removal. The pre-

processing yielding the lowest RMSECV was selected. Pre-processing methods were 

implemented in R together with the package “prospectr” (Stevens and Ramirez-Lopez, 2013). 

The accuracy of the prediction models was estimated on the validation set (either val.set after 

random selection of calibration samples or VAL.set after Kennard-Stone selection) by computing 

the standard error of prediction (SEP), coefficient of determination (R
2

v), ratio of performance to 

deviation (RPDv = SDv/SEP, where SDv is the SD of the validation set) and ratio of performance 

to interquartile range (RPIQv = IQv/SEP, where IQv is the interquartile range of the validation 

set), more appropriate than RPDv for non-normal distributions (Bellon-Maurel et al., 2010). 

Neither spectral outlier detection nor calibration outlier detection were achieved. The only 

samples removed from spectral analyses were the three with SOC content > 200 g kg
-1

 (cf. 

section 2.2). 
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3. Results and discussion 

3.1. Spectrum pre-processing 

The best pre-processing method was identified on each GL through cross-validation. Moving 

average on 10 bands followed by Savitzky-Golay first derivative gave the best cross-validation 

for the MIR and VIS+NIR+MIR libraries; but moving average on 10 bands was enough for 

VNIR and NIR libraries (data not shown). This contrasted with the results of Vasques et al. 

(2008), where Savitzky-Golay first derivative was the best pre-processing method for VNIR 

spectra, in agreement with the review of Gholizadeh et al. (2013) on infrared DRS for SOC 

content prediction. No pre-processing functions improved the results for the NIR+MIR library. 

 

3.2. Global PLSR 

The validation results are presented in Figure 4, for the different selection strategies, spectral 

libraries and calibration intensities. More detailed results for 30%, 50% and 100% calibration 

intensity are shown in Table 2. 

 

3.2.1. Overall validation results after random selection of calibration samples 

In that case SEP decreased smoothly with increasing calibration intensity, except at low 

calibration intensities, especially for NIR, MIR and NIR+MIR libraries (Figure 4A). Obviously, 

the more samples allocated in the calibration set, the more information available to build accurate 

models; however the benefit of 10% additional calibration samples was very limited at high 

calibration intensities (from 60-70%). In the same way, RPDv and RPIQv increased progressively 

with calibration intensity, with limited increase at high intensities (Figures 4C and 4E).  

The libraries including the MIR spectra provided greater accuracy than the other spectral 

libraries: the best models were achieved with the MIR, NIR+MIR and VIS+NIR+MIR libraries 

(SEP = 6 g kg
-1

, RPDv ≥ 3 and RPIQv = 2.8 at 100% calibration intensity), while NIR and to a 

greater extent VNIR libraries yielded noticeably poorer results (8-9 g kg
-1

, 2.1-2.3 and 1.9-2.1, 

respectively). These results are consistent with RPD values reported by a regional-scale study 

(3585 km
2
) carried out in Florida using VNIR spectra (Vasques et al., 2008).  

Hierarchies in SEP and RPIQv were similar across spectral libraries but RPDv behaved sometimes 

differently (Table 2). Indeed, random segmentation of the secondary library (cf. section 2.4 and 
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Figure 3) caused small differences in SDv and thus RPDv, while IQv and thus RPIQv were poorly 

affected. 

 

3.2.2. Overall validation results after selection of spectrally representative calibration samples 

Model accuracy increased more markedly with calibration intensity after Kennard-Stone 

selection than after random selection of calibration samples: from 10% to 100% calibration 

intensity, averaged over the five spectral libraries, SEP decreased twice more after Kennard-

Stone selection than after random selection (3.4- vs. 1.7-g kg
-1

 decrease), RPDv increased twice 

more (1.3 vs. 0.6 increase) and RPIQv three times more (1.5 vs. 0.5 increase; Figures 4B, 4D and 

4F). Moreover, adding calibration samples was useful even at high calibration intensities. This 

indicated that the calibration set contained more information useful for characterizing the 

validation samples when calibration samples were selected according to their spectral 

representativeness, which makes sense. Furthermore, increase in prediction accuracy with 

calibration intensity was not completely regular, and some disruptions occurred, for instance with 

the NIR spectra at 20-30% intensity. Indeed, increasing calibration intensity was carried out by 

increasing the number of calibration samples spectrally representative of CAL.set, which did not 

necessarily correspond to a better representation of VAL.set (cf. Figure 3).  

The most accurate models were obtained with the MIR and NIR+MIR spectra (SEP = 2.3-

2.6 g kg
-1

, RPDv = 2.7-2.8 and RPIQv = 3.3 at 100% calibration intensity), the least accurate with 

the VNIR spectra (4.8 g kg
-1

,1.5 and 1.9, respectively), while intermediate results were achieved 

with the NIR and VIS+NIR+MIR spectra (RPDv = 2.3-2.4 but SEP = 4.4 and 2.4 g kg
-1

, and 

RPIQv = 2.2 and 3.1, respectively, due to noticeable differences in SDv; Table 2). For the VNIR 

library, RPDv increased relatively little with calibration intensity and always remained below the 

often cited threshold of 2, beyond which soil property prediction models have been considered 

suitable (Chang et al., 2001). Comparisons on the validation set between SOC content measured 

(reference) and predicted using the different spectral libraries and global PLSR built with 100% 

of the calibration samples selected by the Kennard-Stone procedure are presented in Figure 5A.  

As seen for random selection but to a greater extent here, the way spectral ranges ranked was not 

the same according to SEP or RPDv: for calibration intensity ≥ 30%, SEP was moderately higher 

with VNIR than with NIR spectra, and much lower with the libraries that included the MIR 

spectra; while RPDv discriminated low values for the VNIR library, much higher values for NIR 
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and VIS+NIR+MIR libraries, and even higher values for MIR and NIR+MIR libraries. This 

discrepancy was due to differences in SDv, (the SDv of VAL.set ranged from 5.8 g kg
-1

 to 10.3 g 

kg
-1

 depending on the library). There was less variation in IQv (from 7.5 to 9.9 g kg
-1

), and as a 

consequence, RPIQv and SEP reflected more comparable trends, in particular, noticeably better 

results with VIS+NIR+MIR than with NIR spectra. These effect of spectral range and instrument 

are discussed more specifically in section 3.2.5 

 

3.2.3. Respective variations of SEP, RPDv and RPIQv after Kennard-Stone vs. random selection 

of calibration samples 

Surprisingly, though SEP was much lower after Kennard-Stone than after random selection of the 

calibration samples (-50% in average at 100% calibration intensity), in general RPDv was lower 

too because SDv was even much lower. In contrast, RPIQv was often higher after Kennard-Stone 

than after random selection, especially at high calibration intensities, because SEP decreased 

more than IQv (reminder: RPIQv = IQv/SEP while RPDv = SDv/SEP). Indeed, after Kennard-

Stone selection, samples with extreme SOC values were more likely to be in the calibration set, 

and logically this affected SDv more markedly than IQv. This underlines that RPIQ is a more 

appropriate performance parameter than RPD when considering very skewed variable 

distributions (Bellon-Maurel et al., 2010). 

Moreover, after random selection of calibration samples, RPDv was higher than RPIQv, but 

except for the NIR library, the opposite was seen after Kennard-Stone selection. This also related 

to SDv and IQv variations according to the selection procedure. As a result of random selection of 

calibration samples, the total, calibration and validation sets indeed had similar SD, and similar 

IQ. In contrast, Kennard-Stone selection of calibration samples resulted in higher SD and IQ in 

the calibration set than in the total set, and to a greater extent, than in the validation set. Thus SDv 

and IQv were smaller after Kennard-Stone than after random selection of calibration samples, and 

the decrease was higher for SDv than for IQv, as mentioned above. 

  

3.2.4. Calibration intensity 

After random selection of calibration samples, the improvement of the model performance with 

calibration intensity was greater when the MIR spectra were involved: RPDv (or RPIQv) 

increased by 30% over the full intensity range, compared to 15% for NIR or VNIR spectra 
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(Table 2, Figures 4C and 4E). Optimum calibration intensity (i.e. minimum number of calibration 

samples required to obtain a sufficiently accurate model) could be set at 50-60% of the 

calibration set when the MIR spectra were involved, but at only 30-40% for the NIR and VNIR 

libraries. The models with VNIR or NIR spectra reached their optimum more rapidly, probably 

because these spectra contained less useful information for predicting SOC, and less calibration 

samples were needed for extracting this information. 

After Kennard-Stone selection of calibration samples, optimum calibration intensity was more 

difficult to draw up. This optimum was generally reached with larger calibration sets than after 

random selection. The best cost/benefit tradeoff could be set at 50% calibration intensity for the 

VNIR library, 60% for the MIR library, 70% for the NIR and NIR+MIR libraries, and 100% for 

the VIS+NIR+MIR library (Table 2, Figures 4D and 4F). It is worth noting that such optimum 

depends on the specific context of each given study, especially the financial means available 

(more funding allows higher calibration intensity) and the objective of the study (e.g. detecting 

small SOC changes requires high prediction accuracy thus high calibration intensity). 

Considering a MIR database that included only the topsoil samples from the present study (i.e. 

2086 samples ground at 0.2 mm), Grinand et al. (2012) performed global PLSR with random 

selection of calibration samples (10 replicates) and achieved optimal calibration intensity at 40% 

of the total population (RPDv = 3.2). However, their validation set included all samples not used 

for calibration, thus its size decreased when calibration intensity increased, which did not allow 

easy comparison with the present study (where 100% calibration intensity actually represented 

80% of the total set). Shepherd and Walsh (2002) used multivariate adaptive regression splines 

(MARS, a data mining approach) for predicting SOC content in a very diverse VNIR dataset of 

2-mm sieved topsoil samples from eastern and southern Africa (1100 samples from seven 

countries representing 10 soil orders). Considering a constant validation set, they achieved 

optimum calibration intensity with 35% randomly selected samples (out of the total set). Brown 

et al. (2005) studied a more homogeneous set made of profile samples (ca. 300 samples, 2 mm 

sieved) from six sites in north central Montana (200-km wide area; USA). Using VNIR and 

global PLSR for predicting SOC content, they reached an optimum when using 50% randomly 

selected samples for calibration (out of the total set), but 33% only when randomly selecting 

samples grouped by profile. Actually, optimal calibration intensity depends on the soil library, on 

its diversity especially, which renders comparison between studies difficult. 
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3.2.5. Effects of spectral range and instrument on SOC prediction 

On the whole, prediction was more accurate when the MIR spectra were involved. This is 

consistent with the literature review published by Bellon-Maurel and McBratney (2011), which 

stated that SOC content predictions made with spectra acquired on dried and ground sample were 

more accurate using MIR. This has been attributed to the fact that the MIR region displays much 

more details and is dominated by intensive vibration fundamentals, while the NIR region is 

dominated by weaker and broader signals from vibration overtones and combination bands (Janik 

et al., 1998; McCarty et al., 2002). However, most comparisons between SOC content predictions 

made with MIR vs. NIR spectra have been obtained on soils from temperate regions. Different 

results might be observed with soils from tropical regions, as indicated by works that have 

reported more accurate SOC predictions with NIR than MIR spectra in Brazil (Madari et al., 

2006) or Madagascar (Rabenarivo et al., 2013). In addition, the results of the present study 

confirmed that VIS does not provide much additional information (Brunet et al., 2008), at least 

with the spectrometers used in this study. It is worth noting that most comparisons between SOC 

predictions made using different spectral regions were based on local or regional datasets, 

composed of a few soil types, which limited their significance when compared with the results of 

the present study. 

Regardless of the selection strategy and the calibration intensity, prediction models were not 

improved notably by the combination of libraries (VIS+NIR+MIR and NIR+MIR), when 

compared with the MIR library alone. This is in accordance with Viscarra Rossel et al. (2006), 

who observed similarly accurate SOC predictions when using VIS+NIR+MIR and MIR spectra 

on a local-scale soil library (17.5 ha, 118 samples). MIR spectra contain the fundamental 

vibrational bands of the main chemical bonds found in organic matter, and information contained 

in the VIS and NIR ranges may be redundant, at least for soils from temperate regions.  

The instrument technology might also contribute to the differences observed in prediction 

accuracy. Firstly, the different dispersive elements used in the VNIR and NIR spectrometers 

(fixed grating and scanning grating elements, respectively) could explain why the narrower NIR 

spectra provided better model accuracy than the broader VNIR spectra. The VNIR spectrometer 

used in the study is a portable instrument, dedicated to both laboratory and field measurements. 

Consequently, it is equipped with a robust fixed grating element (without mobile parts and 
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sophisticated optical system), which allows fast measurements, but as a tradeoff, is slightly less 

accurate than a scanning grating element. Secondly, there were differences in the scanning 

procedure. The acquisition of VNIR spectra was done manually using a contact probe, and 

zeroing was done by the operator, every hour. In contrast, NIR and MIR spectrum acquisitions 

were automated, with internal zeroing before every scan. Suggestions have been proposed in 

order to improve spectrum acquisition with the VNIR spectrometer considered, mainly through 

the control of indirect interferences with external factors (i.e. duration of the spectrometer warm-

up, type and number of reference acquisitions prior sample acquisition, etc.) and online spectrum 

correction using an internal soil standard (Pimstein et al., 2011; Ben-Dor et al., 2015). 

Furthermore, with the spectrometer used, MIR spectra are acquired on a very small surface area 

(10 mm² vs. 42 and 80 mm² for the NIR and VNIR spectrometers, respectively), which makes it 

necessary to grind the samples finely (< 0.2 mm) to limit its heterogeneity. Grinding is not 

particularly required for the two other instruments though it often results in better SOC content 

predictions, as stated for NIR by Barthès et al. (2006) and Brunet et al. (2007). 

 

3.2.6. Interpretation of regression coefficients  

Regression coefficients of global PLSR models obtained using all calibrations samples selected 

by the Kennard-Stone procedure with NIR, MIR and NIR+MIR spectra were investigated, after 

SNV transformation of NIR and MIR spectra (Figure 6). The overall pattern expressed by the 

MIR regression coefficients was for the most part similar when the regression was performed 

using MIR alone and the combination NIR+MIR (R
2
 = 0.71); nevertheless some regions had 

heavy contributions in one case only (e.g. 2780 nm positively for MIR alone and 2700 nm 

negatively for NIR+MIR), or their respective contribution might change (e.g. peaks at 3300 and 

6000 nm). On the whole, similar heavily contributing bands were also observed in the NIR region 

when considering NIR alone and NIR+MIR (R² = 0.41), but their respective weights might vary 

(e.g. highest positive weight at 2350 nm for NIR alone and at 2100 nm for NIR+MIR), and some 

were even flattened dramatically (e.g. the region 1500-1800 nm from NIR alone to NIR+MIR). It 

is worth noting that for the combination NIR+MIR, the heaviest contributions were in the MIR, 

which might confirm that the MIR spectra contain more useful information for SOC content 

prediction than the NIR spectra, at least for the soils considered. 
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The absorption peak A around 1910 nm (5236 cm
-1

; cf. Figure 6) has been assigned to the 

bending and stretching vibrations of the O-H bounds in free water (Viscarra Rossel et al., 2006). 

Viscarra Rossel and Webster (2012) found that absorbance at this wavelength was crucial in the 

model trees they used to predict SOC content from VNIR spectra. The wide absorption peak B 

around 2050-2150 nm (4878-4651 cm
-1

) has been attributed to different organic molecules such 

as amides or proteins (2050-2060 nm especially), polysaccharides (2100 nm) and lipids 

(2140 nm; Workman and Weyer, 2008). The absorption peak C around 3460 nm (2890 cm
-1

) has 

been assigned to aliphatic C-H bounds of methyl and methylene groups (Vohland et al., 2014), 

which is not particularly informative, and the peak D around 5747 nm (1740 cm
-1

) to C=O bound 

from carboxyl acids, aldehydes and ketones (Janik et al., 1998). Both strong negative peaks E 

around 4000 nm (2500 cm
-1

) and F around 5525 nm (1810 cm
-1

) have been assigned to 

carbonates (Miller and Wilkins, 1952; Grinand et al., 2012).  

 

3.3. Local PLSR 

In order to limit computation time, local PLSR was carried out only for a few calibration 

intensities identified as significant using global PLSR: 30%, 50% and 100% (Table 3; Figures4B, 

4D and 4F). Prediction of SOC content was greatly enhanced with local PLSR; however the 

performance ranking of spectral libraries remained globally similar in comparison with the global 

PLSR: the best models were obtained using the MIR spectra (or combinations including the MIR 

spectra) and the least accurate using the VNIR spectra only. When the MIR spectra and 100% of 

the calibration set were used, the best models had SEP ≤ 2 g kg
-1

, R
2
v > 0.9, RPDv > 3 and 

RPIQv > 4, which has never been reported at that scale to date. This of course concerned the best 

represented samples of the total population; nevertheless it may be hypothesized that such very 

good results could be extended to a larger proportion of the French territory by enriching the 

calibration database with soil types poorly represented currently. It is worth noting that local 

PLSR produced good models (RPDv and RPIQv ≥ 2) with all spectral libraries even at only 30% 

calibration intensity. Moreover, the difference in performance between prediction models using 

VNIR and NIR spectra was less marked using local than global PLSR. Globally, this 

improvement through local PLSR tended to decrease when calibration intensity increased (e.g. at 

30%, 50% and 100% calibration intensity, RPIQv increased by 53%, 44% and 33% in average, 

respectively) and was higher for the VNIR library (+56% RPIQv in average considering the three 
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intensities vs. +40% in average for the four other libraries). Noticeable performance increase 

from global to local PLSR was also observed by Shi et al. (2015) on a large Chinese dataset 

studied in the VNIR range (2732 topsoil samples, with 90% representative in terms of SOC 

content used for calibration): SEP decreased from 8.4 to 6.6 g kg
-1

, RPDv increased from 1.4 to 

1.8, and RPIQv from 1.5 to 2.3; performance was even better when local PLSR was carried out 

with calibration samples that were simultaneously spectral and geographical neighbors of 

validation samples (SEP, RPDv and RPIQv reached 6.0 g kg
-1

, 2.0 and 2.6, respectively). 

In the present study, optimal local PLSR parameters were estimated on the TUN.set. The optimal 

distance metric was systematically the Mahalanobis distance H for VNIR and NIR libraries, in 

accordance with Ramirez-Lopez et al. (2013a). However, the optimal distance metric was the 

correlation coefficient for the MIR library, while no systematic optimal distance metric could be 

found for combinations of spectral libraries. For the calibration intensities studied, the optimal 

number of neighbors ranged from 210 to 300 samples for VNIR, from 150 to 360 for NIR, from 

180 to 540 for MIR, from 180 to 690 for NIR+MIR, and from 330 to 510 for VIS+NIR+MIR. It 

tended to increase with calibration intensity, especially when the MIR spectra were involved. 

Comparisons on the validation set between SOC content measured (reference) and predicted 

using VNIR, NIR, MIR, NIR+MIR or VIS+NIR+MIR spectra and global or local PLSR built 

with 100% of the calibration samples selected by the Kennard-Stone procedure are presented in 

Figure 5. 

Using the best parameters defined above, it was possible to perform local PLSR on the whole 

spectral library to predict SOC on new samples originating from France. This was tested with the 

MIR library, for each sample of the current database successively, using all other samples of the 

database as potential calibration samples (depending on their distance to the sample to be 

predicted). In that manner, the Figure 7 presents maps of SOC content in France at 0-30 and 30-

50 cm depth, using reference data vs. MIR predictions. For a given depth layer, both maps 

displayed a strong similarity, with a RPIQv of 3.4 (RPDv = 3.9) obtained for the full GL.  

In the best conditions, the present study yielded an accuracy for SOC prediction (SEP) below 

2 g kg
-1

, not far from standard errors of laboratory, which is likely to render DRS more widely 

acceptable. Indeed, SEP reported in the literature for large database to date are > 3 g kg
-1

 (e.g. 

Shepherd and Walsh, 2002; Genot et al., 2011; Gogé et al., 2012; Grinand et al., 2012; Viscarra 

Rossel and Webster, 2012; Stevens et al., 2013; Shi et al., 2015). It must however be kept in mind 
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that the present study assessed infrared DRS prediction performance under the most favorable 

conditions, which are rarely met for large spectral libraries: spectra of a given range acquired 

with the same spectrometer, on finely ground samples (< 0.2 mm); against reference values 

measured by the same method and same ISO 17025 laboratory.  

 

4. Conclusion 

Over the French national soil library, much better predictions were achieved (i) using MIR than 

NIR or VNIR spectra, (ii) after Kennard-Stone than after random selection of calibration samples, 

and (iii) using local than global PLS regression. Information contained in each spectral range 

might explain this ranking, but instrument technology (dispersive system and acquisition mode) 

might also have an impact. The combination of spectra from different instruments did not 

improve the results, when compared with MIR spectra alone. Optimal calibration intensity ranged 

from 30% to 70% and was higher in general with MIR than with NIR or VNIR spectra and with 

local than global PLSR. However, local PLSR on MIR spectra yielded accurate predictions even 

using 30% of the calibration samples (SEP = 2.6 g kg
-1

, RPD > 2.5, RPIQ > 3). The most 

accurate models, using MIR spectra, local PLSR and all calibration samples, allowed SOC 

content predictions with SEP ≤ 2 g kg
-1

, RPD > 3 and RPIQ > 4. These results suggested that 

laboratory infrared DRS may become a standard method to assess SOC.  
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Table 1. Descriptive statistics of the calibration, tuning and validation sets. Ns, Ms, SDs ,IQs and Sks stand respectively for the number 

of samples, mean, standard deviation, interquartile range and skewness coefficient of the set s (with s = c for calibration, s = t for 

tuning and s = v for validation). M, SD, IQ and range are in g kg
-1

. 

 
Spectral 

library 

 Calibration set (CAL.set)  Tuning set (TUN.set)  Validation set (VAL.set) 

Nc Mc SDc IQc Rangec Skc  Nt Mt SDt IQt Ranget Skt  Nv Mv SDv IQv Rangev Skv 

VNIR 3048 20.2 19.3 17.5 0.6-177 2.7  380 13.9 9.4 11.8 0.6-73.2 1.7  380 12.1 7.4 9.3 1.1-45.3 1.3 

NIR 3045 19.7 19.5 17.0 0.6-177 2.9  380 16.4 12.3 13.0 0.9-84.6 1.9  380 14.8 10.3 9.9 0.6-67.3 2.0 

MIR 3084 20.5 19.6 17.8 0.6-177 2.8  380 14.1 9.8 8.7 1.7-62.8 2.0  380 11.3 6.9 8.5 1.5-55.8 1.9 

NIR+MIR 3043 20.4 19.6 18.0 0.6-177 2.8  380 14.8 11.0 9.6 1.7-84.0 2.5  380 11.3 6.5 7.9 2.6-55.8 1.8 

VIS+NIR+MIR 3021 20.2 19.2 17.9 0.6-177 2.7  380 14.8 11.3 10.4 0.9-82.0 2.4  380 11.0 5.8 7.5 2.6-35.6 1.1 

 

  



26 
 

Table 2. Predictions of SOC content on the validation sets using global PLSR models built with 30%, 50% or 100% of the calibration 

samples selected at random or according to the Kennard-Stone procedure. 

 
Spectral library Nc Random selection (Nv = 380)  Kennard-Stone selection (Nv = 380) 

  SDv IQv SEP Bias R
2

v RPDv RPIQv  SDv IQv SEP Bias R
2
v RPDv RPIQv 

g kg
-1

     g kg
-1

    

Calibration intensity: 30%         

VNIR 900 18.6 16.4 9.2 -0.2 0.76 2.0 1.8  7.4 9.3 5.9 0.3 0.67 1.3 1.6 

NIR 900 18.6 16.4 8.5 -0.2 0.80 2.2 2.0  10.3 9.9 6.5 0.2 0.79 1.6 1.5 

MIR 900 18.9 16.6 6.7 0.3 0.87 2.8 2.5  6.9 8.5 3.3 -0.5 0.87 2.1 2.6 

NIR+MIR 900 19.5 16.7 6.7 0.0 0.88 2.9 2.5  6.5 7.9 4.0 1.9 0.84 1.5 1.8 

VIS+NIR+MIR 900 18.0 16.5 6.7 -0.2 0.86 2.7 2.5  5.8 7.5 3.8 1.1 0.82 1.5 1.9 

         
Calibration intensity: 50%         

VNIR 1500 18.6 16.4 8.9 -0.2 0.77 2.1 1.8  7.4 9.3 5.4 0.4 0.69 1.4 1.7 

NIR 1500 18.6 16.4 8.3 -0.2 0.81 2.2 2.0  10.3 9.9 5.0 0.1 0.85 2.0 2.0 

MIR 1500 18.9 16.6 6.3 0.2 0.89 3.0 2.7  6.9 8.5 2.8 0.2 0.88 2.5 3.0 

NIR+MIR 1500 19.5 16.7 6.3 0.1 0.89 3.1 2.7  6.5 7.9 3.0 1.5 0.87 2.0 2.4 

VIS+NIR+MIR 1500 18.0 16.5 6.3 -0.2 0.88 2.9 2.7  5.8 7.5 3.2 0.6 0.84 1.8 2.3 

         
Calibration intensity: 100%         

VNIR 3048 18.6 16.4 8.7 -0.2 0.78 2.1 1.9  7.4 9.3 4.8 0.3 0.73 1.5 1.9 

NIR 3045 18.6 16.4 8.2 -0.2 0.81 2.3 2.1  10.3 9.9 4.4 0.3 0.87 2.3 2.2 

MIR 3084 18.9 16.6 6.0 0.2 0.90 3.2 2.8  6.9 8.5 2.6 0.1 0.88 2.7 3.3 

NIR+MIR 3043 19.5 16.7 6.0 0.0 0.90 3.2 2.8  6.5 7.9 2.3 0.4 0.89 2.8 3.3 

VIS+NIR+MIR 3021 18.0 16.5 6.1 -0.2 0.89 3.0 2.8  5.8 7.5 2.4 0.4 0.87 2.4 3.1 

Nc, Nv: calibration and validation sample number, respectively. 

SDv, IQv: standard deviation and interquartile range of the validation set, respectively. 

SEP: standard error of prediction. 

R²v: determination coefficient for validation. 

RPDv: ratio of SDv to SEP. 

RPIQv: ratio of the interquartile range to SEP.  
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Table 3. Predictions of SOC content on the tuning and validation sets using local PLSR models built at three calibration intensities, 

with calibration samples selected according to the Kennard-Stone procedure (using the pre-processing that minimized the standard 

error of tuning, SET). 

 
Spectral library Nc Tuning set (Nt = 380)  Validation set (Nv = 380) 

  Nneigh SDt IQt SET R
2
t RPDt RPIQt  SDv IQv SEP Bias R

2
v RPDv RPIQv 

g kg
-1

  g kg
-1

 

Calibration intensity: 30%         

VNIR 900 210 9.4 11.8 4.6 0.81 2.1 2.6  7.4 9.3 3.7 0.1 0.77 2.0 2.5 

NIR 900 150 12.3 13.0 4.9 0.85 2.5 2.7  10.3 9.9 4.3 0.0 0.85 2.4 2.3 

MIR 900 180 9.8 8.7 2.7 0.93 3.6 3.1  6.9 8.5 2.6 -0.2 0.88 2.6 3.2 

NIR+MIR 900 180 11.0 9.6 3.1 0.92 3.6 3.1  6.5 7.9 2.4 0.6 0.89 2.6 3.0 

VIS+NIR+MIR 900 330 11.3 10.4 2.8 0.94 3.9 3.6  5.8 7.5 2.3 0.2 0.89 2.5 3.2 

         
Calibration intensity: 50%         

VNIR 1500 300 9.4 11.8 3.8 0.84 2.5 3.1  7.4 9.3 3.5 0.2 0.79 2.1 2.7 

NIR 1500 360 12.3 13.0 4.2 0.89 3.0 3.1  10.3 9.9 3.5 -0.1 0.89 3.0 2.9 

MIR 1500 240 9.8 8.7 2.2 0.95 4.4 3.8  6.9 8.5 2.2 0.0 0.90 3.2 3.9 

NIR+MIR 1500 180 11.0 9.6 2.4 0.96 4.3 3.8  6.5 7.9 2.1 -0.2 0.92 3.0 3.5 

VIS+NIR+MIR 1500 480 11.3 10.4 2.9 0.94 3.8 3.5  5.8 7.5 2.4 0.3 0.87 2.4 3.2 

         
Calibration intensity: 100%         

VNIR 3048 270 9.4 11.8 3.5 0.86 2.7 3.4  7.4 9.3 3.2 0.0 0.82 2.4 2.9 

NIR 3045 180 12.3 13.0 3.6 0.92 3.4 3.6  10.3 9.9 3.5 -0.3 0.89 2.9 2.8 

MIR 3084 540 9.8 8.7 2.0 0.96 4.9 4.3  6.9 8.5 2.0 0.0 0.92 3.5 4.3 

NIR+MIR 3043 690 11.0 9.6 2.1 0.96 5.2 4.5  6.5 7.9 1.8 0.3 0.94 3.6 4.1 

VIS+NIR+MIR 3021 510 11.3 10.4 2.0 0.97 5.7 5.2  5.8 7.5 1.8 0.3 0.91 3.2 4.1 

Nc, Nt, Nv: calibration, tuning and validation sample number, respectively. 

Nneigh: number of neighbors minimizing SET. 

SDt, SDv, IQt and IQv: standard error and interquartile range of the tuning and validation sets, respectively. 

SET, SEP: standard error of tuning and of prediction, respectively. 

R²t, R²v, RPDt, RPDv, RPIQt and RPIQv: determination coefficient, ratio of SD to standard error, and ratio of interquartile range to standard error, 

for tuning and validation, respectively. 
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Figure 1. The RMQS sampling grid. 
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Figure 2. Descriptive statistics and frequency histogram for SOC concentration in the studied soil 

library (after the removal of three samples with SOC > 200 g kg
-1

). Q1 and Q3 stand for the first and 

third quartile, respectively. 
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Figure 3. Schematic diagram of the sample selection procedure and calibration intensity study. N 

stands for the number of random selection iterations for val.set (10 in total). n stands for the number 

of random selection iterations for cal.set (10 in total for each N). i (in %) stands for the calibration 

intensity (from 10 to 100% with 10% steps). 
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Figure 4. Performance of the SOC content predictions on the validation sets after calibration sample 

selection at random (left) or according to the Kennard-Stone procedure (right), using global or local 

PLSR models built at 10 calibration intensities (10% to 100%; local PLSR only with Kennard-Stone 

selection and for 30%, 50% and 100% intensities). 
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Figure 5. Comparisons between SOC contents measured (reference) and predicted on the validation set using VNIR, NIR, MIR, 

NIR+MR or VIS+NR+MIR spectra and global (5A) or local (5B) PLSR built with 100% of the calibration samples, selected by the 

Kennard-Stone procedure. 
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Figure 6. Regression coefficients of global PLSR using NIR, MIR or NIR+MIR spectra of 100% of the calibration set selected by the 

Kennard-Stone procedure (with SNV pre-processing). 
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Figure 7. Maps of SOC content at 0-30 and 30-50 cm depths as measured conventionally (left) and predicted using the MIR spectra 

(right) and local PLSR leave-one-out cross-validation (thin soils, e.g. in mountain areas, had no 30-50 cm layer, hence blanks in the 

corresponding regions).  

 

 


