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The present study aimed to evaluate and compare the ability of front face (FFFS) and synchronous fluorescence
spectroscopy (SFS) to predict total fat and FA composition of beef LTmuscles coming from 36 animals of 3 breeds
(Angus, Limousin and Blond d'Aquitaine). The regression models were performed by using Partial Least Square
(PLS) method. In spite of the low number of samples used, the results of this preliminary study demonstrated the
ability of fluorescence spectroscopy to predict meat lipids. Nonetheless, the results suggested that the fluorescence
spectroscopy ismore suited tomeasure SFA (R2p ≥ 0.66; RPD ≥ 2.29) andMUFA (R2p ≥ 0.48; RPD ≥ 1.49) than PUFA
(R2p ≤ 0.48; RPD ≤ 1.63). Moreover, R2 and RPD factors obtained with FFFS were greater compared to the ones
obtained with SFS suggesting that FFFS is more adapted to measure lipid composition of beef meat.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fat and fatty acids (FAs) are major contributors of meat nutritional
value. Indeed, numerous studies have highlighted the link between lipid
intake and potential health effects in humans (Hooper, Abdelhamid,
Moore, Douthwaite, & Murray, 2012; Riccardi, Giacco, & Rivellese, 2004;
Wahrburg, 2004). Even if the issue remains controversial (McAfee et al.,
2010), most of the dietary recommendations advise to lower the
contribution of fat and saturated FA (SFA) to daily energy intakes while
increasing the intake of omega-3 polyunsaturated FA (PUFA) to reduce
the risk of cardiovascular disease (Gidding et al., 2005; Siri-tarino,
Sun, Hu, & Krauss, 2010a, 2010b). Furthermore, some trans-fatty
acids (C18:1 trans-11) present within meat were shown to have no
cholesterol-raising effect (Chardigny et al., 2008). There is also
emerging evidence that conjugated linoleic acid (CLA) isomer cis-9
trans-11 is associated with prevailing beneficial health effects for
humans (Benjamin & Spener, 2009).

Thus, several strategies, mainly modulating genetics and dietary
factors, are currently investigated to enhance meat FA composition
(Scollan et al., 2014; Wood et al., 2008). To support this effort, fluo-
rescence analysis was suggested to be a rapid and efficient tool useful
in the quality estimation of meat products (Karoui & Blecker, 2010;
Swatland, 1987). Front-face fluorescence spectroscopy (FFFS) notably
allows the investigation of solid food samples in the wavelength range
of 200–750 nm. In this case, excitation and emission spectra are
p.fr (A. Aït-Kaddour).
acquired at fixed wavelength determined as a function of the
fluorophores present in the analyzed food matrix, namely trypto-
phan, vitamin A, riboflavin, lipid oxidation products and NADH in
meat products. In a variant acquisitionmode, synchronous fluorescence
spectroscopy (SFS), spectra results from simultaneously scanning both
the excitation and emissionmonochromators keeping afixedwavelength
interval between them (Karoui & Blecker, 2010). Firstly initiated by Lloyd
(1971), SFS allows the consideration of thewhole fluorescence landscape
meaning it retains information related to several fluorophores of the food
matrix. Therefore, it could be more suitable for the analysis of complex
multi-component samples as compared to conventional FFFS. Fluores-
cence spectroscopy has been mainly used to characterize quality traits
of meat products, such as sensory properties (Dufour & Frencia, 2001;
Olsen et al., 2005; Swatland, Gullett, Hore, & Buttenham, 1995). Extensive
works using fluorescence spectroscopy associated with chemometrics
were also carried out to authenticate and classify meat products as
a function of their rearing conditions (Gatellier et al., 2007),
manufacturing process, storage and cooking conditions (Gatellier,
Santé-Lhoutellier, Portanguen, & Kondjoyan, 2009; Møller, Parolari,
Gabba, Christensen, & Skibsted, 2003) or microbial spoilage (Aït-
Kaddour, Boubellouta, & Chevallier, 2011). Quantitative evaluations
of some meat components, namely collagen and heterocyclic aromatic
amine contents,weredevelopedusingmultivariate regression techniques
in meat products (Egelandsdal, Dingstad, Tøgersen, Lundby, & Langsrud,
2005; Sahar, Portanguen, Kondjoyan, & Dufour, 2010; Wold, Kvaal, &
Egelandsdal, 1999). However, very few data is currently available regard-
ing the feasibility of using fluorescence spectroscopy to evaluate total fat
content in meat. Wold and collaborators investigated the ability of FFFS
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to determine fat content in beef and exhibited fair models of cross
validated prediction (RMSECV = 1.89%, R2 = 0.71 and RMSECV =
1.10%, R2 = 0.71, respectively) (Wold, Kvaal et al., 1999; Wold,
Lundby, & Egelandsdal, 1999). Another work reported poor prediction
models (R2=0.57)when testing the potential offluorescence spectros-
copy to evaluate intramuscular fat content in porcine meat (Brondum
et al., 2000). Surprisingly, to our knowledge, no work investigating the
potential interest of fluorescence spectroscopy in assessing fatty acid
composition of meat was reported so far. Yet, an advantage of fluores-
cence detection compared to absorption measurements (e.g., IR) is the
greater sensitivity (100–1000 times) achievable, meaning that fluores-
cent compounds can be investigated at very low concentration levels
(in the parts per billion range).

It would be therefore interesting to determine in what extent
fluorescence spectroscopy would be useful to predict the specific FA
composition of meat. Similar approaches were carried out using near
infrared reflectance spectroscopy. Globally, this tool appeared to accu-
rately predict the concentration of some prominent FA and FA groups
such as saturated, branched and monounsaturated FA in beef, poultry
and lamb meat (Guy, Prache, Thomas, Bauchart, & Andueza, 2011;
Prieto et al., 2014; Sierra et al., 2008).

Thus, the purpose of this study is to evaluate and compare the ability
of front face and synchronous fluorescence spectroscopy to predict total
fat and FA composition of beef.

2. Materials and methods

2.1. Animals and meat samples

Themuscle samples came from 36 bulls of 3 genotypes with varying
lipogenesis capacities (Angus N Limousin N Blond d'Aquitaine). All the
details on the experimental design and diets for the experiment were
previously described by Gruffat et al. (2013). At the end of the experi-
mental period, the bulls were slaughtered in the experimental abattoir
of INRA (Saint-Genès-Champanelle, France). Samples (∼100 g) of the
Longissimus thoracis (LT) muscle of the 36 animals were collected at
24 h post mortem from the 10th thoracic rib on the right side of the
ribbed carcass. Muscle samples were cut into small cubes (1 cm3),
immediately frozen in liquid nitrogen and stored at−80 °C. Just before
analysis, the frozen samples of the LTmuscle were ground into fine and
homogeneous powders in liquid nitrogen with a mixer mill (Retch MM
301, Hann Germany).

2.2. Fatty acid analysis by gas liquid chromatography

Total lipids were extracted according to the method of Folch, Lees,
and Sloane (1957) by mixing the LT muscle powder with a 2/1 chloro-
form/methanol mixture (vol/vol) and quantified by gravimetry. Fatty
acid extraction and transmethylation into fatty acid methyl esters
(FAME) were subsequently performed according to the method of
Bauchart, Gladine, Gruffat, Leloutre, and Durand (2005). Fatty acid
methyl ester analysis was performed with Gas Liquid Chromatography
(GLC) using a Peri 2100-chromatography system (Perichrom Society,
Saulx-les-Chartreux, France) fitted with a CP-Sil 88 glass capillary
column (Varian, Palo Alto, CA; length = 100 m; diam. = 0.25 mm).
The carrier gas was H2 and the oven and flame ionization detector
temperatures described by Scislowski, Durand, Gruffat, and Bauchart
(2004) were used. Total FAs were quantified using C19:0 as an internal
standard. The identification of each individual FAME and the calculation
of the response coefficients for each individual FAME were performed
using the quantitative mix C4-C24 FAME (Supelco, Bellafonte, PA).

2.3. Fluorescence spectroscopy

Samples fluorescence came from the same powder as that used
for fatty acid analysis (i.e. LT muscle collected at 24 h post mortem,
immediately frozen in liquid nitrogen and stored at −80 °C). Frozen
samples were ground into fine and homogeneous powders in liquid
nitrogen and stored at −80 °C until analyses. Before acquisitions,
the homogeneous powder of ground LT muscles was thawed during
1h00 at 20 °C. Then aproportion 3 g ofmeat powderwas placed between
a powder sample holder and a quartz cell andmounted in a solid sample
holder. Before fluorescence acquisition the sample was visually con-
trolled to ensure that all the measurement window was totally covered
withmeat sample. Fluorescence spectra were recorded in two excitation
modes successively on the same sample, classical excitationmode (FFFS:
Front Face Fluorescence Spectra) and synchronous excitationmode (SFS:
Synchronous Fluorescence Spectra) by using a FluoroMax-4 spectrofluo-
rometer (Jobin–Yvon, Longjumeau, France) equippedwith a solid sample
holder with an incidence angle of the excitation radiation set at 60° in
order to minimize reflected light, scattered radiation and depolarization
phenomena. For SFS, the excitation wavelength (λex) and emission
wavelength (λem) are scanned simultaneously (synchronously), usually
maintaining a constant wavelength interval, named offset or Δλ,
between λex and λem. In this study, six Δλ (20, 40, 60, 80, 100, and
120 nm)were used. All the excitationfluorescence spectrawere recorded
between 250 and 550 nm.

For FFFS, the emission spectra were recorded at 305–400, 340–540,
360–570, 400–650 and 410–700 nm after excitation at 290, 322, 335,
350 and 382 nm respectively. Those excitation spectra mainly addressed
the fluorescence of tryptophan, collagen/pyridinolin/riboflavin, NADH,
vitamin A, and vitamin E, respectively. The two first fluorophores were
chosen because they are clearly liposoluble while the other fluorophores
were chosen because their fluorescence properties can be influenced by
their environment (Mazerolles, Devaux, Dufour, Qannari, & Courcoux,
2002). SFS and FFFS were recorded in duplicates for each sample giving
a total of 792 spectra recorded.

2.4. Data pre-processing

The proper choice of pre-processing is difficult to assess prior to
model validation but pre-processing should maintain or decrease the
effective model complexity. So, in order to improve the calibration
models different pre-processing methods were investigated. Firstly,
noise of the spectral datasets was reduced by using the Savitzky–
Golay method with a polynomial order and a filter width of 2 and 12
respectively. Secondly, the scattering effects were minimized by using
Standard Normal Variate (SNV), Multiple Scattering Correction (MSC)
or by area normalization (reducing the area under each spectrum to a
value of 1: AREA). These pre-processing techniques are desired to
reduce the (physical) variability between samples due to scatter.
Data preprocessing were performed by using the PLS-Toolbox v.7.5
(Eigenvector Research) for MATLAB R2013b.

2.5. Partial least square regression

Partial Least Square Regression (PLS-R) models were validated by
independent datasets. The initial data sets were divided into two sets,
70% of the samples were used for the calibration and, 30% for the valida-
tion byusing theNearestNeighbor Thinningmethodproposed in the PLS-
Toolbox v.7.5 (Eigenvector Research) that permits to select validation
samples which best fill out all covariance space. Themodels performance
can be evaluated by different factors. Williams (2003) defines 7 levels of
model accuracy based on the R2 values obtained for prediction. Nonethe-
less, considering the R2 can conduct to over estimation of themodel accu-
racy. In order to have a clear idea of model performance other statistics
such as the Ratio of Performance to Deviation (RPD= SD/RMSEP) factor
was considered. Five levels of model accuracy based on the RPD values
obtained for prediction were considered (Table 1).

PLS-R analyses were performed by using the PLS-Toolbox v.7.5
(Eigenvector Research) for MATLAB R2013b.



Table 1
Interpretation of RPD (Ratio of Performance to Deviation) value (Williams, 2003).

RPD value Classification Application

0.00–1.50 Not recommended No application
1.50 and 2.00 Distinguish between high and low values Rough screening
2.00 and 2.50 Approximate quantitative prediction Quality control
2.50 and 3.00 Good Process control
N3.0 Excellent Any application
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3. Results

3.1. Fatty acid composition measured using the GLC reference method

The means, ranges, SD (standard deviation) and CV (coefficient
of variation) of LT intramuscular lipid and FA concentrations are
presented in Table 2. Mean SFA and MUFA were the most abundant FA
groups in LT muscle and their contents were similar (600.05 mg/100 g
and 571.25 mg/100 g respectively). On the other hand, mean PUFA
contents were 3 times lower (202.95 mg/100 g). Palmitic (16:0)
and oleic (18:1 Δ9 cis) acids were on average the most abundant
individual FAs (299.68 mg/100 g of fresh muscle, ranging from
Table 2
Total lipid and total fatty acid (g/100 g fresh meat) contents and fatty acid composition
(mg/100 g fresh meat) of LT muscle samples.

Component Mean Min Max SD CV

Total lipids 2.07 0.78 6.06 1.22 59%
Total FA 1.39 0.36 4.35 0.98 71%
Total FA/total lipids 0.63 0.38 0.90 0.11 17%

Fatty acid families
Total SFA 600.05 106.53 2121.08 471.60 79%
Total linear SFA 578.06 100.15 2067.75 457.83 79%
Total non-linear SFA 21.99 6.37 58.48 14.18 64%
Total MUFA 571.25 96.20 1975.96 466.32 82%
Total cis MUFA 483.09 77.27 1796.27 406.62 84%
Total trans MUFA 88.16 15.33 326.59 70.39 80%
Total PUFA 202.95 128.38 358.24 49.27 24%
Total n-3 PUFA 35.20 17.88 65.45 9.94 28%
Total n-3 LC PUFA 14.60 7.41 26.31 3.53 24%
Total n-6 PUFA 159.95 99.86 274.96 37.91 24%
Total n-6 cis PUFA 135.01 80.38 230.58 28.41 21%
Total n-6 trans PUFA 24.94 2.89 94.58 21.00 84%
Total n-6 LC PUFA 30.74 17.09 57.62 8.05 26%
Total CLA 6.64 0.51 23.03 5.84 88%

Individual fatty acids
14:0 30.26 2.38 114.69 29.88 99%
16:0 299.68 50.64 1215.99 256.94 86%
18:0 216.10 41.26 631.10 149.60 69%
18:1 Δ 9 cis 388.47 41.72 1512.13 343.22 88%
18:1 Δ 9 trans 5.43 0.57 22.29 4.63 85%
18:1 Δ 10–11 trans 66.37 8.85 268.60 55.75 84%
18:2 n-6 cis cis 101.84 61.97 165.82 21.25 21%
18:3 n-3 20.60 6.31 46.39 7.80 38%
20:3 n-3 0.14 0.01 1.19 0.26 186%
20:4 n-3 0.80 0.01 2.75 0.62 78%
20:4 n-6 21.73 11.92 39.31 5.52 25%
20:5 n-3 3.90 2.00 6.10 1.03 26%
22:5 n-3 9.26 5.15 16.47 2.23 24%
22:6 n-3 0.49 0.01 1.67 0.45 92%

SFA, saturated FA; Total SFA: linear+non-linear SFA; Linear SFA: 12:0 up to 24:0;Non-linear
SFA: iso [14 up to 18]+anteiso [15+17], FAmainly synthesized by rumenmicroorganisms;
MUFA, monounsaturated FA; Total MUFA: cis+ transMUFA; Total cis MUFA: 14:1 Δ9cis+
15:1 Δ9cis + 16:1 Δ9cis + 17:1 Δ8 and Δ9cis + 18:1 Δ6cis up to Δ15cis+ 20:1 Δ9cis +
22:1Δ9cis; Total transMUFA: 16:1Δ9trans+18:1Δ6transup toΔ16trans; PUFA, polyunsat-
urated FA; Total PUFA: n-6 PUFA+n-3PUFA+CLA; Total n-3 PUFA: 18:3 n-3+20:3 n-3+
20:4 n- 3+ 20:5 n-3+ 22:3 n-3+ 22:4 n-3+ 22:5 n-3+ 22:6 n-3; Total n-6 PUFA: 18:2
n-6+ 18:3 n-6+ 20:2 n-6+ 20:3 n-6+ 20:4 n-6+ 22:2 n-6+ 22:4 n-6+ 22:5 n-6;
LC, long chain; CLA, conjugated linoleic acid; Total CLA: 9cis,11trans-CLA +
11cis,13trans-CLA + total cis,cis CLA + total trans,trans CLA.
aAbbreviations: SD: standard deviation; Min: minimum; Max: maximum.
50.64 to 1215.19mg/100 g and 388.47mg/100 g of freshmuscle, ranging
from 41.26 to 1512.13 mg/100 g, respectively). Stearic acid (18:0)
averaged 216.1 mg/100 g, ranging from 41.26 to 631.1 mg/100 g.
Among PUFA, n-6 PUFA were the most represented in LT muscle
(159.95 mg/100 g) with linoleic acid (18:2 n-6) as major
FA (101.84 mg/100 g). In contrast, n-3 PUFA contents were low
(35.2 mg/100 g), mainly represented by linolenic acid (18:3 n-3,
20.6 mg/100 g). All total PUFAs categories (except trans PUFA n-6
and total CLA) and individual 20:3 n-3, 20:4 n-3 and 22:6 n-3 had a
lower CV (under 40%) than individual and total SFAs and MUFAs.

3.2. Description of fluorescence spectra of meat samples

Average spectra recorded in the two modes (FFFS and SFS) are
presented in Figs. 1 and 2. The Fig. 1 presented fluorescence emission
spectra obtained at 5 excitation wavelengths 290, 322, 335, 350, and
382 nm.

The fluorescence spectra obtained after excitation at 290 nm exhib-
ited a peak at 334 nm. Emission fluorescence spectra obtained after
excitation at 322 nm presented peaks at 353, 379, 527 nm and a large
band from 418 to 524 nm with a maximum at 466 nm. The emission
spectra obtained after excitation at 335 nm presented different bands,
a high one at 369 nm, a large one between 420 and 543 nm with a
maximum at 458 nm and small ones at 378 and 551 nm. Excitation of
meat samples at 350 nm resulted in an emission fluorescence spectrum
presenting a broad band between 420 and 543 nmwith a maximum at
466 nm and two small peaks at 573 and 596 nm. Finally, the fluores-
cence spectra obtained after excitation at 382 nm exhibited peaks at
419, 596, 628 nm and a broad band between 428 and 546 nm with a
maximum at 468 nm.

Fig. 2 presented average front face synchronous spectra recorded at
the differentΔλ (20, 40, 60, 80, 100 and 120 nm). The spectra recorded
with an offset of 20 nm presented one prominent peak at 327 nm
(emission 347nm) and smaller onebetween 449 and 525nm(emission
between 469 and 545 nm) with a maximum at 491 nm (511 nm). This
band shifted to lower wavelength 294, and 293 nm when the spectra
are recorded respectively with offsets 80 and 60 nm. The synchronous
spectra of 100 nm offset presents one large band cantered at 279 nm.
The offset of 120 nm permits to obtain spectra with bands at 271 nm
(emission 391 nm), 325 (emission 445 nm) and 356 nm (emission
476 nm). Here, the band around 290 nm, which was prominent with
the previous offsets (20 to 80 nm), disappears. The band located
between 450 and 525 nm seems to disappear when the offset value
increases.
Fig. 1. Average Front Face Fluorescence emission spectra recorded after excitation at 290,
322, 335, 350, and 382 nm on meat samples (a.u. arbitrary unit).



Fig. 2.Average Synchronous Fluorescence spectra recorded atΔλ=60, 80 and 120 nmon
meat samples (a.u. arbitrary unit).
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3.3. Prediction of lipid contents with FFFS

The PLS regression statistics corresponding to the selected equations
of the best models developed from FFFS are summarized in Table 3.
Table 3
Performance of the best PLS regression models to predict lipids and fatty acid contents of minc

Component λex (nm) PPS LV R2
C

Total lipids 322 AREA 5 0.67
Total FA 322 AREA 6 0.72
Total FA/total lipids 322 AREA 5 0.44

Fatty acid families
Total SFA 322 AREA 5 0.69
Total linear SFA 322 AREA 5 0.69
Total non-linear SFA 322 AREA 8 0.75
Total MUFA 322 AREA 6 0.71
Total cis MUFA 322 AREA 5 0.69
Total trans MUFA 335 AREA 9 0.65
Total PUFA 350 AREA 7 0.40
Total n-3 PUFA 322 MSC 2 0.13
Total n-3 LC PUFA 322 AREA 3 0.14
Total n-6 PUFA 350 MSC 7 0.47
Total n-6 cis PUFA 335 SNV 1 0.00
Total n-6 trans PUFA 322 AREA 6 0.46
Total n-6 LC PUFA 335 SNV 5 0.05
Total CLA 350 AREA 10 0.79

Individual fatty acids
14:0 322 RAW 7 0.77
16:0 322 RAW 10 0.83
18:0 322 AREA 5 0.73
18:1 Δ 9 cis 322 AREA 5 0.69
18:1 Δ 9 trans 322 AREA 6 0.64
18:1 Δ 10–11 trans 335 AREA 9 0.60
18:2 n-6 cis cis 350 SNV 1 0.01
18:3 n-3 322 MSC 2 0.13
20:3 n-3 290 MSC 10 0.15
20:4 n-3 322 AREA 6 0.12
20:4 n-6 290 AREA 3 0.05
20:5 n-3 322 MSC 2 0.07
22:5 n-3 322 AREA 4 0.21
22:6 n-3 290 MSC 3 0.09

SFA, saturated FA; Total SFA: linear+ non-linear SFA; Linear SFA: 12:0 up to 24:0; Non-linear SFA
MUFA; Total cisMUFA: 14:1Δ9cis+ 15:1Δ9cis+16:1Δ9cis+17:1Δ8 andΔ9cis+18:1Δ6cis u
Δ16trans; PUFA, polyunsaturated FA; Total PUFA: n-6 PUFA+ n-3PUFA+ CLA; Total n-3 PUFA: 1
Total n-6 PUFA: 18:2 n-6 + 18:3 n-6 + 20:2 n-6 + 20:3 n-6 + 20:4 n-6 + 22:2 n-6 + 22:4 n
11cis,13trans-CLA + Total cis,cis CLA + Total trans,trans CLA.

a Abbreviations: λex: excitation wavelength; PPS: preprocess; RAW: without preprocessing
Scattering Correction; R2

C: coefficient of determination for calibration; R2
p: coefficient of determ

square error of prediction; RPDp: Ratio of Performance to Deviation for prediction.
With FFFS, the best predictive models were obtained for total lipid
content (RPD = 2.67), total FA (RPD = 2.61), SFA (RPD = 2.65), linear
SFA (RPD= 2.65), MUFA (RPD= 2.62), cisMUFA (RPD= 2.77) and for
individual unsaturated and mono-unsaturated FA, C14:0 (RPD= 2.88),
C16:0 (RPD = 2.61), C18:0 (RPD = 2.50), Δ9 cis C18:1 (RPD = 2.80),
and Δ9 trans C18:1 (RPD = 2.51). All these models were obtained
with the 322 nm excitation band after applying the normalization
preprocessing method except for the C14:0 and C16:0 models that
were obtained without preprocessing (i.e. RAW).

Seven other models, that can be used to distinguish between high
and low values and applied for rough screening (Williams, 2003),
were identified for the total trans MUFA (λex: 335 nm, RPD = 1.54),
PUFA (λex: 350 nm, RPD = 1.62), n-3 PUFA (λex: 322 nm, RPD =
1.54), LC n-3 PUFA (λex: 322 nm, RPD = 1.57), n-6 trans PUFA (λex:
322 nm, RPD = 1.50), and CLA (λex: 350 nm, RPD = 1.53). These
models were calculated after spectral data normalization except for
the sum of n-3 PUFA model that was calculated after applying MSC
preprocessing to spectra. For the other components, the model accura-
cies were poor and cannot be used for prediction (0.89 b RPD b 1.49;
R2

p b 0.35).

3.4. Prediction of lipid contents with SFS

The PLS regression statistics of models developed with SFS are
summarized in Table 4. Considering SFS, the best predictive models
ed beef meat obtained with classical Front Face Fluorescence excitation methoda.

R2
CV R2

P RMSEC RMSEP RPDp

0.60 0.68 0.78 0.46 2.67
0.63 0.68 0.58 0.37 2.61
0.17 0.42 0.09 0.08 1.42

0.63 0.66 291.72 178.19 2.65
0.62 0.66 283.93 172.57 2.65
0.61 0.68 7.76 6.04 2.35
0.61 0.68 279.80 177.76 2.62
0.61 0.67 256.07 146.68 2.77
0.43 0.51 41.78 46.07 1.54
0.06 0.45 40.33 32.37 1.62
0.04 0.23 9.90 6.95 1.54
0.01 0.18 3.41 2.34 1.57
0.07 0.44 29.04 24.61 1.63
0.01 0.06 31.44 24.21 1.22
0.34 0.33 16.22 14.80 1.50
0.05 0.14 8.27 6.21 1.37
0.44 0.58 2.75 3.90 1.53

0.66 0.75 15.27 11.23 2.88
0.71 0.65 119.98 98.54 2.61
0.67 0.66 85.50 59.91 2.50
0.61 0.68 214.88 122.79 2.80
0.50 0.63 3.12 1.85 2.51
0.35 0.48 34.813 37.244 1.49
0.06 0.09 23.34 18.11 1.26
0.05 0.17 7.67 6.05 1.37
0.00 0.33 0.43 0.36 0.89
0.00 0.16 0.62 0.48 1.39
0.00 0.00 5.65 4.02 1.45
0.00 0.10 1.02 0.88 1.21
0.05 0.15 2.00 1.65 1.37
0.04 0.28 0.43 0.37 1.24

: iso [14 up to 18]+ anteiso [15+ 17]; MUFA,monounsaturated FA; Total MUFA: cis+ trans
p toΔ15cis+20:1Δ9cis+22:1Δ9cis; Total transMUFA: 16:1Δ9trans+18:1Δ6trans up to
8:3 n-3 + 20:3 n-3 + 20:4 n-3 + 20:5 n-3 + 22:3 n-3 + 22:4 n-3 + 22:5 n-3 + 22:6 n-3;
-6 + 22:5 n-6; LC, long chain; CLA, conjugated linoleic acid; Total CLA: 9cis,11trans-CLA +

; SNV: Standard Normal Variate; AREA: normalization; LV: loading vector; MSC: Multiple
ination for prediction; RMSEC: Root mean square error of calibration; RMSEP: Root mean
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were obtained for the total lipid content (RPD = 2.76), MUFA (RPD =
2.55), cis MUFA (RPD = 2.77), C14:0 (RPD = 2.76), Δ9 cis C18:1,
(RPD = 2.63), and Δ9 trans C18:1 (RPD = 2.68). Based on the RPD
and R2

p, those models can be used for process control (Williams,
2003). The different models were calculated with an offset value of
60 nm (maximum emission 353 nm) except for the PLS-R model of
Δ9 trans C18:1 obtained with an offset value of 120 nm (maximum
emission 391 nm). All these predictive models were obtained with the
data corrected by SNV preprocessing except for the predictive model
of the C14:0 that was calculated after correcting spectra with the
AREA preprocessing method.

The regression models of total amount of FA (RPD = 2.46), SFA
(RPD = 2.40), linear SFA (RPD = 2.39), CLA (RPD = 2.25), C16:0
(RPD = 2.29), C18:0 (RPD = 2.39) can be used for approximate
quantitative prediction. Those models were obtained with an offset
of 120 nm except for total amount of FA and C16:0 calculated with
two offsets 60 and 80 nm respectively. These models were obtained
after applying the SNV preprocessing method to spectral data except
Table 4
Performance of the best PLS regression models to predict lipids and fatty acid contents of
minced beef obtained with Synchronous Fluorescence excitation methoda.

Component Δλ (nm) PPS LV R2
C R2

P RMSEC RMSEP RPDp

Total lipids 60 AREA 8 0.87 0.77 0.46 0.46 2.76
Total FA 60 AREA 8 0.87 0.80 0.35 0.40 2.46
Total FA/total lipids 80 AREA 4 0.26 0.58 0.10 0.08 1.47

Fatty acid families
Total SFA 120 SNV 7 0.93 0.80 122.32 195.24 2.40
Total linear SFA 120 SNV 7 0.93 0.80 118.82 189.68 2.39
Total non-linear SFA 60 AREA 7 0.84 0.76 5.80 6.09 2.37
Total MUFA 60 SNV 7 0.86 0.79 175.83 182.27 2.55
Total cis MUFA 60 SNV 7 0.87 0.81 145.76 153.48 2.62
Total trans MUFA 60 AREA 5 0.52 0.54 51.39 38.17 1.95
Total PUFA 120 AREA 4 0.48 0.48 36.93 29.36 1.76
Total n-3 PUFA 40 MSC 6 0.46 0.37 7.80 5.78 1.85
Total n-3 LC PUFA 60 SNV 3 0.25 0.03 3.29 2.88 1.32
Total n-6 PUFA 120 AREA 4 0.44 0.39 29.12 26.45 1.47
Total n-6 cis PUFA 20 MSC 5 0.17 0.13 25.33 24.78 1.17
Total n-6 trans PUFA 60 AREA 6 0.56 0.43 15.08 12.51 1.82
Total n-6 LC PUFA 40 AREA 10 0.25 0.16 6.65 8.02 1.07
Total CLA 120 AREA 5 0.72 0.71 3.01 2.52 2.25

Individual fatty acids
14:0 60 AREA 8 0.86 0.83 11.38 10.95 2.76
16:0 80 SNV 8 0.92 0.77 73.36 115.14 2.29
18:0 120 SNV 5 0.81 0.78 64.60 62.16 2.39
18:1 Δ 9 cis 60 SNV 7 0.87 0.81 121.59 128.85 2.63
18:1 Δ 9 trans 120 SNV 4 0.70 0.74 2.37 1.63 2.68
18:1 Δ 10–11 trans 20 AREA 7 0.69 0.50 30.75 32.46 1.71
18:2 n-6 cis cis 20 MSC 5 0.16 0.09 19.33 18.50 1.20
18:3 n-3 40 AREA 6 0.38 0.39 6.59 4.61 1.83
20:3 n-3 80 MSC 10 0.15 0.00 0.24 0.26 1.09
20:4 n-3 60 AREA 2 0.08 0.11 0.66 0.42 1.64
20:4 n-6 100 AREA 10 0.29 0.05 4.48 5.89 1.06
20:5 n-3 40 SNV 5 0.29 0.11 0.92 0.76 1.44
22:5 n-3 120 AREA 4 0.33 0.16 1.86 1.76 1.30
22:6 n-3 120 RAW 6 0.51 0.34 0.32 0.32 1.41

SFA, saturated FA; Total SFA: linear+non-linear SFA; Linear SFA: 12:0 up to 24:0;Non-linear
SFA: iso [14 up to 18] + anteiso [15+ 17]; MUFA, monounsaturated FA; Total MUFA: cis +
transMUFA; Total cis MUFA: 14:1Δ9cis + 15:1Δ9cis + 16:1Δ9cis + 17:1Δ8 and Δ9cis +
18:1 Δ6cis up to Δ15cis + 20:1 Δ9cis + 22:1 Δ9cis; Total trans MUFA: 16:1 Δ9trans +
18:1Δ6transup to Δ16trans; PUFA, polyunsaturated FA; Total PUFA: n-6 PUFA + n-
3PUFA + CLA; Total n-3 PUFA: 18:3 n-3 + 20:3 n-3 + 20:4 n- 3 + 20:5 n-3 + 22:3
n-3 + 22:4 n-3 + 22:5 n-3 + 22:6 n-3; Total n-6 PUFA: 18:2 n-6 + 18:3 n-6 +
20:2 n-6 + 20:3 n-6 + 20:4 n-6 + 22:2 n-6 + 22:4 n-6 + 22:5 n-6; LC, long chain;
CLA, conjugated linoleic acid; Total CLA: 9cis,11trans-CLA + 11cis,13trans-CLA +
Total cis,cis CLA + Total trans,trans CLA.

a Abbreviations: Δλ: offset in nm; PPS: preprocess; RAW: without preprocessing; SNV:
Standard Normal Variate; AREA: normalization; LV: loading vector;MSC:Multiple Scattering
Correction; R2C: coefficient of determination for calibration; R2p: coefficient of determination
for prediction; RMSEC: rootmean square error of calibration; RMSEP: rootmean square error
of prediction; RPDp: residual predictive deviation for prediction.
for total FA and CLA that were calculated after performing the nor-
malization preprocessing method.

Seven other models, that can be used to distinguish between high
and low values and applied for rough screening (Williams, 2003),
were identified for the sum of MUFA trans (RPD = 1.95), PUFA
(RPD = 1.76), n-3 PUFA (RPD = 1.85), n-6 trans PUFA (RPD = 1.82),
Δ10–11 trans C18:1 (RPD = 1.71), n-3 C18:3 (RPD = 1.83), and n-3
C20:4 (RPD= 1.64). These different predictive models were calculated
with the normalization preprocessingmethod except for the sum of n-3
PUFA predictive model that was obtained after applying the MSC
method to spectral data.

The accuracy of the other predictive models was low based on their
RPD values (1.06 b RPD b 1.47 and R2

p b 0.58).

4. Discussion

4.1. Total lipids and fatty acids prediction in meat

A few studies have attempted to confirm the ability of fluorescence
spectroscopy to predict total lipids of meat (Brondum et al., 2000;
Wold, Kvaal et al., 1999; Wold, Lundby et al., 1999). Wold, Lundby
et al. (1999) reported a R2 of 0.71 and a RPD of 1.86 for intact beef
Longissimus dorsi muscle and Brondum et al. (2000) found lower R2

(0.57) and RPD (1.52) on pork intact muscles. The higher predictive
accuracy of the models reported in the present work (FFFS: R2 = 0.68
and RPD = 2.61; SFS: R2 = 0.80, RPD = 2.46) are probably associated
with two factors: (i) a higher variability in the data base: increasing
variability by the use of several breeds fed, several diets, and muscle
type in sampling had a positive effect on beef FA prediction (Brondum
et al., 2000; Mourot et al., 2015); (ii) the preparation of the samples:
in this study, meat samples were transformed into fine powder under
liquid nitrogen whereas in other studies, samples were intact. The fluo-
rescence measurement can be considered as a surface measurement
and the grinding of the sample can permit to record a fluorescence
signal that is more representative of the sample. NIR spectroscopy is
undoubtedly the most used method for predicting total lipids in beef,
some studies after cross-validation reported a R2

cv and RPD higher
than 0.9 and 3.5 respectively (De Marchi, Berzaghi, Boukha,Mirisola, &
Gallo, 2007; Mourot et al., 2015; Tøgersen, Arnesen, Nilsen, & Hildrum,
2003) suggesting that this spectralmethod presented probably a higher
accuracy to predict total lipids in beef.

As far aswe know, this study brings new insight regarding the ability
of FFFS to predict FA composition of beef because no study reported
equivalent investigation. According to Williams (2003), the regression
models calculated for total SFA, linear SFA, MUFA, cis MUFA and for
some individual unsaturated and mono-unsaturated FA (C14:0, C16:0,
C18:0, Δ9 cis C18:1, and Δ9 trans C18:1) could be used for process
control (R2p ≥ 0.63 and RPDp ≥ 2.50) and the one obtained for nonlinear
SFA would be suited for approximate quantitative prediction.

The poor predictive models calculated for the other FAs (i.e. total or
individual MUFA and PUFA) except the oleic acid Δ9 cis C18:1, could be
attributed either to a narrow variation range of the reference values
(giving small CV). Nonetheless, this hypothesis was not verified for
total CLA, total trans MUFA, 18:1 Δ 10-11 trans, 20:3 n-3, 20:4 n-3,
and 22:6 n-3 that presented high CV and low RPD values. We suggested
that those components are notwell predicted due both to a large RMSEP
compared to SD of the reference values (Prevolnik, Skrlep, Skorjanc, &
Candek-Potokar, 2010) and to their lower concentration in meat
(Tables 2 and 3). Indeed, the concentration of MUFA and PUFA are
lower compared to the other FA except for the oleic acid. Moreover,
we assumed the presence of a differentminimum threshold of detection
between the SFA and MUFA. Indeed, the total MUFA and cis MUFA are
correctly predicted compared to individual MUFA except for oleic acid
which is the most abundant FA.

The best predictive models discussed above were obtained by using
three excitationwavelengths (322, 335or 350 nm) thatwere previously
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reported as being sensitive to meat fat. The 322 nm was assigned to
vitamin A (Skjervold et al., 2003). The 335 nm excitation wavelength
was used to predict intramuscular fat content on beef (Wold, Kvaal
et al., 1999; Wold, Lundby et al., 1999). Nonetheless, this excitation
band was also reported as sensitive to NADH (Karoui, Thomas, &
Dufour, 2006). Even if its concentration is small in meat sample (Chan
et al., 1996; Gatellier, Hamelin, Durand, & Renerre, 2001), we consid-
ered the 350 nm excitation wavelength associated to the fluorescence
of vitamin E. Nonetheless, some inconsistencies concerning the assign-
ment of this band to vitamin E have to be pointed out in such a complex
product (Sikorska, Khmelinskii, & Sikorski, 2011).

No interesting models were obtained with the 290 and 382 nm
excitation bands probably due to their low relation with meat fat.
Indeed, the 290 nm band was mainly assigned to tryptophan residues
in proteins and usually applied as a fingerprint to discriminate muscles
(Dufour & Frencia, 2001; Sahar, Boubellouta, Portanguen, Kondjoyan, &
Dufour, 2009), to predict microbial spoilage of meat (Aït-Kaddour et al.,
2011) and chicken breast filet (Sahar, Boubellouta, & Dufour, 2011). For
the 382 nm band, Wold, Kvaal et al. (1999), Egelandsdal, Wold,
Sponnich, Neegård, and Hildrum (2002) and Skjervold et al. (2003)
have shown that this excitation wavelength is more adapted to extract
information related to connective tissue. This was confirmed by Sahar
et al. (2009), nonetheless they reported that riboflavin could also be
excited.

The SFSmode used in this study demonstrates that spectra recorded
on meat samples exhibit peaks corresponding to different fluorophores
as reported by Sahar et al. (2009). The results demonstrated that the
influence of Δλ can be substantial on the shape, location, and signal
intensity of the fluorescence peaks. Indeed, depending of the Δλ
value, synchronous fluorescence spectra are substantially modified. As
previously noted (Boubellouta & Dufour, 2008), SFS makes it possible
to narrow the spectral bands and, compared to emission or excitation
spectra, to have information on the fluorescence properties of several
intrinsic fluorophores on a given spectrum. This suggests the potential
of synchronous fluorescence spectra to be suited for the prediction of
different lipid components in beef.

As far as we know, this study brings also new insight regarding the
ability of SFS to predict total FA and other lipids of beef because no
study reported equivalent investigation. As discussed for FFFS, the
regression models calculated for total lipids, MUFA, cis MUFA and
individual unsaturated and mono-unsaturated FA (C14:0, C18:1, and
Δ9 trans C18:1) could be used for process control and the one obtained
for total FA, linear SFA, C16:0, and C18:0 would be suited for approxi-
mate quantitative prediction (Williams, 2003). The lower accuracy of
predictive models calculated for the other FAs can be attributed, as for
FFFS, either to a narrow variation range of the reference values, to
large RMSEP compared to SD of the reference values and to their
lower concentration inmeat. Moreover, a higher ability of SFS to predict
SFA can be noted compared to FFFS.

In the present study, three offsets can be identified as the most
suited for meat lipid prediction, 60, 80, and 120 nm. The synchronous
fluorescence excitation spectra obtained with those three offsets
presented different peaks that can be related to specific fluorophores.
The spectral band identified around 296 nm seems to originate from
the fluorescence of the protein tryptophan residues (Boubellouta &
Dufour, 2008; Sahar et al., 2009). While, the assignment of the band,
between 450 and 525 nm, to a specific fluorophore remains unclear.
For example, it was previously assigned to riboflavin and to Maillard
reaction products (Sahar et al., 2009; Yaacoub et al., 2009).

As previously mentioned, no studies have investigated the potential
of fluorescence spectroscopy to predict individual or total FA composi-
tion of ground LT muscles. Nonetheless, few studies have used NIR
spectroscopy to predict those components in ground LT muscles
(Cecchinato et al., 2012; Mourot et al., 2015; Sierra et al., 2008). The
models reported in those studies for 14:0, 16:0, 18:0, 18:1 Δ9, 20:3
n-3, 22:6 n-3 were more accurate than those reported in the present
study. Nonetheless, the models for 18:1 Δ9 trans, 20:4 n-6, 20:5 n-3,
and 22:5 n-3 presented higher RPD values whatever the fluorescence
spectroscopy method (SFS or FFFS) compared to the NIR spectroscopy
(0.40 in average).

For total SFA, linear SFS, MUFA, cisMUFA higher predictive statistics
were reported for NIR spectroscopy. In the study ofMourot et al. (2015),
that reported the best statistics for predictive models, the RPDcv was
improved by an average value of 0.98. Total PUFA, n-3 PUFA, n-3 LC
PUFA, n-6 PUFA, n-6 trans PUFA, n-6 LC PUFA were more accurately
predicted by fluorescence spectroscopy (SFF and FFFS) compared to
NIR spectroscopy (the RPD is improved in our study by a value of
0.32). For total trans MUFA, total CLA, 22:6 n-3, and 18:3 n-3 higher
RPD value (+ 0.12 in average) was obtained only by SFS excitation
method compared to NIR spectroscopy. Those observations could
suggest that fluorescence spectroscopy is more suited for predicting
the PUFA than NIR spectroscopy. Nonetheless, it seems whatever the
method used that the major FAs (representing over 1% of the total FAs
identified such as 14:0, 16:0, 18:0, 18:1 Δ9,…) were more accurately
predicted than minor FAs (Mourot et al., 2015). Also, total and many
individual SFAs and MUFAs were better predicted than total and indi-
vidual PUFAs.

The best regressionmodels for total fat, lipids and each FAswere ob-
tained using differentmathematical preprocessing. In the present study,
nearly all-preprocessed models are simpler or more parsimonious (i.e.
use fewer PLS factors) than the non-preprocessed models (i.e. RAW
models), independent of the fluorescence spectra used, FFFS or SFS.
The best preprocessing method differs between components consid-
ered suggesting that it is impossible to know beforehandwhich prepro-
cessing would lead to the most accurate model previously reported
(Fernández-Cabanás, Garrido-Varo, Olmo, Pedro, & Dardenne, 2007).
Nonetheless, it is interesting to note both that the models created
from normalized (i.e. AREA) spectra are generally the simplest models
and the best preprocessingmethod. This ismore obvious for themodels
calculated with FFFS that gave 20 components among 33 compared to
the models calculated with SFS that presented 16 components among
33 presenting the normalization as the best preprocessing method
(Tables 3 and 4). Those results suggested that the normalization
approach appears as a good preprocessing strategy for the prediction
of fat and fatty acid contents from fluorescence spectra. This study
shows, and recalled, that a normalization is not at all a neutral operation
and has to be carefully chosen.

4.2. Comparison of the ability of FFFS and SFS to predict fatty acid
composition

The comparison between the two fluorescence excitation modes
was conducted whenever a predictive model was usable for process
control (RPD ≥ 2.50). Compared to the SFS, the models obtained with
FFFS presented generally lower values of R2

p, loading vectors, RMSEP
and higher values of RPD factors. The b-coefficient obtained with the
SFS presented a noisy shape (results not shown) indicating an over
fitting of models calculated. This implies that the models obtained
with FFFS are generally more accurate and simplest or more parsimoni-
ous than the models obtained with SFS data. Considering that meat is a
complex and anisotropic matrix presenting different physicochemical
properties, the use of only some excitation or emission wavelengths
for the excitation of its intrinsic fluorophores would have limited the
ability of the FFFS to predict efficiently some lipids in meat compared
to the SFS excitation mode. Nonetheless, the present study clearly
shows that the FFFS is the best method for prediction of fat and fatty
acid contents in meat.

Those results can be assigned to the fact that a synchronous fluores-
cence spectrum exhibits peaks corresponding to several different
fluorophores. These compounds are present at the sample surface
resulting in an increase of spectral loss and interferences. This induces
instability in models compared to the FFFS that allows exciting a
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fluorophoremore specifically. This observation is in agreementwith the
observation of Patra andMishra (2002)who reported that in spite of the
sensitivity, selectivity, for multi-component analysis, SFS fails for very
complex mixtures.

5. Conclusion

This study can be considered as a first step to demonstrate the ability
of fluorescence spectroscopy to predict FA contents of the LT muscle
coming from three breeds of cattles. This method globally appears as a
promising tool to support the current effort of research carried out to
improve the nutritional quality of meat products. The results suggested
that the fluorescence spectroscopy is more suited to measure SFA and
MUFA because this method failed when the prediction of PUFA was
investigated. It seems that a higher minimum threshold was necessary
to predict correctly the PUFA compared to the SFA. Indeed, the total
MUFA and cis MUFA are correctly predicted compared to individual
MUFA except for oleic acid which is the most abundant FA. However
more effort should be done to validate those hypotheses. Taking into
account the number of samples used in the present study and experi-
mental conditions, the models obtained are not ready to be used in
practical conditions. Amore complete calibration and validation phases,
with different muscle categories, feeding regimes and higher number of
breedswill be necessary to build robust predictivemodels and to ensure
that fluorescence spectroscopy is adapted for prediction of meat fat
composition and for industrial applications.
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