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a b s t r a c t

Psychrotrophic strains of the foodborne pathogen Bacillus cereus can multiply during the refrigerated
storage of food products. The aim of this study was to determine the impact of anaerobiosis on the
growth of two psychrotrophic B. cereus strains exposed to acidic pH at a cold temperature in a laboratory
medium. At 10 �C, growth occurred at pH values equal to or higher than 5.7 during anaerobiosis, whereas
aerobic growth was observed from pH 5.4. Growth rates during aerobiosis were similar at pH 5.4 and pH
7. No growth was observed for the two tested strains at 8 �C without oxygen regardless of the pH;
however, both strains grew at this temperature from pH 5.4 in the presence of oxygen. These pH growth
limits in aerobiosis are consistent with those reported for different strains and different foods or media,
but no other studies have described anaerobic growth at acidic pH values. The maximal B. cereus con-
centration was approximately 6.0 log10 CFU/ml for cultures in the absence of oxygen and approximately
8.0 log10 CFU/ml for cultures in the presence of oxygen. In conclusion, we found that the combination of
anaerobiosis, pH < 5.7 at 10 �C, or anaerobiosis and temperatures �8 �C prevent psychrotrophic B. cereus
growth.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bacillus cereus was reported as the second leading cause of
foodborne illnesses between 2006 and 2010 in France, and it is an
increasing cause of foodborne outbreaks in the EU (EFSA, 2012,
2013, 2014, 2015). B. cereus produces heat-resistant spores (Luu-
Thi et al., 2014), and some strains are able to grow at refrigera-
tion temperatures; thus, these bacteria can contaminate different
types of food, such as Refrigerated Processed Foods of Extended
Durability (REPFEDs), particularly those containing vegetables
(Choma et al., 2000; Daelman et al., 2013; Del Torre et al., 2001;
Soares et al., 2012).

B. cereus psychrotrophic strains are able to survive to pasteuri-
zation treatments (Luu-Thi et al., 2014). The risk depends on their
ability to grow at cold temperatures during product storage and
transport (Carlin et al., 2013; Guinebreti�ere et al., 2008). However,
food products containing fruits and vegetables have different levels
ent citer ce document :
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nra.fr (C. Nguyen-the).
of acidity. The capacity of several B. cereus strains to grow at cold
temperatures was studied, at various pH values, in laboratory me-
dium or in food products such as natural and acidified carrot sub-
strates or zucchini broth at pH 6.5 (Valero et al., 2000, 2003). These
studies were done in the presence of air, but food products can also
be packaged in the absence of oxygen to prevent oxidative deteri-
oration. Some studies previously showed that oxygen limitation
can reduce the growth of B. cereus (de Sarrau et al., 2012;
Samapundo et al., 2011), but these studies only evaluated growth
at neutral pH values. The following combinations of pH, tempera-
ture and anaerobiosis have been examined: i) low temperatures
and anaerobiosis at neutral pH (de Sarrau et al., 2012) (Samapundo
et al., 2011) and ii) pH and temperatures in aerobic conditions
(Fern�andez et al., 2002; Valero et al., 2000, 2003). Moreover,
models of B. cereus growth as a function of pH, temperature, aw
were developed in the presence of oxygen (Olmez and Aran, 2005;
Sutherland et al., 1996).

The goal of the present study was to determine the impact of
anaerobic conditions (e.g., by vacuum packaging) on the potential
development of B. cereus in foods varying in pH and stored at low
temperatures. The impact of acidification on B. cereus growth at
cold temperature and anaerobic conditions was also assessed.
uyen The, C. (Auteur de
d cold temperatures on the growth
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Fig. 1. B. cereus KBAB4 growth in BHI at pH 7.0 at 10 �C with oxygen after (C) a
subculture at 20 �C followed by subculture at 10 �C, (▫) a subculture at 20 �C, and ( ) a
subculture at 10 �C.

A. Gu�erin et al. / Food Microbiology 59 (2016) 119e123120
2. Materials and methods

2.1. Strains and media

Two B. cereus strains able to grow at cold temperatures, as
described by (Carlin et al., 2013), were used. Strain INRA KBAB4was
isolated from forest soil (Sorokin et al., 2006; Vilas-Boas et al.,
2002), and strain ADRIA I21 was isolated from food by ADRIA
Normandie (Villier Bocage, France).

Growth experiments were performed in Brain Heart Infusion
(BHI; Biokar) broth acidified with HCl 1 N or 6 N after autoclaving to
achieve final pH values of 5.0, 5.3, 5.4, 5.5, 5.6, 5.7 and 7.0.

2.2. Growth conditions

The stock of cultures for the whole study consisted in suspen-
sions of exponential phase cells (OD600 of 0.5) in 30% final con-
centration of glycerol, stored at �80 �C.

10 ml of BHI were inoculated in KIMAX tubes with 100 ml of the
frozen cultures and incubated at 20 �C under shaking at 200 rpm.
When this culture reached an OD600 of 0.5, 100 ml were used to start
a new culture of 10 ml BHI that was incubated at 10 �C with shaking
at 200 rpm to reach an OD600 of 0.5. Then, 100 ml of this culture was
diluted and used to inoculate tubes containing 10 ml of BHI me-
dium at various pH values at a final concentration of 102 CFU/ml.
These tubes were then incubated at 8 or 10 �C, with or without
oxygen, and shaken at 200 rpm. The CFU were enumerated once or
twice a day by sampling 100 ml of each of the different cultures and
plating serial dilutions on Luria Bertani (LB; Biokar) agar plates
incubated at 30 �C. The drop in pH medium at the end of aerobic
growth was of 1 unit for an initial pH of 7.0 and decreased with the
decrease of the initial pH value.

Anaerobic cultures were performed in 20 ml Hungate tubes
(Dutscher) with butyl septa. Oxygen was eliminated from BHI
medium by boiling under a flow of nitrogen passed through a
Hungate column to remove any trace of oxygen. Hungate tubes
were filled under the flow of oxygen-free nitrogen and autoclaved.
Cultures were inserted through the septum with 1 ml sterile sy-
ringes (BD Plastipak). For each replicate culture, at each sampling
time, one Hungate tube was opened to enumerate bacterial CFU
and then discarded. Aerobic cultures were done in KIMAX tubes.
For each condition and replicate, the same tube was used for all
sampling times. The drop in pH medium at the end of anaerobic
growth was of 0.3 unit for an initial pH of 7.0 and decreased with
the decrease of the initial pH value.

All growth curves were performed in triplicate with three in-
dependent inocula.

2.3. Estimation of lag times, growth rate, and maximal population

Growth curves were established by plotting the log10 CFU/ml as
a function of time. Lag times, maximal specific growth rates (mmax),
andmaximal populations (Nmax) were determined with themodels
of Rosso et al. (Rosso et al., 1995), Baranyi and Roberts (Baranyi
et al., 1993) and Gompertz (Zwietering et al., 1990).

2.4. Criteria to define growth versus no growth

Growth was defined by an increase in CFU of more than 1 log10
(Pujol et al., 2012), considering that it should be twice the
commonly accepted microbiological experimental error of 0.5
log10 CFU. In one of the conditions tested in our study, successive
slight increases in counts, approx. 1.5 log10, followed by decreases,
were observed and considered as “erratic growth”.
Comment citer ce document 
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2.5. Statistical analysis

The results are expressed as the means of three independent
biological replicates. A Student’s T-test was used to compare mean
values. The null hypothesis was rejected for P < 0.05.
3. Results

We studied the combined effect of pH and absence of oxygen on
the growth capacity of two strains of B. cereus at cold temperatures.
We first investigated the effect of the inoculum on growth at low
temperature in BHI medium. Inoculum prepared through one
subculture at 10 �C always led to lag times of unpredictable dura-
tions (up to several days) of the subsequent culture at 10 �C. One
subculture at 20 �C reduced the lag time of the subsequent culture
at 10 �C. Combining two subcultures, one at 20 �C followed by one
at 10 �C, led to growthwith the shortest lag time for the subsequent
culture at 10 �C (Fig. 1). These two successive subculture steps
allowed the best cold adaptation of the two B. cereus strains and
were applied to all growth kinetic studies.

Table 1 shows growth parameters obtained with the model of
Rosso. Growth parameters obtained with the two other models
were similar and are not presented. Without oxygen at 10 �C,
growth of strain B. cereus KBAB4 was observed between pH 5.7 and
7.0 (Fig. 2A). For both pH values, maximal specific growth rates and
lag phases were similar (p > 0.05) (Table 1). The maximal pop-
ulations were 5.4 log10 CFU/ml and 6.2 log10 CFU/ml at pH 5.7 and
pH 7.0, respectively (Table 1). At pH 5.6, cells survived without
significant decline or growth over the duration of the experiment
(Fig. 2A). At 8 �C and in absence of oxygen, KBAB4 cells survived at
pH 7.0 but not at the other tested pH values (Fig. 2B). In contrast, in
the presence of oxygen, KBAB4 cells grew similarly at pH 5.4 and
7.0 at 10 �C and 8 �C (Fig. 2C and D), with maximal populations of
approximately 8 log10 CFU/ml (Table 1). At 10 �C and pH values of
between 5.4 and 7.0, the maximal specific growth rates were the
same, approximately 0.13 h�1 (p > 0.05) (Table 1) and lag phases
were comprised between 5 h and 10 h. In summary, growth of
KBAB4 with and without oxygen shows that maximal population
achieved without oxygen were markedly lower, but that the
maximal specific growth rates, at permissive pH values (�5.7),
during the initial phase of growth, were similar in both conditions
(p > 0.05) (Table 1). In contrast, lag phases of anaerobic and aerobic
cultures were different, with a 30 h-delay before growth in absence
of oxygen at 10 �C, compared to growth in presence of oxygen
:
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Table 1
Calculated parameters of growth curves obtained with B. cereus KBAB4 and B. cereus ADRIA I21 in brain heart infusion (BHI) broth at different pH values and at 10 �C or 8 �C,
using the model of Rosso (Rosso et al., 1995). Data shown are the means (in bold) of three replicate growth curves ± range. NT: Not tested; S: Survival; D: Death; EG: Erratic
Growth.

pH Anaerobic Aerobic

KBAB4 ADRIA I21 KBAB4 ADRIA I21

Lag
time (h)

Maximal
specific
growth
rate (h�1)

Nmax (log10
UFC/ml)

Lag
time (h)

Maximal
specific
growth
rate (h�1)

Nmax (log10
UFC/ml)

Lag
time (h)

Maximal
specific
growth
rate (h�1)

Nmax (log10
UFC/ml)

Lag
time (h)

Maximal
specific
growth
rate (h�1)

Nmax (log10
UFC/ml)

10 �C
7.0 37.81

± 9.39
0.13 ± 0.02 6.22 ± 0.04 25.95

± 6.75
0.08 ± 0.02 6.03 ± 0.18 6.80

± 3.38
0.13 ± 0.03 8.52 ± 0.10 2.03

± 2.92
0.13 ± 0.01 8.31 ± 0.16

5.7 38.16
± 10.44

0.11 ± 0.04 5.45 ± 0.02 S S S 10.03
± 4.76

0.12 ± 0.00 8.15 ± 0.10 8.21
± 3.41

0.11 ± 0.02 7.87 ± 0.09

5.6 S S S NT NT NT NT NT NT NT NT NT
5.5 S S S S S S 5.90

± 0.53
0.13 ± 0.00 8.07 ± 0.05 6.11

± 15.12
0.08 ± 0.01 7.71 ± 0.14

5.4 S S S S S S 5.15
± 0.61

0.13 ± 0.01 8.03 ± 0.05 24.46
± 1.72

0.07 ± 0.01 7.65 ± 0.09

5.3 NT NT NT NT NT NT S S S S S S
5.0 D D D NT NT NT D D D NT NT NT
8 �C
7.0 EG EG EG 0.00

± 0.00
0.04 ± 0.01 4.79 ± 0.40 0.00

± 0.00
0.08 ± 0.00 8.39 ± 0.13 0.00

± 0.00
0.06 ± 0.01 7.54 ± 0.39

5.7 NT NT NT NT NT NT NT NT NT NT NT NT
5.6 NT NT NT NT NT NT NT NT NT NT NT NT
5.5 S S S NT NT NT 4.43

± 13.17
0.06 ± 0.01 7.79 ± 0.10 S S S

5.4 NT NT NT NT NT NT 13.40
± 1.80

0.07 ± 0.01 7.77 ± 0.05 S S S

5.3 S S S NT NT NT S S S D D D
5.0 NT NT NT NT NT NT NT NT NT ND ND NT

Fig. 2. Growth kinetics of B. cereus KBAB4 in BHI at 10 �C (A and C) and 8 �C (B and D), without oxygen (A and B) or with oxygen (C and D) and at pH ( ) 7.0, (B) 5.7, (-) 5.6, (▫) 5.5,
(D) 5.4, ( ), 5.3 and (C) 5.0. Error bars represent standard deviations and can be smaller than symbols. They are comprised between 0.005 and 1.4 log10 CFU/ml.

A. Gu�erin et al. / Food Microbiology 59 (2016) 119e123 121
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(Table 1). At 8 �C and in aerobiosis, the maximal specific growth
rates at pH 5.4 and 5.5 were slightly lower than at pH 7.0 (0.06 h�1

compared to 0.08 h�1) (p < 0.05). Lag phases varied between 0 h at
pH 7.0 and 13 h at pH 5.4. At both 10 �C and 8 �C, cell survival was
observed at pH 5.3 throughout the experiment (Fig. 2C and D).

Without oxygen, the B. cereus ADRIA I21 strain grew only at pH
7.0 (Fig. 3A and B). At 10 �C, the maximal population was approx-
imately 6 log10 CFU/ml with a maximal specific growth rate of
0.08 h�1 and a lag phase of 26 h (Table 1). At 8 �C, cells grew very
slightly during the first 100 h before declining. In contrast, with
oxygen, growth of strain ADRIA I21 was observed between pH 5.4
and 7.0 at 10 �C (Fig. 3C) with maximal specific growth rates
increasing from 0.07 h�1 at pH 5.4 to 0.13 h�1 at pH 7.0, without any
lag phases (Table 1). The strain survived at pH 5.3 (Fig. 3C). Maximal
populations of ADRIA I21 at 10 �C were approximately 8 log10 CFU/
ml at pH 7.0 but tended to be lower for other growth permissive
conditions. At 8 �C, growth was observed only at pH 7.0 with a
maximal specific growth rate of 0.06 h�1, a maximal population of
7.5 log10 CFU/ml, and survival was observed at pH 5.5 (Fig. 3D). As
for KBAB4, absence of oxygen markedly reduced maximal pop-
ulations achieved by ADRIA I21.

4. Discussion

The absence of oxygen increased the lower pH limit for growth
at cold temperature. At 10 �C, both KBAB4 and ADRIA I21 were able
to grow at pH 5.4 in the presence of oxygen, whereas they did not
grow below 5.7 without oxygen. In addition, ADRIA I21 did not
grow at pH 5.7 and was thus less able to adapt to a low pH than
KBAB4 in absence of oxygen. Absence of oxygen also increased the
lower temperature limit for growth. At pH 7.0 and 8 �C, both KBAB4
and ADRIA I21 strains grew in aerobic conditions to final pop-
ulations close to 8 log CFU/ml, which is consistent with predictive
Comment citer ce document 
Guerin, A., Dargaignaratz, C., Broussolle, V., Clavel, T.,
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pacities of psychrotrophic Bacillus cereus. Food Microbiology, 59, 1

Fig. 3. Growth kinetics of B. cereus ADRIA I21 in BHI medium at 10 �C (A and C) and 8 �C (B
(B) 5.7, (▫)5.5, (D) 5.4, and ( ) 5.3. Error bars represent standard deviations and can be s
Tmin values at 3.9 �C and 3.3 �C, respectively (Carlin et al., 2013),
whereas KBAB4 did not grow and ADRIA I21 grew slightly before
rapidly declining without oxygen. In conditions permitting growth,
the absence of oxygen reduced the maximal population (Nmax)
compared to aerobic cultures, as observed with a mesophilic strain
of B. cereus grown at higher temperatures in laboratory media (de
Sarrau et al., 2012) and with a psychrotrophic strain of B. cereus
grown in vegetable pur�ees Samapundo et al. (2011). Absence of
oxygen reduced the maximal specific growth rate for ADRIA I21 but
not for KBAB4. Absence of oxygen increased lag phases of both
KBAB4 and ADRIA I21. Probably, the lack of oxygen leads the cells to
a significantly longer adaptation phase before exponential growth.
In presence of oxygen, KBAB4 was less affected by pH reduction at
cold temperatures than ADRIA I21, as it grew at similar rates and
Nmax values at all pH values permitting growth, in contrast to
ADRIA I21 in which the growth rate decreased with acidification.

No previous studies have described B. cereus growth in anaer-
obic conditions at cold temperatures and acidic pH, restricting the
comparison of our results with those of the literature to neutral pH.
Our results in BHI are consistent with those obtained with a psy-
chrotrophic B. cereus strain in vegetable pur�ees ranging in pH from
6.15 to 6.3 in which the authors observed growth rates of approx-
imately 0.03 h�1, similar to that of ADRIA I21 (0.04 h�1), at 8 �C, pH
7.0, and Nmax values between 4.49 log10 CFU/g and 5.35 log10 CFU/g
depending on the pur�ee, which is similar to the Nmax of 4.79
log10 CFU/ml for ADRIA I21 (Samapundo et al., 2011).

In the presence of oxygen, the pH limit of 5.4 we found in BHI at
10 �C and 8 �C for KBAB4 was the same as for a mixture of two
psychrotrophic B. cereus strains in carrot pur�ee (Valero et al., 2003).
A strain of B. cereus was previously reported to grow at pH 5.53 in
BHI (Jaquette and Beuchat, 1998). However, the specific growth
rates reported previously were lower than those found in our study.
For instance, at 8 �C the growth rates of the B. cereus strains in the
:
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studies of Valero et al. (2000 and 2003) were of 0.047 h�1 at pH 6.2
and 0.01 h�1 at pH 5.5, compared to 0.07 h�1 at pH 5.4 for KBAB4 in
the present study (Table 1). No growth was observed by Benedict
et al., 1993 at pH below 6.5 and 8 �C. Growth rates presumably
differ because of differences in growth media and strains in these
different studies. For studies that used BHI (Benedict et al., 1993)
the higher growth rate of KBAB4 may reflect a particularly good
adaptation of this strain to the combined low pH and cold
temperature.

The results from this study and from the previous studies cited
above show that at 10 �C and during anaerobiosis, the pH limit for
growth of psychrotrophic B. cereus is between 5.7 and 5.6, whereas
it is between 5.4 and 5.3 during aerobiosis. At pH values between
6.15 and 7.0 and in anaerobiosis, the temperature growth limit is
between 8 �C and 7 �C with no or limited growth, depending on
strains and growth media, whereas it is below 5 �C with oxygen.

It can therefore be concluded that the combination of cold
temperature, low pH and the absence of oxygen could help to
control the growth of psychrotrophic B. cereus strains in food
products.
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